• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Arnoldi Projection Fractional Tikhonov for Large Scale Ill-Posed Problems

    2018-07-11 02:57:12Xu

    ,Xu

    1.College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.Institute of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Abstract:It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth for ill-posed problems,so fractional Tikhonov methods have been introduced to remedy this shortcoming.And Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining a partial Arnoldi decomposition of the given matrix.In this paper,we propose a new method to compute an approximate solution of large scale linear discrete ill-posed problems which applies projection fractional Tikhonov regularization in Krylov subspace via Arnoldi process.The projection fractional Tikhonov regularization combines the fractional matrices and orthogonal projection operators.A suitable value of the regularization parameter is determined by the discrepancy principle.Numerical examples with application to image restoration are carried out to examine that the performance of the method.

    Key words:ill-posed problems;fractional matrix;Tikhonov regularization;orthogonal projection operator;image restoration

    0 Introduction

    This paper is concerned with the solution of least-square problem

    with a large square matrix A of ill-determined rank.In particular,such a matrix is severely illconditioned and may be singular by which its singular values decrease to zero gradually and without obvious interval.The vector b represents the available data that is usually with a discrete error or measurement error e∈Rn,i.e.

    In view of the ill-condition of A and the error e in b,the straightforward solution generally yields a meaningless approximation,so it is essential that the computation is stabilized by regularization.Tikhonov regularization is one of the most popular regularization methods for properties and application.Based on Tikhonov regularization,we consider a penalized least-squares problem

    where the scalarμ>0 is referred to the regularization parameter and the matrix L∈Rl×nis the regularization operator[2-3].The method of this paper requires L to be a square matrix.Calvetti et al.[4]and Hansen et al.[5]described a variety of square regularization operators.For the purpose of obtaining an accurate approximate solution of,the least-squares problem(1)is replaced by the minimization problem(4).The number of rows in L,l≤n,but regularization matrices with l>n were also applied.Let R(K)and N(K)denote the range and null space of the matrix K,respectively.The matrices A and L to be chosen are assumed to satisfy

    Then the Tikhonov minimization problem(4)has the unique solution

    for anyμ>0 and the superscript“Τ”denotes transposition of the matrix[6].

    This paper solves the minimization problem(4)by simplifying it to standard form as well as uses a fractional power of the matrixas weighting matrix to measure the residual error in standard with a semi-norm.And then,using a few steps of the Arnoldi process,this paper reduces the problem(3)to a problem of smaller size,which is solved by using the projection fractional Tikhonov,and the regularization parameters a andμare determined.At last,the illustrative numerical examples are also reported,and concluding remark can be found.

    1 Projection Fractional Tikhonov

    In this section,we discuss the method which combines the fractional matrices and orthogonal projection operators.Projection fractional Tikhonov regularization provides that the penalized least-squares problem(4)can be simplified to standard form and uses a fractional power as weighting matrix to measure the residual error in standard with a semi-norm.

    1.1 Form simplification

    The penalized least-squares problem(4)can be simplified to standard form with the orthogonal projection

    which is well suited for using in Tikhonov regularization.In Eq.(6),L is used as regularization operator.It is convenient to consider the relation of the choice of the matrix L and the matrix P,and actually the choice of P determines the choice of L.Moreover,the choice of matrix P can be carried out in many different ways,some of which may yield regularization operators,and they can give more accurate approximations ofthan the general finite difference-based regularization operators[7].

    Give the A-weighted pseudo-inverse of L as

    where L?∈ Rn×ldenotes the Moore-Penrose pseudoinverse of the regularization operator L,and I is the identity matrix.

    Suppose that Eq.(6)holds and introduce the QR-factorization shown as

    where R∈Rl×lis upper triangular and Q∈Rn×lhas orthonormal columns.Using the properties of the Moore-Penrose pseudo-inverse and orthogonal projection,we have the following identities for L

    So yield that

    Substituting Eqs.(8),(10)into Eq.(7),we get

    which simplifies to

    Transforming the matrix and vectors of Tikhonov minimization problem(4)by the following substitutions

    where

    When L is an orthogonal projection operator,Eqs.(13),(14),can be expressed in a simple manner as

    An attractive property of this transformation is that thedefined by Eq.(7)is of simple form which makes the orthogonal projection(6)easy to use.For anyμ>0,letλ=1/μ,and then the minimization problem of Eq.(18)is

    Given anyλ>0,x(λ)has a certain value and is satisfied as

    Then

    is defined.Consequently,F(λ)is continuous in[0,∞),and some properties of F(λ)are given in the following.

    Proposition 1 F(λ)is infinitely differentiable,and has the following properties:

    (2)For anyλ>0,the first and second order derivatives of F(λ)are as follows

    Proof:

    (1)Computing the inner product of the formula(20)with x(λ)yields

    which implies that

    According to this estimate and Eq.(22),we obtain that

    Thus the conclusion(1)can be drawn from the definition of F(λ).

    (2)Implicit differentiation of Eq.(19)with respect toλcombining with Eq.(20)yields

    thus the conclusion(2)is proved.

    Proof:We consider

    Computing the inner product of the formula(23)with x′(λ)yields

    In view of Eq.(20),we obtain that

    Then we prove that the equal-sign in the above equation does not hold.Assume that>0 satisfies,then we have.Due to Eq.(23),is obtained,then note that the form(20)yields

    Proposition 3 F(λ)satisfies the differential relationship

    Proof:Implicit differentiation of Eq.(20)with respect toλyields

    Computing the inner product of the above equation with x(λ)yields

    and combining with Eq.(20)yields

    i.e.

    Therefore,Proposition 3 has been proved.

    1.2 Fractional Tikhonov

    In this section,we use a fractional power of the matrixas weighting matrix to measure the residual error in standard form(18)with a semi-norm[8].We will replace the penalized leastsquares problem(18)by a minimization problem of the form

    where the matrix H is symmetric positive semidefinite and

    for any M.It is quite natural that the value ofμ counts for a great deal that determines how sensitive the solution of Eq.(24)is to the error e in.The minimization problem(24)has a unique solutionfor anyμ,such as the penalized leastsquares problem(18).

    Assuming that

    for a>0.When a<1,we define H as the Moore-Penrose pseudo-inverse of.The choice of a is the key to determine,which makes the approximate solution more accurate.We refer to the minimization problem(24)as the fractional Tikhonov method(the weighted Tikhonov method)[9].When a=1,we can obtain the standard Tikhonov regularization.

    The normal equation associated with the penalized least-squares problem(24)is given by

    Then introduce the singular value decomposition(SVD)of,shown as

    where

    and

    are orthogonal matrices and

    whose diagonal elements are arranged in the following order

    where the index r is the rank of.

    Substituting the singular value decomposition(Eq.(28))into Eq.(27)yields

    Then the solution of Eq.(27)can be written as

    which is equivalent to

    where

    The solution xμof Eq.(5)can be recovered from the solution of Eq.(33)according to

    In addition,the filter function for some a>0 is given by Eq.(34),it has the following asymptotics

    and

    Then we consider the filter function of standard Tikhonov regularization shown as

    It is easy to show that the filter function(34)is less smoothing than(σ)for 0<a<1,and the singular values are damped less by the filter function(34)than by(σ),which means that the approximate solution(35)has higher quality than that with the exact solution.

    2 Arnoldi-Projection Fractional Tikhonov

    The regularization method is based on the singular value decomposition of the coefficient matrix.However,the singular value decomposition requires a very large amount of computation for the large-scale matrix.Therefore,we choose to project the large-scale problem to the low-dimensional Krylov subspace.Lewis and Reichel proposed Arnoldi Tikhonov regularization method[11]in 2009,and introduced the method in detail.Moreover,Global Arnoldi Tikhonov and Augmented Arnoldi Tikhonov Regularization Methods were successively proposed[12-13].

    We propose to reduce the problem(3)to a problem of smaller size by application of the Arnoldi process applied to A with initial vectorThis yields the decomposition

    where Vk=[v1,v2,…,vk]∈Rn×kis the first k columns of Vk+1,and Vk+1∈Rn×(k+1)has orthonormal columns,which span the Krylov subspace

    We assume that k is chosen sufficiently small so thatis an upper Hessenberg matrix with nonvanishing subdiagonal entries.Thenis of rank k.We seek to determine an approximate solution xμ,kof Eq.(4)in the Krylov subspace(39).

    Substituting

    into Eq.(4)and using Eq.(38)yields the reduced minimization problem

    whose solution is denoted by yμ,k.And the reduced minimization problem(40)solved using the projection fractional Tikhonov regularization methods is described in Section 1,then

    is an approximate solution of Eq.(4).

    3 Parameters Selection

    This section discusses the determination of the regularization parameter.We first consider the effects of parameters a andμon.It follows from the solution that

    and

    Conjugating

    we have

    and we assume that an estimate of the norm of the error

    Then we can apply the discrepancy principle to determine a suitable value of the regularization parameterμ.Let a>0 be fixed and define that

    whereη>1 is a user-supplied constant independent ofε.We determineμ>0,so that the solution xμof Eq.(4)satisfies

    Then the vector xμis asked to satisfy the discrepancy principle[15].Solution of Eq.(48)about μis equivalent to the positive zero of the function

    where r is the rank of A.Thus

    and

    We consider the initial approximate solution μ0:=0 for Newton method withμ=μ0-φ′a(μ)/φ″a(μ)to compute the positive zero of the functionφa(μ).The iterations with Newton′s method are terminated as soon as a value ofμ,such that

    has been determined.The factor 1/100 in Eq.(52)is used in our implementation,but other positive factors strictly smaller than 1 can be also used.

    4 Numerical Examples

    We use three text examples to illustrate the performance of the Arnoldi projection fractional Tikhonov(APFT)regularization and compare them to Arnoldi fractional Tikhonov(AFT)and Arnoldi Tikhonov(AT)for large scale linear dis-crete ill-posed problems.The orthogonal projection with

    has the same null space as the regularization operator

    which will be applied in the following examples.All computations were carried out in MATLAB with about 16 significant decimal digits.

    Example 1 Considering the Fredholm integral equation of the first kind shown as

    the MATLAB code Shaw produces a discretization A∈R1000×1000and the right-hand side∈R1000by a Galerkin method with orthonormal box functions[16].The noise-levelλis defined by.Then,we will give a comparison of the approximate solution by the APFT regularization method and exact solution when taking the different value of the error vector e.

    Fig.1 illustrates that the approximate solution obtained by the APFT method can approximate the exact solution well,which means that APFT regularization method is effective.

    Example 2 The Fredholm integral equation of the first kind is

    and the MATLAB code discretes Barrt,Shaw,Phillips,Gravity,Foxgod and Deriv2 by a Galerkin method with orthonormal box functions about the matrix order n=1 000.The noise-levelλis defined by

    The regularization parameterμis determined by the discrepancy principle.The tables report relative errorsfor several noiselevel and show that the method we proposed improves the accuracy of the computed solutions.

    Fig.1 Recovery results of Phillips with diverse noise-level

    Tables 1 and 2 show the qualities of AT,AFT and APFT for various examples(n=1 000).The following results show that APFT usually renders solutions of high quality.In other words,we can see that APFT is superior to AFT and AT.

    Table 1 Qualities of these methods with the error-level(λ=1%)

    Table 2 Qualities of these methods with the error-level(λ=10%)

    Example 3 We show the performance of the method about the restoration of a discrete image which has been contaminated by blur and noise.Our task is to deblur the two-dimensional images degraded by additive noise and spatially invariant blur.The restoration problems were proposed by the US Air Force Phillips Laboratory.The twodimensional image restoration problem can be modeled by a linear system of equations Ax=b.The matrix A is a discrete blurring operator referred to as a discrete point spread function.Then the components of the vectors b and^x are the lexicographically-ordered pixel values of distorted images and the exact,respectively.We efficiently compute matrix-vector products without explicitly forming A by using the fast discrete Fourier transform and the discrete point spread function.

    Fig.2 displays the noise-and blur-free images,the contaminated image,as well as restored images of Lena which determined by the AFT and APFT methods.Meanwhile,the images above illustrate that APFT gives better reconstructions than AFT.

    Fig.2 Original,blurred,and restored Lena images

    Fig.3 displays the noise-and blur-free images,the contaminated image,as well as restored images of“MATH”which are determined by the AT and APFT methods.The approximate solutions abtained by the APFT method are nearly optimal for this example.Actually,the computed solutions are close to the orthogonal projection of the exact solution into the range-restricted subspace.However,the AT produces an approxi-mate solution of lower quality than the APFT method.

    Fig.3 Original,blurred,and restored MATH images

    5 Conclusions

    In this paper,we propose the APFT regularization method for solving the large scale linear discrete ill-posed problems.Our method is easy to realize and numerical examples show that the proposed method is effective by which we can give a more accurate approximation than AT and AFT methods.

    Acknowledgements

    This work was supported by the National Natural Science Foundations of China(Nos.11571171 and 61473148).

    国产亚洲精品久久久com| 美女被艹到高潮喷水动态| 成人高潮视频无遮挡免费网站| 久久热精品热| 中文字幕熟女人妻在线| 麻豆国产av国片精品| 啦啦啦啦在线视频资源| 亚洲中文日韩欧美视频| 久久精品人妻少妇| 国产国拍精品亚洲av在线观看| 最近最新免费中文字幕在线| 美女高潮的动态| 看片在线看免费视频| av.在线天堂| 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 久久久久久久久久久丰满 | 亚洲av美国av| 久久久色成人| 国产欧美日韩精品一区二区| 免费在线观看影片大全网站| 精品人妻1区二区| 此物有八面人人有两片| 嫩草影视91久久| 精品一区二区三区人妻视频| 黄色日韩在线| 亚洲,欧美,日韩| 欧美日韩亚洲国产一区二区在线观看| 99热6这里只有精品| 国产一区二区亚洲精品在线观看| 国产欧美日韩一区二区精品| 可以在线观看毛片的网站| 日韩中文字幕欧美一区二区| 国产男人的电影天堂91| 亚洲最大成人手机在线| 免费在线观看日本一区| 亚洲电影在线观看av| 丰满的人妻完整版| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 动漫黄色视频在线观看| 亚洲av成人av| 三级毛片av免费| 日日夜夜操网爽| 身体一侧抽搐| 久久精品影院6| 久久午夜福利片| 日韩欧美在线二视频| 国产精品国产高清国产av| 亚洲精品日韩av片在线观看| 99久久无色码亚洲精品果冻| 中文在线观看免费www的网站| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 亚洲内射少妇av| 淫秽高清视频在线观看| 欧美丝袜亚洲另类 | 色在线成人网| 丝袜美腿在线中文| 亚洲第一电影网av| 国产一级毛片七仙女欲春2| 久久中文看片网| 禁无遮挡网站| 十八禁国产超污无遮挡网站| 两个人的视频大全免费| 亚洲最大成人av| 在线免费观看不下载黄p国产 | а√天堂www在线а√下载| 免费看av在线观看网站| 免费无遮挡裸体视频| 国产一区二区在线观看日韩| 欧美成人性av电影在线观看| 国产精品永久免费网站| 小说图片视频综合网站| 十八禁网站免费在线| 真人一进一出gif抽搐免费| 99热精品在线国产| 国产男靠女视频免费网站| 亚洲最大成人av| 日本黄色片子视频| 人人妻人人看人人澡| 午夜日韩欧美国产| 成年免费大片在线观看| 成年免费大片在线观看| 夜夜夜夜夜久久久久| 日韩 亚洲 欧美在线| 午夜福利在线观看吧| 欧美zozozo另类| 最近视频中文字幕2019在线8| 国产高清激情床上av| 国产蜜桃级精品一区二区三区| 久久亚洲精品不卡| 婷婷色综合大香蕉| 波多野结衣高清无吗| 国产伦精品一区二区三区视频9| 国产精品爽爽va在线观看网站| 亚洲va在线va天堂va国产| 欧美丝袜亚洲另类 | 国产午夜精品久久久久久一区二区三区 | 桃红色精品国产亚洲av| 国产v大片淫在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久久久丰满 | 成年人黄色毛片网站| 久久久久久久精品吃奶| 真人一进一出gif抽搐免费| 午夜福利成人在线免费观看| 亚洲av中文字字幕乱码综合| 精品不卡国产一区二区三区| 亚洲乱码一区二区免费版| 九九久久精品国产亚洲av麻豆| 欧美黑人巨大hd| 真实男女啪啪啪动态图| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 九九久久精品国产亚洲av麻豆| 男人的好看免费观看在线视频| 国产大屁股一区二区在线视频| 欧美三级亚洲精品| 中文字幕熟女人妻在线| 尤物成人国产欧美一区二区三区| 成人毛片a级毛片在线播放| 舔av片在线| 性欧美人与动物交配| 人妻制服诱惑在线中文字幕| 久久久久久久久久黄片| 能在线免费观看的黄片| 亚洲欧美日韩东京热| 丰满的人妻完整版| 韩国av在线不卡| 老司机深夜福利视频在线观看| 3wmmmm亚洲av在线观看| 美女cb高潮喷水在线观看| 精品国内亚洲2022精品成人| 日本色播在线视频| 国产亚洲av嫩草精品影院| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 国内精品宾馆在线| 伦精品一区二区三区| 精品久久久久久久久亚洲 | 在线观看av片永久免费下载| 亚洲狠狠婷婷综合久久图片| 午夜久久久久精精品| 精品一区二区三区人妻视频| 一区二区三区四区激情视频 | 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 久久精品久久久久久噜噜老黄 | 哪里可以看免费的av片| 69人妻影院| av女优亚洲男人天堂| 成人性生交大片免费视频hd| 男人狂女人下面高潮的视频| 成人鲁丝片一二三区免费| 韩国av在线不卡| 尤物成人国产欧美一区二区三区| 国产亚洲精品av在线| 两个人的视频大全免费| 97超视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成伊人成综合网2020| 欧美最黄视频在线播放免费| 在线观看66精品国产| 日本色播在线视频| 黄色视频,在线免费观看| 可以在线观看的亚洲视频| 十八禁国产超污无遮挡网站| 色综合色国产| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区三区在线臀色熟女| 十八禁国产超污无遮挡网站| 精华霜和精华液先用哪个| 男人的好看免费观看在线视频| 欧美高清成人免费视频www| eeuss影院久久| 午夜福利视频1000在线观看| 久久精品国产亚洲av涩爱 | 精华霜和精华液先用哪个| 久久久久九九精品影院| 在线观看舔阴道视频| 搡女人真爽免费视频火全软件 | 欧美色欧美亚洲另类二区| 少妇高潮的动态图| 色综合站精品国产| 级片在线观看| 亚洲成人精品中文字幕电影| 午夜精品久久久久久毛片777| 国产精品乱码一区二三区的特点| 丰满乱子伦码专区| 欧美国产日韩亚洲一区| 日韩一本色道免费dvd| 丝袜美腿在线中文| 免费av观看视频| 久久这里只有精品中国| 日本撒尿小便嘘嘘汇集6| 欧美最新免费一区二区三区| 午夜亚洲福利在线播放| 可以在线观看毛片的网站| 黄片wwwwww| 亚洲四区av| 中国美白少妇内射xxxbb| 日本 av在线| 午夜精品久久久久久毛片777| 国内精品一区二区在线观看| 99久久中文字幕三级久久日本| 久久久久国内视频| 国产成人av教育| 色尼玛亚洲综合影院| 免费看光身美女| 亚洲电影在线观看av| 搡老岳熟女国产| 精品久久国产蜜桃| 最近最新免费中文字幕在线| 特大巨黑吊av在线直播| 日韩欧美在线二视频| 久久久久久久久久成人| 三级国产精品欧美在线观看| 91麻豆精品激情在线观看国产| 日韩强制内射视频| 久久九九热精品免费| 特大巨黑吊av在线直播| 在线国产一区二区在线| 男女啪啪激烈高潮av片| 欧美性感艳星| 校园春色视频在线观看| 国产黄片美女视频| 黄色女人牲交| 91久久精品国产一区二区成人| 欧美3d第一页| 亚洲av电影不卡..在线观看| 国产乱人伦免费视频| 国产精品,欧美在线| 美女xxoo啪啪120秒动态图| 男插女下体视频免费在线播放| 亚洲av不卡在线观看| 欧美潮喷喷水| 女同久久另类99精品国产91| 人人妻,人人澡人人爽秒播| 久久中文看片网| 高清毛片免费观看视频网站| 直男gayav资源| 熟女电影av网| 99热只有精品国产| 在线免费十八禁| 中文字幕高清在线视频| 日韩欧美精品v在线| 亚洲av第一区精品v没综合| 亚洲人成网站高清观看| 日日撸夜夜添| 亚洲不卡免费看| 精品人妻1区二区| 亚洲av免费高清在线观看| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 又爽又黄a免费视频| 人人妻,人人澡人人爽秒播| 美女cb高潮喷水在线观看| 日韩,欧美,国产一区二区三区 | 日日摸夜夜添夜夜添av毛片 | 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 搡女人真爽免费视频火全软件 | 一本精品99久久精品77| 久久精品久久久久久噜噜老黄 | 一进一出好大好爽视频| 色av中文字幕| 精品人妻视频免费看| av女优亚洲男人天堂| 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 久久国产精品人妻蜜桃| 久久精品国产亚洲av香蕉五月| 欧美激情在线99| 久久久精品大字幕| 精品一区二区免费观看| 成熟少妇高潮喷水视频| 最好的美女福利视频网| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 天美传媒精品一区二区| 91在线观看av| 狂野欧美激情性xxxx在线观看| 国产大屁股一区二区在线视频| 午夜福利欧美成人| 久久精品国产亚洲网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品成人久久久久久| a级毛片免费高清观看在线播放| 麻豆成人午夜福利视频| av在线亚洲专区| 国产精品福利在线免费观看| 男女边吃奶边做爰视频| 能在线免费观看的黄片| 99精品在免费线老司机午夜| 国产午夜福利久久久久久| 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 午夜福利成人在线免费观看| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 嫩草影院新地址| 亚洲av不卡在线观看| 少妇熟女aⅴ在线视频| 国产 一区精品| 国产精品久久久久久av不卡| 啦啦啦韩国在线观看视频| 五月伊人婷婷丁香| 成年人黄色毛片网站| 麻豆一二三区av精品| 亚洲美女黄片视频| 最近中文字幕高清免费大全6 | 亚洲欧美日韩高清在线视频| 久久国产乱子免费精品| 日本欧美国产在线视频| 可以在线观看毛片的网站| eeuss影院久久| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| 免费不卡的大黄色大毛片视频在线观看 | 九九在线视频观看精品| 成人特级av手机在线观看| 又爽又黄a免费视频| 午夜福利高清视频| videossex国产| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲 | 国产一级毛片七仙女欲春2| 美女xxoo啪啪120秒动态图| 在线播放国产精品三级| 午夜福利在线在线| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 国产蜜桃级精品一区二区三区| 51国产日韩欧美| 久久久久国产精品人妻aⅴ院| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清专用| 色综合婷婷激情| 久久这里只有精品中国| 久久精品国产亚洲网站| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 69av精品久久久久久| 免费一级毛片在线播放高清视频| 亚洲精品成人久久久久久| 天天躁日日操中文字幕| 最近最新中文字幕大全电影3| 老熟妇仑乱视频hdxx| 亚洲欧美日韩卡通动漫| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 国产熟女欧美一区二区| 俄罗斯特黄特色一大片| 观看免费一级毛片| 国产精品福利在线免费观看| 又粗又爽又猛毛片免费看| 午夜影院日韩av| 成人无遮挡网站| 在线国产一区二区在线| 婷婷六月久久综合丁香| 99国产精品一区二区蜜桃av| 精品久久久噜噜| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 国产高清不卡午夜福利| 黄色视频,在线免费观看| 级片在线观看| 欧美日本亚洲视频在线播放| 可以在线观看的亚洲视频| 亚洲成人免费电影在线观看| 日日干狠狠操夜夜爽| 国产精品人妻久久久久久| 亚洲自偷自拍三级| 亚洲不卡免费看| 久久人人精品亚洲av| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 天天一区二区日本电影三级| 深夜精品福利| 性欧美人与动物交配| 身体一侧抽搐| 色播亚洲综合网| 亚洲精华国产精华液的使用体验 | 久久久久精品国产欧美久久久| 最好的美女福利视频网| 国产精品嫩草影院av在线观看 | 有码 亚洲区| 黄色丝袜av网址大全| 国产不卡一卡二| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 国产一区二区亚洲精品在线观看| 亚洲美女搞黄在线观看 | 少妇人妻一区二区三区视频| 别揉我奶头~嗯~啊~动态视频| 国产白丝娇喘喷水9色精品| 淫秽高清视频在线观看| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 亚洲精品乱码久久久v下载方式| 最好的美女福利视频网| 国产精品嫩草影院av在线观看 | 五月玫瑰六月丁香| 老司机午夜福利在线观看视频| 男人舔奶头视频| 亚洲av第一区精品v没综合| 久久久久久久久中文| 精品一区二区免费观看| 三级毛片av免费| 网址你懂的国产日韩在线| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 色在线成人网| av女优亚洲男人天堂| 国产精品98久久久久久宅男小说| 免费看美女性在线毛片视频| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 桃色一区二区三区在线观看| 69av精品久久久久久| 日韩欧美国产在线观看| 日韩欧美精品v在线| 91久久精品国产一区二区成人| av在线亚洲专区| 亚洲av成人av| 亚洲人成伊人成综合网2020| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av美国av| 精品久久久久久久久久久久久| 欧美三级亚洲精品| 丝袜美腿在线中文| 99精品在免费线老司机午夜| 成人毛片a级毛片在线播放| 久久久久久久精品吃奶| 亚洲avbb在线观看| 国产精品久久久久久亚洲av鲁大| 精品人妻熟女av久视频| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 亚洲在线自拍视频| 婷婷六月久久综合丁香| 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 欧美成人a在线观看| 91在线观看av| 免费av毛片视频| 99热这里只有是精品在线观看| 午夜福利在线观看免费完整高清在 | 欧美zozozo另类| 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜| 如何舔出高潮| 欧美又色又爽又黄视频| 真人一进一出gif抽搐免费| 看十八女毛片水多多多| 嫩草影院精品99| 免费人成在线观看视频色| 丰满人妻一区二区三区视频av| 特大巨黑吊av在线直播| 久久精品人妻少妇| 97热精品久久久久久| 黄色一级大片看看| 99九九线精品视频在线观看视频| 搡老熟女国产l中国老女人| 久久久久久大精品| 欧美最黄视频在线播放免费| 亚洲一级一片aⅴ在线观看| 97超级碰碰碰精品色视频在线观看| 伦理电影大哥的女人| 狂野欧美激情性xxxx在线观看| 精品国内亚洲2022精品成人| 美女黄网站色视频| av黄色大香蕉| 欧美bdsm另类| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av在线| 一级黄片播放器| 91午夜精品亚洲一区二区三区 | 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 精品福利观看| 啪啪无遮挡十八禁网站| 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 国产av麻豆久久久久久久| 国产精品人妻久久久影院| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 国产亚洲欧美98| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 精品一区二区三区人妻视频| 99精品久久久久人妻精品| 国产精品一区二区性色av| 成人无遮挡网站| 免费观看在线日韩| 国产淫片久久久久久久久| 老熟妇仑乱视频hdxx| 别揉我奶头~嗯~啊~动态视频| av在线蜜桃| 亚洲欧美清纯卡通| 三级男女做爰猛烈吃奶摸视频| 久久九九热精品免费| 精品一区二区三区人妻视频| 一本久久中文字幕| .国产精品久久| www.www免费av| 女同久久另类99精品国产91| 99riav亚洲国产免费| 成年版毛片免费区| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 亚洲最大成人av| 欧美+日韩+精品| 岛国在线免费视频观看| .国产精品久久| 毛片女人毛片| 国产精品一区二区性色av| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 国产真实乱freesex| 欧美一区二区精品小视频在线| 少妇人妻精品综合一区二区 | a级毛片免费高清观看在线播放| 中国美白少妇内射xxxbb| 亚洲av第一区精品v没综合| h日本视频在线播放| 男插女下体视频免费在线播放| 精品一区二区三区人妻视频| bbb黄色大片| 村上凉子中文字幕在线| 人妻久久中文字幕网| 草草在线视频免费看| 亚洲人成网站高清观看| 国产一区二区亚洲精品在线观看| 少妇的逼水好多| 国产一区二区在线av高清观看| 赤兔流量卡办理| 国产黄色小视频在线观看| 伦理电影大哥的女人| 男人的好看免费观看在线视频| 国内少妇人妻偷人精品xxx网站| 97超级碰碰碰精品色视频在线观看| 五月伊人婷婷丁香| 又爽又黄a免费视频| 天堂√8在线中文| 赤兔流量卡办理| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 亚洲最大成人手机在线| 悠悠久久av| 一进一出抽搐动态| 午夜福利18| 欧美高清性xxxxhd video| 丰满的人妻完整版| 久久人妻av系列| 琪琪午夜伦伦电影理论片6080| 久久久久免费精品人妻一区二区| 偷拍熟女少妇极品色| 欧美不卡视频在线免费观看| 性色avwww在线观看| 91久久精品电影网| 中文字幕精品亚洲无线码一区| 最好的美女福利视频网| 亚洲av不卡在线观看| 亚洲自偷自拍三级| 欧美一级a爱片免费观看看| 琪琪午夜伦伦电影理论片6080| 在线播放无遮挡| 天美传媒精品一区二区| 成人特级黄色片久久久久久久| 国产精品一区www在线观看 | 久久精品国产亚洲网站| 久久国产乱子免费精品| 在线播放国产精品三级| 国产精品一区二区三区四区久久| 日日摸夜夜添夜夜添小说| or卡值多少钱| 成人永久免费在线观看视频| 69av精品久久久久久| 欧美区成人在线视频| 亚洲欧美日韩高清专用| 日日啪夜夜撸| 色av中文字幕| 色吧在线观看| 成人精品一区二区免费| 国产高清有码在线观看视频| 国产视频一区二区在线看| 国产中年淑女户外野战色| 热99在线观看视频| 日日夜夜操网爽| 亚洲国产精品成人综合色| av天堂中文字幕网| 国产精品美女特级片免费视频播放器| 欧美日本亚洲视频在线播放| 久久久久久久久久久丰满 | 午夜激情欧美在线| 精品久久久久久久久亚洲 | 嫩草影院精品99| 三级国产精品欧美在线观看|