• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Order Discontinuous Galerkin Solution of Compressible Flows with a Hybrid Lattice Boltzmann Flux

    2018-07-11 02:57:18SunYongchengCaiJunweiQinWanglong

    Sun Yongcheng,Cai Junwei,Qin Wanglong

    The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,P.R.China

    Abstract:A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.

    Key words:hybrid lattice Boltzmann flux solver;discontinuous Galerkin(DG)method;Euler equations;Navier-Stokes equations

    0 Introduction

    During the past two decades,high-order discontinuous Galerkin(DG)methods[1]have been receiving growing interests due to its advantages such as high accuracy,great geometry flexibility,straightforward implementation of h/P adaption and parallel computing.Bassi et al.used a highorder DG method to solve the Euler equations in 1997[2]and then developed BR1 scheme(the first Bassi-Rebay scheme)and BR2 scheme(the second Bassi-Rebay scheme)for solving the Navier-Stokes(N-S)equations[3,4].Almost at the same time,Oden et al.introduced a high-order DG scheme for the N-S equations without using any auxiliary variables[5].In recent years,the LDG and CDG schemes were also developed for solving the N-S equations in Refs.[6,7],respectively.Since the DG method is quite similar with the finite volume(FV)method,the numerical fluxes employed in FV method are also widely used in DG method,such as local Lax-Friedrichs(LLF),Roe etc.

    As an alternative,the Boltzmann equationbased flux solvers are becoming more and more attractive,such as the kinetic flux vector splitting(KFVS)scheme[8]and the gas-kinetic Bhatnagar-Gross-Krook(BGK)scheme[9,10].The KFVS scheme usually cannot produce numerical results as accurate as those obtained by Roe[11]or AUSM[12]since the collision process is controlled by numerical time step.The gas-kinetic Bhatnagar-Gross-Krook(BGK)scheme handles the particle collisions using the BGK model and controls the dissipation in the streaming process by the collision time,which gives accurate solutions for both inviscid and viscous flows.However,the use of the Maxwellian function in KFVS and the gas-kinetic Bhatnagar-Gross-Krook(BGK)scheme increases the complexity and reduces the efficiency[8-10].

    Recently,some efforts have been made to develop efficient lattice Boltzmann flux solver(LBFS)for compressible flows[13-16],where the inviscid flux at the cell interface is reconstructed using the local solution of one-dimensional compressible lattice Boltzmann model.It is noted that the non-equilibrium part of the distribution function at cell interfaces introduces numerical dissipation,which is helpful for capturing shocks,but not expected in smooth regions,such as boundary layers.

    A high-order DG method is employed here to solve both inviscid and viscous flows.Instead of using the conventional numerical inviscid fluxes,a hybrid LBFSis adopted,in which a switch function is introduced to control the numerical dissipation.Numerical results indicate that the hybrid LBFS combining with the high-order DG method can give accurate solutions for both inviscid and viscous flows.

    1 DG Discretization of N-S Equations

    The N-S equations in the conservation form can be written as

    where U are the conservation variables and Fc,Fvare the inviscid and viscous flux functions,respectively.

    After multiplying a test function V,integrating over the computational domain and performing an integration by parts,the following weak form is obtained

    where F(U,?U)=Fc(U)+Fv(U,?U).By subdividing the computational domainΩinto the nonoverlapping elementsΩe,the semi-discrete system is written as

    where Uhand Vhare the high-order approximations of U and V

    where?j(x,y)are the basis functions of degree p.Eq.(3)then becomes

    Here,the BR2 scheme[4]is employed,which introduces the following“face”contributions defined as

    There are volume and surface integrations in Eq.(8).In order to efficiently solve this equation,Gauss numerical integration method is adopted in this work.The numerical flux H includes the inviscid partand the viscous partThe viscous part can be evaluated by averaging the left and right side of the interface

    As to the inviscid numerical flux,instead of using the widely used LLF flux,Roe flux,AUSM flux,etc.,an LBFS is employed in this work.

    2 Hybrid Lattice Boltzmann Flux Solver

    In the hybrid lattice Boltzmann flux solver,the inviscid flux is evaluated by local reconstruc-tion of solution using one-dimensional lattice Boltzmann model,while the viscous flux is still approximated by conventional smooth function approximation.Thus,in this work,we only consider the evaluation of inviscid flux at the cell interface.For the sake of derivation,the detailed expression of inviscid flux is given first.For twodimensional case,the inviscid flux in Eq.(7)can be written as

    where n=(nx,ny)denotes the unit normal vector on the control surface in the Cartesian coordinate system.ρ,Un,Uτand p present the density,normal velocity,tangential velocity and the pressure of the mean flow,respectively.E is the total energy defined as

    In the present work,the inviscid flux Hcis computed by LBFS.It is known that the conservative variables and fluxes at the cell interfaces can be expressed as the summation of lattice velocity,moments and distribution function according to the conservation forms of moments[15].U-sually,the distribution function at the cell interface consists of equilibrium part and non-equilibrium part.From the Chapman-Enskog analysis and applying Taylor series expansion in time and physical space,the non-equilibrium part of the distribution function can be approximated by the difference of equilibrium distribution functions at the cell interface and its surrounding point[17,18].Finally,the inviscid flux at the cell interface can be written as

    whereτ0is the dimensionless collision time,δt the streaming time step,ξithe particle velocity in i-direction,and gi(0,t),andare the equilibrium distribution functions at the cell interface and its surrounding points.A non-free parameter D1Q4 model,proposed by Yang et al.[14,15],is adopted in Eq.(14).φastands for the moments,which can be written as

    2.1 Evaluation of

    In Eq.(16),the key issue is to evaluate the equilibrium distribution function gi(-ξiδt,t-δt).Like the conventional upwind schemes,it is assumed that a local Riemann problem is formed at the cell interface.Thus,the equilibrium distribution function gi(-ξiδt,t-δt)can be evaluated according to the location of-ξiδt.The non-free D1Q4 model is applied in this paper andcan be specified as

    Fig.1 Streaming process of non-free parameter D1Q4 model at the cell interface

    In Eq.(18),only the conservative variables,which attributed to the normal velocity,are obtained.To evaluate the tangential velocity at the cell interface,one of the feasible ways can be expressed as

    where Uτ,andare the tangential velocities at the cell interface,the left and right side of cell interface,respectively.With Eqs.(18),(19),the primitive variablesρ*,,,p*can be obtained in a straightforward way.By substituting the above primitive variables directly into Eq.(4),the inviscid flux at the cell interfacecan be expressed as

    2.2 Evaluation of

    In addition,the contribution of the tangential velocity to the momentum flux in the tangential direction and energy flux can be approximated by

    By collecting Eqs.(21)—(23),the full expression ofcan be obtained

    2.3 Evaluation ofτ0

    In the hybrid LBFS,τ0is controlled by an introduced switch function.In the smooth region such as in boundary layer,the switch function takes a value close to zero.However,around the shock wave,it tends to be one.That is,in hybrid LBFS,the numerical dissipation is almost zero in smooth region to simulate accurately the thin boundary layer,and a relatively large numerical dissipation near the strong shock wave is contained to suppress the instability of shock wave.The switch function is defined as

    where tanh(x)is the hyperbolic tangent function,andρL,ρRthe densities at the left and right sides of the cell interface.is the local discontinuity over the cell interface and C is the amplification factor,which is set as C=10 in this work.

    3 Numerical Results

    A few benchmark problems are tested with the hybrid LBFS introduced above,including the Sod shock tube,the inviscid flow around a cylinder,the inviscid flow with shocks around the NACA0012 airfoil and the laminar flow around the NACA0012 airfoil.

    3.1 Sod shock tube problem

    The shock tube problem is a particularly interesting and difficult test case,since it presents an exact solution to the full system of one-dimensional Euler equations containing simultaneously a shock wave,a contact discontinuity and expansion fan.This test case is chosen to demonstrate the flexibility of the LBFS combining with DG method in capturing the shock.The initial value of this problem is set as

    A mesh size of 250 is used for simulation and a third order(p=2)DG method is adopted.Fig.2 shows the computed density profile obtained by the LBFS scheme(red solid line)at t=0.22.Exact solution(black solid line),the results of Lax-Friedrichs(LF)scheme(green dotted line),HLLC scheme(blue dashed line),AUSMDV scheme(cyan dotted line)are also displayed in Fig.2.It is observed that the performance of the schemes in capturing the shock is basically the same.However,in the vicinity of the expansion wave,the result of LBFS is the same with that of the AUSMDV scheme,which is steeper than the results of both LF scheme and HLLC scheme,demonstrating a more accurate scheme in dealing with complex flows.Fig.3 gives the computed profiles of pressure and velocity with different schemes.The results of LBFS match well with those of other schemes and the exact solutions,which demonstrate the capacity of the hybrid lattice Boltzmann flux solver.

    Fig.2 Density profile for the 1D Sod shock tube

    Fig.3 Pressure and velocity profiles for 1D Sod shock tube

    3.2 Inviscid flow around a cylinder

    The case of the inviscid flow around a cylinder is used to validate the accuracy of the DGLBFS scheme.A structured C-grid(16×16)is used in the entire computational domain(Fig.4),which is very coarse.The obtained Mach number isolines with various orders ranging from 1 to 4 are given in Fig.5,where the Mach number isolines become smoother with increasing order.The numerical solutions are very close to the analytical solution when p≥3.Fig.6 displays the distributions of the pressure coefficient Cp.It can be seen that the numerical solution becomes more and more accurate with increasing order and no significant difference can be observed when the order p≥2,which demonstrates the great capacity of the DG-LBFS scheme.

    Fig.4 Mesh for inviscid flow around a 2D cylinder

    Fig.5 Mach number contours obtained using different orders

    3.3 Transonic flow past NACA0012 airfoil

    A transonic flow around the NACA0012 airfoil case is used to test the ability of the DG-LBFS method in capturing the shock.The Mach number of the flow condition is 0.85 and the attack angle is 1.25°.

    Fig.6 The distribution of Cp

    Fig.7 Computational mesh for transonic flow past NACA0012 airfoil

    Fig.7 gives the global view and the local view of the computational mesh,which contains 900 elements in total.Fig.8 demonstrates the Mach number isolines obtained with different orders.It can be observed that the accuracy becomes higher with increasing orders.The computed pressure coefficient Cp(p=4)is shown in Fig.9,which depicts a good match compared with the result of Ref.[20].Fig.10 illustrates the logarithmic density residual versus time step using an implicit method.Converged results can be obtained within several time steps for different orders.Table 1 gives the computed lift coefficient Cland drag coefficient Cdusing DG-LBFS method with different orders.It can be seen that although a coarse grid is used in this case,the results of the DG-LBFS method agree well with that of the finite volume method[20].

    Fig.8 Mach number isolines obtained using different orders

    Fig.9 Cpdistribution for transonic flow past NACA012 airfoil(p=4)

    Fig.10 Logarithmic density residual versus time step(p=1—4)for the transonic flow past NACA012 airfoil

    Table 1 Results of Cland Cd

    3.4 Laminar flow past NACA0012 airfoil

    A laminar flow around the NACA0012 airfoil is chosen to test the ability of the DG-LBFS method in capturing the thin boundary layer.The free-stream flow condition is given as Ma∞=0.5 and Re∞=5 000 with an angle of attackα=0°.A coarse mesh with 476 quadrilateral elements is used for this test case as in Fig.11.The Mach number isolines of order p=4 is displayed in Fig.12,in which a small recirculation bubble caused by the separation of the flow can be seen in the near-wake region of the airfoil.The results of the pressure coefficient Cpand the friction coefficient Cfare given in Fig.13,which concur with the results of the Godunov flux function[3].The computed lift coefficient Cland drag coefficient Cdof different orders using DG-LBFS method are listed in Table 2,which agree well with the results of Refs.[3,21],showing the capacity of the DGLBFS method in solving the viscous flow problems.

    Fig.11 Computing mesh used for simulation of laminar flow past NACA0012 airfoil

    Fig.12 Computed Mach number isolines of laminar flow past NACA0012 airfoil(p=4)

    Fig.13 Computed Cpand Cffor laminar flow past NACA0012 airfoil

    Table 2 Comparison of Cland Cd

    4 Conclusions

    The high-order DG method combining with a hybrid lattice Boltzmann flux solver is employed to solve the compressible Euler equations and Navier-Stokes equations.A switch function ranging from 0 to 1 is introduced to control the numerical dissipation when solving the inviscid numerical flux,making the scheme accurate for simulating both smooth flows and the flows with shocks.Numerical results of some benchmark problems indicate that accurate solutions can be obtained even on very coarse grids using the introduced numerical solver.

    一级a爱视频在线免费观看| 欧美国产精品va在线观看不卡| 亚洲欧洲日产国产| 免费一级毛片在线播放高清视频 | 欧美黑人欧美精品刺激| 极品教师在线免费播放| 中文欧美无线码| 免费不卡黄色视频| 男女高潮啪啪啪动态图| 黑人操中国人逼视频| 亚洲欧美激情在线| 国产又爽黄色视频| 人人妻人人爽人人添夜夜欢视频| 亚洲成人国产一区在线观看| 久久国产精品男人的天堂亚洲| 日韩欧美一区视频在线观看| 亚洲国产成人一精品久久久| 亚洲av成人不卡在线观看播放网| www.自偷自拍.com| 亚洲少妇的诱惑av| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 国产熟女午夜一区二区三区| 久久 成人 亚洲| 老汉色∧v一级毛片| 日韩欧美三级三区| 美女主播在线视频| 大片免费播放器 马上看| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 亚洲免费av在线视频| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 最近最新中文字幕大全免费视频| 午夜成年电影在线免费观看| 激情视频va一区二区三区| 宅男免费午夜| 69精品国产乱码久久久| 色播在线永久视频| 午夜福利视频在线观看免费| 久久中文字幕一级| av又黄又爽大尺度在线免费看| 中文字幕精品免费在线观看视频| 欧美av亚洲av综合av国产av| 天天添夜夜摸| 老司机午夜福利在线观看视频 | 十八禁网站网址无遮挡| 亚洲人成电影免费在线| 啦啦啦中文免费视频观看日本| 999久久久精品免费观看国产| 亚洲第一青青草原| 后天国语完整版免费观看| 精品第一国产精品| 18禁观看日本| 国产精品自产拍在线观看55亚洲 | 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网| 国产av精品麻豆| 欧美亚洲 丝袜 人妻 在线| 久久性视频一级片| 在线观看www视频免费| 手机成人av网站| 999久久久国产精品视频| 欧美在线黄色| 精品亚洲成国产av| 亚洲人成77777在线视频| 中国美女看黄片| 亚洲综合色网址| 亚洲精品国产一区二区精华液| 黄色怎么调成土黄色| 亚洲午夜理论影院| 国产精品熟女久久久久浪| 亚洲三区欧美一区| 国产精品影院久久| 国产不卡av网站在线观看| 岛国毛片在线播放| aaaaa片日本免费| 亚洲午夜理论影院| 国产在线观看jvid| 日韩人妻精品一区2区三区| 国产精品欧美亚洲77777| 久热爱精品视频在线9| 少妇被粗大的猛进出69影院| tocl精华| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网| 亚洲性夜色夜夜综合| 两人在一起打扑克的视频| 咕卡用的链子| 精品视频人人做人人爽| 制服诱惑二区| 美女福利国产在线| 亚洲少妇的诱惑av| 久久99一区二区三区| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 另类亚洲欧美激情| 麻豆国产av国片精品| 日日爽夜夜爽网站| 国产成人系列免费观看| 亚洲精华国产精华精| 搡老乐熟女国产| 国产一区二区三区视频了| 99在线人妻在线中文字幕 | 久久久欧美国产精品| 香蕉丝袜av| 桃花免费在线播放| 国产精品99久久99久久久不卡| 亚洲视频免费观看视频| 99精品久久久久人妻精品| 成人精品一区二区免费| 国产野战对白在线观看| 美女高潮喷水抽搐中文字幕| www.自偷自拍.com| 一本久久精品| 欧美日韩av久久| 国产高清视频在线播放一区| 国产真人三级小视频在线观看| 国产精品九九99| 18在线观看网站| 精品午夜福利视频在线观看一区 | av天堂在线播放| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 老司机靠b影院| 天堂动漫精品| 一边摸一边抽搐一进一小说 | 99国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 亚洲国产成人一精品久久久| 亚洲全国av大片| kizo精华| 在线看a的网站| 欧美一级毛片孕妇| 午夜激情av网站| 亚洲美女黄片视频| 一区二区日韩欧美中文字幕| 黑丝袜美女国产一区| 老鸭窝网址在线观看| 亚洲国产av新网站| 国产男女内射视频| 国产99久久九九免费精品| 好男人电影高清在线观看| 亚洲九九香蕉| 搡老乐熟女国产| 18禁观看日本| 免费看十八禁软件| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 最黄视频免费看| 亚洲专区字幕在线| 久久精品熟女亚洲av麻豆精品| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 97在线人人人人妻| 亚洲五月婷婷丁香| 窝窝影院91人妻| 亚洲成人免费av在线播放| 男女边摸边吃奶| 黄色怎么调成土黄色| 免费看a级黄色片| 久久久久久久久久久久大奶| 黄片播放在线免费| 在线观看人妻少妇| 最新的欧美精品一区二区| 国产精品电影一区二区三区 | 女性生殖器流出的白浆| 一级毛片电影观看| 纯流量卡能插随身wifi吗| 少妇裸体淫交视频免费看高清 | a级毛片在线看网站| 日本av手机在线免费观看| videos熟女内射| 日韩人妻精品一区2区三区| av国产精品久久久久影院| 日韩成人在线观看一区二区三区| 日本av免费视频播放| 91九色精品人成在线观看| 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久5区| 男女高潮啪啪啪动态图| 乱人伦中国视频| 欧美精品一区二区大全| 国产免费视频播放在线视频| 久久久精品免费免费高清| 在线观看免费午夜福利视频| 变态另类成人亚洲欧美熟女 | 下体分泌物呈黄色| 国产精品九九99| av网站在线播放免费| 妹子高潮喷水视频| 人成视频在线观看免费观看| 午夜福利视频精品| 欧美午夜高清在线| 精品久久蜜臀av无| 自线自在国产av| 亚洲国产欧美一区二区综合| 黑人操中国人逼视频| 另类亚洲欧美激情| 精品午夜福利视频在线观看一区 | 亚洲精品自拍成人| 不卡av一区二区三区| 一本一本久久a久久精品综合妖精| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区| 亚洲精品av麻豆狂野| av在线播放免费不卡| 最新的欧美精品一区二区| 99久久99久久久精品蜜桃| 久久久精品免费免费高清| 99久久国产精品久久久| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| 一级毛片女人18水好多| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 亚洲精品成人av观看孕妇| 国产成人精品在线电影| 一级毛片女人18水好多| 国产91精品成人一区二区三区 | 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 飞空精品影院首页| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 正在播放国产对白刺激| 精品人妻1区二区| 亚洲人成电影观看| 国产精品99久久99久久久不卡| 90打野战视频偷拍视频| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 日本一区二区免费在线视频| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 大片免费播放器 马上看| 亚洲视频免费观看视频| 亚洲成国产人片在线观看| 国产日韩欧美视频二区| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 三级毛片av免费| 中文亚洲av片在线观看爽 | 高清黄色对白视频在线免费看| 欧美av亚洲av综合av国产av| 国产欧美亚洲国产| 一区在线观看完整版| 两个人看的免费小视频| 欧美精品高潮呻吟av久久| 久久久国产成人免费| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 日韩欧美一区二区三区在线观看 | 最黄视频免费看| 国产精品免费视频内射| 高清黄色对白视频在线免费看| 99国产精品99久久久久| 久久久久精品人妻al黑| 青青草视频在线视频观看| 国产淫语在线视频| 狂野欧美激情性xxxx| 亚洲专区中文字幕在线| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲av第一区精品v没综合| 99国产精品99久久久久| 欧美激情极品国产一区二区三区| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| bbb黄色大片| 老司机亚洲免费影院| 十八禁高潮呻吟视频| 岛国在线观看网站| 999精品在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 青青草视频在线视频观看| 麻豆成人av在线观看| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| 91大片在线观看| 老熟妇仑乱视频hdxx| 精品久久久久久久毛片微露脸| 国产成人欧美在线观看 | 中文亚洲av片在线观看爽 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱久久久久久| 老司机在亚洲福利影院| 国产伦理片在线播放av一区| 久久香蕉激情| 搡老熟女国产l中国老女人| 精品视频人人做人人爽| 桃红色精品国产亚洲av| 男男h啪啪无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| av福利片在线| 午夜两性在线视频| 免费看十八禁软件| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 男女下面插进去视频免费观看| 搡老熟女国产l中国老女人| 国产午夜精品久久久久久| 国产精品一区二区免费欧美| kizo精华| 国产日韩一区二区三区精品不卡| 国产高清激情床上av| 久久精品国产99精品国产亚洲性色 | 久久久久精品人妻al黑| 日本av手机在线免费观看| 18禁国产床啪视频网站| 最新美女视频免费是黄的| 一区二区日韩欧美中文字幕| 黑人猛操日本美女一级片| 亚洲第一av免费看| 免费不卡黄色视频| 亚洲成人免费av在线播放| 国产麻豆69| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 国产亚洲一区二区精品| 久久午夜亚洲精品久久| 超碰97精品在线观看| 日韩大码丰满熟妇| 国产日韩欧美视频二区| 久久性视频一级片| 999精品在线视频| 久久性视频一级片| 亚洲三区欧美一区| 成年人黄色毛片网站| 亚洲三区欧美一区| 如日韩欧美国产精品一区二区三区| 久热爱精品视频在线9| 交换朋友夫妻互换小说| 老熟妇乱子伦视频在线观看| 一级,二级,三级黄色视频| 黄色视频在线播放观看不卡| 亚洲精华国产精华精| 欧美日韩av久久| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 美女高潮喷水抽搐中文字幕| 久久影院123| 久久亚洲精品不卡| 亚洲精品国产色婷婷电影| 午夜福利一区二区在线看| 免费久久久久久久精品成人欧美视频| 午夜福利一区二区在线看| 国产精品 欧美亚洲| 久久亚洲精品不卡| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 久久人妻av系列| 亚洲精品一二三| 中文字幕最新亚洲高清| 人人妻人人爽人人添夜夜欢视频| 精品国内亚洲2022精品成人 | 精品国产乱码久久久久久男人| 精品久久久精品久久久| 亚洲七黄色美女视频| www日本在线高清视频| 亚洲av日韩在线播放| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av高清一级| 国产精品熟女久久久久浪| 久久精品国产亚洲av高清一级| 岛国在线观看网站| 1024视频免费在线观看| 另类精品久久| 女警被强在线播放| 国产男靠女视频免费网站| 女人精品久久久久毛片| 精品国产一区二区三区四区第35| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线 | 色播在线永久视频| 黄频高清免费视频| 亚洲色图av天堂| 母亲3免费完整高清在线观看| www日本在线高清视频| 99国产精品一区二区蜜桃av | 他把我摸到了高潮在线观看 | 午夜福利在线免费观看网站| 我要看黄色一级片免费的| 久久人妻熟女aⅴ| 五月天丁香电影| 夜夜爽天天搞| 丰满饥渴人妻一区二区三| 一区二区三区精品91| 精品一区二区三区视频在线观看免费 | 亚洲精品中文字幕在线视频| bbb黄色大片| 亚洲伊人色综图| 十分钟在线观看高清视频www| 欧美精品高潮呻吟av久久| 欧美成人免费av一区二区三区 | 精品卡一卡二卡四卡免费| 黄色毛片三级朝国网站| avwww免费| 人人妻人人澡人人看| 一级a爱视频在线免费观看| 成在线人永久免费视频| 黄色a级毛片大全视频| 男女无遮挡免费网站观看| 国产麻豆69| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久久久99蜜臀| 午夜久久久在线观看| 涩涩av久久男人的天堂| 国产av又大| 亚洲色图av天堂| 久久中文字幕人妻熟女| 久久99热这里只频精品6学生| 精品一品国产午夜福利视频| 国产97色在线日韩免费| 18禁观看日本| 成人黄色视频免费在线看| a级毛片黄视频| 国产男女超爽视频在线观看| 看免费av毛片| 日韩免费av在线播放| 久久九九热精品免费| 欧美日韩精品网址| 亚洲九九香蕉| 国产成人av激情在线播放| 国产又爽黄色视频| 性少妇av在线| 超碰97精品在线观看| 亚洲精品中文字幕一二三四区 | 亚洲伊人色综图| 两性夫妻黄色片| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 国产精品欧美亚洲77777| 美女视频免费永久观看网站| 制服诱惑二区| 老司机靠b影院| 久久久国产成人免费| 免费在线观看影片大全网站| 在线观看免费日韩欧美大片| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 欧美精品亚洲一区二区| 中亚洲国语对白在线视频| 亚洲专区字幕在线| 黄频高清免费视频| 欧美乱码精品一区二区三区| 19禁男女啪啪无遮挡网站| 国产精品98久久久久久宅男小说| 久久青草综合色| 欧美变态另类bdsm刘玥| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲高清精品| 国产av又大| 婷婷成人精品国产| 成年人黄色毛片网站| 在线观看www视频免费| 一级片免费观看大全| 一本综合久久免费| 精品国产乱码久久久久久男人| 午夜福利影视在线免费观看| 色94色欧美一区二区| 亚洲国产欧美网| 国产一区二区激情短视频| 美女福利国产在线| 19禁男女啪啪无遮挡网站| 99国产精品99久久久久| 国产午夜精品久久久久久| 亚洲 欧美一区二区三区| 日韩三级视频一区二区三区| 精品国内亚洲2022精品成人 | 精品一区二区三区视频在线观看免费 | 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠躁躁| 视频区图区小说| 亚洲欧美激情在线| 午夜福利在线观看吧| 亚洲午夜精品一区,二区,三区| 黄色视频,在线免费观看| 黄色丝袜av网址大全| 国产成人系列免费观看| 性少妇av在线| 午夜免费成人在线视频| 女人精品久久久久毛片| 国产精品久久久av美女十八| 最新在线观看一区二区三区| 少妇精品久久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 不卡av一区二区三区| 久久中文字幕人妻熟女| 精品久久久精品久久久| 日韩视频一区二区在线观看| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 制服人妻中文乱码| 欧美午夜高清在线| √禁漫天堂资源中文www| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 飞空精品影院首页| 一区二区av电影网| 国产深夜福利视频在线观看| 热99re8久久精品国产| 韩国精品一区二区三区| 无人区码免费观看不卡 | 国产免费福利视频在线观看| 咕卡用的链子| 交换朋友夫妻互换小说| 999久久久国产精品视频| 成人三级做爰电影| 久久久水蜜桃国产精品网| 欧美精品啪啪一区二区三区| 男人操女人黄网站| 美女午夜性视频免费| 高潮久久久久久久久久久不卡| 欧美激情高清一区二区三区| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 亚洲成av片中文字幕在线观看| 一本大道久久a久久精品| 久久九九热精品免费| 少妇精品久久久久久久| 精品少妇久久久久久888优播| 99精国产麻豆久久婷婷| 日本黄色视频三级网站网址 | 91九色精品人成在线观看| 18在线观看网站| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 精品久久久久久久毛片微露脸| 一级黄色大片毛片| av片东京热男人的天堂| 午夜福利,免费看| 亚洲自偷自拍图片 自拍| 如日韩欧美国产精品一区二区三区| 国产精品久久久av美女十八| 久久99热这里只频精品6学生| 国产福利在线免费观看视频| 国产高清视频在线播放一区| 亚洲国产中文字幕在线视频| videosex国产| 午夜两性在线视频| 日韩中文字幕视频在线看片| 啦啦啦 在线观看视频| 国产精品久久久久久精品电影小说| 最黄视频免费看| 人妻 亚洲 视频| 久久精品国产综合久久久| 欧美亚洲 丝袜 人妻 在线| 无遮挡黄片免费观看| 怎么达到女性高潮| 啪啪无遮挡十八禁网站| 亚洲 欧美一区二区三区| 亚洲国产精品一区二区三区在线| 三上悠亚av全集在线观看| 国产精品 欧美亚洲| 国产男女超爽视频在线观看| 久久久精品区二区三区| 婷婷丁香在线五月| 国产一区二区激情短视频| 少妇 在线观看| 操美女的视频在线观看| 亚洲久久久国产精品| 一本综合久久免费| 交换朋友夫妻互换小说| 中文亚洲av片在线观看爽 | 最新的欧美精品一区二区| 日韩一区二区三区影片| 性少妇av在线| 亚洲久久久国产精品| 激情在线观看视频在线高清 | 在线观看免费高清a一片| 麻豆av在线久日| 久久久国产欧美日韩av| 91老司机精品| 99国产精品一区二区蜜桃av | 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产av影院在线观看| 美女高潮喷水抽搐中文字幕| 久久久久网色| 国产一区二区在线观看av| 黄片小视频在线播放| 五月天丁香电影| 亚洲国产av影院在线观看| 99精品欧美一区二区三区四区| 一边摸一边抽搐一进一出视频| 精品一区二区三区四区五区乱码| 人人妻人人爽人人添夜夜欢视频| 一边摸一边抽搐一进一出视频| 日韩一卡2卡3卡4卡2021年| 欧美激情 高清一区二区三区| 色婷婷久久久亚洲欧美| 国产麻豆69| 中文字幕人妻丝袜一区二区| 成年版毛片免费区| 免费不卡黄色视频| 欧美日本中文国产一区发布| 777久久人妻少妇嫩草av网站| 夜夜夜夜夜久久久久| 久久久水蜜桃国产精品网|