• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fundamental problems in hydrodynamics of ellipsoidal forms *

    2018-07-06 10:01:40TouviaMilohIoannisChatjigeorgiou

    Touvia Miloh , Ioannis K. Chatjigeorgiou

    1. Faculty of Engineering, Tel Aviv University, Ramat Aviv, Israel

    2. School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens,Greece

    Introduction

    Ellipsoidal geometries in fields governed by anisotropic potentials have many important applications in science and modern technology. To list a few, reference is made to electrostatics, electromagnetics, acoustic scattering, brain imagining, tumor growth simulation and apparently, hydrodynamics. In relevant applications the solution of the field equation is described by ellipsoidal harmonics, first obtained by Gabriel Lamé in 1837. Lamé in his celebrated paper on temperature distribution in an ellipsoid[1]has managed to separate the Laplace equation in a coordinate system consisting of second degree surfaces.This system is known today as the ellipsoidal system.In fact, Lamé himself proposed the classification of the solutions of the obtained ordinary differential equation in four classes having a particular structure and he produced the first few solutions in each class.Products of these functions generate the ellipsoidal harmonics.

    It is worth mentioning that this particular analysis by Lamé, gave rise to what we refer today as the theory of curvilinear coordinates, a theory also developed by Lamé[2]. Many famous mathematicians produced excellent results on Lamé functions and ellipsoidal harmonics during the whole of 19th century. A fairly complete collection of these results as well as historical notes can be found in the recently published book of Dassios[3].

    All these efforts resulted in a well-defined theoretical structure for dealing with boundary value problems in ellipsoidal geometry, which, unfortunately, cannot be very effective without the use of computational techniques. Some attempts to produce numerical solutions of Lamé functions, and therefore of ellipsoidal harmonics, appear in the literature in the early 1960’s. In that context, reference is made to the books of Arscott and Khabaza[4]and Arscott[5].

    In hydrodynamics, the quest for analytical solutions for hydrodynamic boundary value problems in the Laplace domain involving ellipsoidal geometries is indeed a great challenge. To the authors’ best knowledge, the only attempts in that respect were those due to Havelock[6]and Miloh[7]. Havelock[6]considered the wave resistance (only) problem of ellipsoidal forms and provided rather simplified formulae for its calculation. Havelock’s[6]theory didn’t employ the actual ellipsoidal harmonics, i.e.Lamé functions, whilst no numerical calculations were performed. Miloh[7]employed the Lagally theorem[8-10]to analyze the general maneuvering of ellipsoids. The study indeed relied on the ellipsoidal harmonics but,again no numerical implementation was performed.

    The analytical approach to the solution for the hydrodynamic diffraction problem by immersed ellipsoids involves two major difficulties. The first is associated with the derivation of closed forms that satisfy the conditions of the governing boundary value problem and the second is the numerical calculation of the ellipsoidal harmonics of both kinds. In fact, the latter must be obtained for arbitrary large degrees and orders to allow achieving convergent results. However,nearly all the existing studies which provide formulas for calculating the Lamé functions stop at degree n = 3 [3]. Only recently Dassios and Satrazemi[11]provided formulas up to degree =7n. Even these formulas however require numerical solution.

    In the present contribution we have undertaken both tasks, i.e., the two major difficulties mentioned in the previous paragraph. In particular, we developed a robust and efficient algorithm that was accordingly implemented into a computer code that is able to calculate the Lamé functions of both kinds and for arbitrary large degrees and orders. In addition, the concerned methodology can properly calculate the orthogonality constants by employing the general orthogonality relation satisfied by the Lamé functions of the first kind. The mathematics behind the numerical algorithm and the computer code is that of the general theory of Lamé functions that can be found in the book of Dassios[3].

    As far as the analytic solutions of the hydrodynamic problems considered at present are concerned,namely the attraction force and the added mass for an ellipsoid moving steadily in parallel and close to a rigid wall as well as the ship crossing encounter problem, they were obtained by applying the method of ultimate image singularities of tri-axial ellipsoids which were rigorously derived by Miloh[12].

    1. A steadily translating tri-axial ellipsoid close to a rigid wall

    1.1 The ellipsoidal coordinate system

    Ellipsoidal coordinates (,,)λ μ ν are defined relative to the basic ellipsoid

    where

    The three surfaces λ=constant (ellipsoids),μ=constant(hyperboloids of one sheet), ν=constant (hyperboloids of two sheets) form a triply orthogonal coordinate system in space. For ξ=λ,μ or ν, these surfaces satisfy the equation

    The ellipsoids λ =constant are confocal with that for λ=a1. The limiting member of this family, given by λ=h2, is the area of thez-plane bounded by the“focal ellipse”

    The roots of Eq. (4) are chosen so that

    1.2 The Green’s functions and its multipoles

    We define now a Cartesian (,,)x y zcoordinate system fixed on the centre of the solid. Thex-axis is the longitudinal axis of the ellipsoid while they-axis is pointing toward and normally to the wall. The Green’s function that satisfies the Laplace equation and the zero-velocity condition on the wall is

    wheredis the distance between the centre of the ellipsoid and the rigid wall. Accordingly, the multipoles of the Green’s function are obtained by using Miloh’s theorem on even exterior ellipsoidal harmonics[12]. It should be noted that only the even harmonics are retained as the problem is symmetric inzand hence only the Lamé functions which are even inzmust be considered. The Lamé functions which are even inzare those of classes Kand L. Thus we have

    where0Sis the area of the focal ellipse (4). Using the Miloh’s theorem[12], Eq. (7) yields

    wheredenotes the multipoles of the Green’s function,,are the Lamé functions of the first and the second kind, of ordermand degreen,whiledenotes the source distribution over the fundamental ellipse (4), given by[12]

    where

    The integral in Eq. (8) will be denoted by(λ, μ ,ν) . Taking the Fourier Transform of the last component we obtain

    Given that the extremes ofyin the fundamental ellipse are ±a2, the above formula is valid fory<2d-a2

    1.3 Expansion of regular terms in ellipsoidal harmonics

    Let us further assume that the exponential term exp[τy+iτ(xc osφ +zsin φ )] is expanded using interior ellipsoidal harmonics according to

    where (,)τ φ are coefficients to be determined. To obtain those coefficients, Eq. (11) is evaluated on the surface of the ellipsoid, defined at1=aλ which in turn allows us to exploit the fundamental relation of orthogonality[3]. Subsequently, the coefficients sought will be given by

    whereare the normalization (orthogonality)constants and the integration is taken over the surface of the ellipsoidSa, while (x0,y0,z0) denote the Cartesian representation of that surface evaluated by Eq. (2) using λ=a1.

    Introducing Eqs. (12), (13) into the regular terms of Eq. (10) the latter can be written as

    and the coefficientsare obtained by

    where we let dS0=dξ d η and (x0,y0,z0) are understood as functions of (μ ,ν).

    The Green’s function multipoles are now expressed by

    The coefficientscan be relatively simplified by calculating two of the involved integrals. One may use the following formulae

    to yield

    1.4 The velocity potential

    The ellipsoid was assumed to translate steadily(alongx) close to a wall. Hence, the velocity potential will be composed by the equivalent uniform stream and the disturbance potential that is constructed in ellipsoidal harmonics using the multipole potentials of Eq. (16). In particular, it holds that

    The unknown expansion coefficients αnmare to be determined. We note that these are dimensional and are expressed in length units. Again, the velocity potential must satisfy the Neumann condition on the surface of the ellipsoid, and in other words

    W 1e 1n oμtνe =t hEa t( μ1 )1E (ν )Thuafter introducing Eq. (20) into the boundary condition of Eq. (21)and making use of the orthogonality relation[3], the following linear system is derived

    where δnsis the Kronecker’s delta function. Eq. (22)is to be solved in terms of the unknown expansion coefficients. Having calculated the latter, the total velocity potential is immediately derived through Eq. (20). In fact, the derivation ofcompletes the solution of the problem. Clearly, the linear system (22)must be truncated to a sufficient maximum degree to be solved using standard matrix techniques.

    1.5 The attraction force

    “Attraction force” is designated the force that is applied normal to the direction of motion, which thrusts the body toward the rigid wall. The disturbance here, has a more complicated structure than the usual flow lines that occur when the body moves steadily(or is subjected to a uniform stream) in an unbounded mass of liquid. The attraction force, coinedyF, is convenient to be calculated by the steady Lagally theorem[8-10], namely

    where σ(x,y) is the source distribution on the fundamental ellipse, while the integration is performed over the areaS0of that ellipse. In addition, φ~(x,y,0) denotes the regular term of the disturbance potential evaluated explicitly on the fundamental ellipse lettingz= 0 The source distribution is obtained by

    while the regular term of the disturbance potential is obtained using Eq. (6) as

    wheredenotes the second term of the right-hand side of Eq. (6). Assuming finally unit velocityU= -1, the normalized attraction force will be given by

    The phenomenon is symmetric inz. Therefore, the source distribution (24) should involve only the Lame functions which are even inz, namely the classes K and L.

    1.6 Added mass in the direction of motion

    The Taylor added mass theorem[13]requires that the added massMis given by

    where the integration is performed over the area of the fundamental ellipse (4), in whichx= μ ν/h3and the differential area for λ=h2will read

    The source distribution has been already given in Eq.(24) and we note that only the even system of singularities is considered given that the problem is symmetric inz. Eq. (27) in its extended form will read

    where(μ ,ν) =( μ)ν). The integral in Eq.(29) is evaluated by orthogonality and is equal to/ 2[3]. The final relation that provides the added mass is

    and it is clearly seen that depends on only one coefficient. The unbounded case away from the wall(d→∞) can be recovered usingHence, the asymptotic value ofMis

    which can also be expressed in terms of elliptic integrals as given by Kochin et al.[14]and Lamb[15].Figures 1, 2 show some results for the attraction force and the added mass coefficients for the concerned mode of motion. It is clearly seen that the attraction force vanishes for large distances from the wall while the added-mass converges to the asymptotic value obtained by Eq. (31).

    Fig. 1 (Color online) Attraction force acting on an ellipsoid 1 2 3 (a ,a ,a ) = (1,0.8,0.6) moving steadily close to a wall for increasing distance from it. The force has been normalized by 1 ρ a for unit velocity U

    Fig. 2 (Color online) Added mass coefficients λ11=Mρ? for an ellipsoid ( a1 , a 2 )=(1,0.5) and several values of a3

    2. Two ship encounter

    Here we examine a common event that is always encountered during ship maneuvering operations,especially in ports, namely when two ships come across each other. In relevant situations, the forces exerted on ships, depending on the relative distances,the velocities and the direction of motions, may attract or repulse the ships. To analyze the phenomenon, we formulate the problem assuming significant simplifications and we approximate the ships by ellipsoidal geometries.

    Fig. 3 Two ships encounter

    We consider two ships maneuvering in a quiescent liquid in close proximity (Fig. 3) with two distinct steady velocitiesU1andU2with a relative course angle β. For simplicity we take the two ships to have the same geometry, represented by identical tri-axial ellipsoids, where the origin of the ship,expressed in an instantaneous system attached to the ship 1, isO2(X,Y). Thezcoordinate in the direction of gravity (directed into the fluid) is the same for both ships. Thus, the relation between the two Cartesian coordinate systems is simply given by

    For the analysis that follows, we need to interchangeyandzin the equation of the ellipsoid (1)and the transformations between Cartesian and ellipsoidal coordinate systems (2), so that we will still havea1>a2>a3. The small semi-axis now is they-axis and all other parameters remain the same.

    We assume that the draughts of the ships are larger than their beams. We also denote the induced source distribution on the fundamental “ellipse” of the ship 1 by σ1(x1, 0,z1) and the velocity potential enforced around ship 1 by the rectilinear motion of ship 2, by σ2(x1,y1,z1). Using further the steady Lagally theorem one can readily express the sway force and yawing moment exerted by ship 1 as

    whereS0denotes the area of the fundamental ellipse(4). We further assumeU1=U2=U. The leading order source distribution σ1(x1, 0,z1) as provided by Miloh[12]is

    C1(K) is literaryλ) evaluated on λ=a1. The factorKdenotes that the associated Lamé function is of class K. Eq. (36) enable us to express φ2(x1,y1,z1,X,Y,β) by virtue of Eqs. (32) as

    where σ2(x2, 0,z2)is again obtained by Eq. (35).Taking the derivative of the above with respect toy1and evaluating ony1=0 we obtain

    Introducing Eq. (38) into Eqs. (33), (34), one may calculate the sought sway force and yaw moment.

    Fig. 4 Normalized force exerted by ship 1 as the two ships move rectilinearly in opposite directions (β =180°) .The ships have been approximated by tri-axial ellipsoidswith geometrical particulars 1 2 3 (a ,a ,a ) = (2,1,0.2) . Negative force indicates attraction (opposite direction of 1 y shown in Fig. 3) and positive force indicates repulsion

    Fig. 5 Norm alized momen t e xerted by ship 1 as the two ships moverectilinearlyinoppositedirections (β= 180°).The ships have been approximated by tri-axial ellipsoids with geometrical particulars ( a1 , a2 , a 3 )=(2,1,0.2)

    Numerical examples of the attraction-repulsion phenomenon that occurs during two-ship encounter are depicted in Figs. 4 and 5. In particular, two ellipsoidal ships were considered traveling in opposite directions with steady velocities until the meet each other. The beam to draught ratio, here denoted bya3/a2was assumed to be sufficiently small. Also, the spacing between the ships was assumed to be sufficiently large to avoid time-dependent source distributions which must be considered within ship 1 in the case of small spacing. Clearly, when the ships approach each other a repulsion force is applied and accordingly when the bows of the ships are hypothetically attached in the (x,z) plane yielding a separation distance between centres 2a1(note that they were considered identical), repulsion changes to attraction the maximum of which occurs when they-axes coincide. At that point the moment changes sign while when they-axes coincide the moment is zero. The above discussion agrees with the remarks made in the study of Yeung[16].

    3. Conclusions

    In the present study we addressed three crucial problems in marine hydrodynamics, namely the calculation of the attraction force and the added mass coefficients for an ellipsoid moving steadily close to a rigid wall and the ship crossing problem when two ships are moving steadily and relatively to each other and they are finally encountered. For the latter problem the two ships were assimilated by reference ellipsoids under the low Froude number assumption.The solutions were based on using linear potential theory and the method of ultimate image singularities for ellipsoidal harmonics developed by the senior author of this effort[12]. The numerical implementation was based on a newly developed numerical algorithm which is able to calculate the Lamé functions of arbitrary degree and order allowing thus the employment of a large number of ellipsoidal harmonics.

    [1] Lamé G. Sur les surfaces isothermes dans les corps solides homogénes en équilibre de temperature [J].Journal de Mathématiques Pure et Appliquées, 1837, 2: 147-183.

    [2] Lamé G. Le?ons sur les coordonnées curvilignes et leurs diverses applications [M]. Paris, France: Mallet-Bechelier,1859.

    [3] Dassios G. Ellipsoidal harmonics. Theory and applications [M]. Cambridge, UK: Cambridge University Press,2012.

    [4] Arscott F. M., Khabaza I. M. Tables of Lamé polynomials [M]. Oxford, UK: Pergamon Press, 1962.

    [5] Arscott F. M. Periodic differential equations. An introduction to Mathieu, Lamé and allied functions [M]. Oxford,UK: Pergamon Press, 1964.

    [6] Havelock T. H. The wave resistance of an ellipsoid [J].Proceedings of the Royal Society of London, 1931, A132:480-486.

    [7] Miloh T. Maneuvering hydrodynamics of ellipsoidal forms[J].Journal of Ship Research, 1977, 23(1): 66-75.

    [8] Lagally M. Berechnung der kr?fte und momente, die str?mende flüssigkeiten auf ihre begrenzung ausüben [J].Zeitschrift fur Angewandte Mathematik und Mechanik,1922, 2: 409-422.

    [9] Landweber L., Yih C. S. Forces, moments and added masses for Rankine bodies [J].Journal of Fluid Mechanics, 1956, 1: 319-336.

    [10] Landweber L., Miloh T. Unsteady lagally theorem for multipoles and deformable bodies [J].Journal of Fluid Mechanics, 1980, 96: 33-46.

    [11] Dassios G., Satrazemi K. Lamé functions and ellipsoidal harmonics up to degree seven [J].International Journal of Special Functions and Applications, 2014, 2: 27-40.

    [12] Miloh T. The ultimate image singularities for external ellipsoidal harmonics [J].SIAM Journal of Applied Mathematics, 1974, 26(2): 334-344.

    [13] Taylor G. I. The forces on a body placed in a curved or converging stream of fluid [J].Proceedings of the Royal Society, 1928, A120: 260-283.

    [14] Kochin N. E., Kibel I. A., Rose N. V. (Radok J. R. M Theoretical hydromechanics) [M]. New York, USA: Interscience Publishers, John Wiley and Sons, 1964.

    [15] Lamb H. Hydrodynamics [M]. Cambridge, UK: Cambridge University Press, 1932.

    [16] Yeung R. W. On the interaction of slender ships in shallow water [J].Journal of Fluid Mechanics, 1978, 85: 143-159.

    日韩一本色道免费dvd| 国产男女内射视频| 大陆偷拍与自拍| 精品人妻在线不人妻| 一级毛片女人18水好多 | 多毛熟女@视频| a级片在线免费高清观看视频| 国产成人精品在线电影| 久久久国产精品麻豆| 一区福利在线观看| 在线观看一区二区三区激情| 免费看不卡的av| 欧美黄色片欧美黄色片| 一本一本久久a久久精品综合妖精| 国产又色又爽无遮挡免| 日韩,欧美,国产一区二区三区| 亚洲精品一二三| 亚洲一区二区三区欧美精品| 又大又爽又粗| 亚洲av国产av综合av卡| 国产免费又黄又爽又色| 亚洲国产毛片av蜜桃av| 国产真人三级小视频在线观看| 国产日韩欧美亚洲二区| 99久久人妻综合| 国产老妇伦熟女老妇高清| 又大又爽又粗| www日本在线高清视频| 久久天躁狠狠躁夜夜2o2o | av在线app专区| 日日爽夜夜爽网站| 色网站视频免费| 国产一区二区三区综合在线观看| 久久av网站| 国产在线观看jvid| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 一区二区三区乱码不卡18| 国产高清videossex| 亚洲av日韩在线播放| 成年av动漫网址| 久久国产亚洲av麻豆专区| 亚洲人成电影观看| 悠悠久久av| 午夜免费观看性视频| 嫩草影视91久久| 亚洲 国产 在线| 丰满迷人的少妇在线观看| 水蜜桃什么品种好| 一级毛片我不卡| 脱女人内裤的视频| 日韩av不卡免费在线播放| 18禁观看日本| 久久久久久久国产电影| 亚洲国产欧美日韩在线播放| 午夜福利影视在线免费观看| 赤兔流量卡办理| 亚洲精品av麻豆狂野| 9色porny在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美精品人与动牲交sv欧美| 咕卡用的链子| 最近手机中文字幕大全| 亚洲av男天堂| 一本—道久久a久久精品蜜桃钙片| 亚洲精品乱久久久久久| 精品久久蜜臀av无| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区在线观看av| 七月丁香在线播放| 每晚都被弄得嗷嗷叫到高潮| 你懂的网址亚洲精品在线观看| 婷婷丁香在线五月| 美女午夜性视频免费| 免费在线观看日本一区| 美女主播在线视频| 天天躁夜夜躁狠狠躁躁| 美女国产高潮福利片在线看| 丁香六月欧美| 中文字幕色久视频| 久久天躁狠狠躁夜夜2o2o | 亚洲一区中文字幕在线| 90打野战视频偷拍视频| 午夜福利视频在线观看免费| 无限看片的www在线观看| 久久热在线av| 国产成人av激情在线播放| 天堂8中文在线网| 晚上一个人看的免费电影| 久久国产亚洲av麻豆专区| 午夜激情av网站| 美女午夜性视频免费| 99精国产麻豆久久婷婷| 日韩大片免费观看网站| 久久久久久久久久久久大奶| 亚洲综合色网址| avwww免费| 亚洲欧美一区二区三区黑人| av网站在线播放免费| 手机成人av网站| 午夜福利乱码中文字幕| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 狂野欧美激情性bbbbbb| 亚洲视频免费观看视频| 最近中文字幕2019免费版| 亚洲av综合色区一区| 亚洲av国产av综合av卡| 精品久久蜜臀av无| 青青草视频在线视频观看| 亚洲欧美一区二区三区国产| 午夜影院在线不卡| 高清黄色对白视频在线免费看| 日本vs欧美在线观看视频| 亚洲精品美女久久av网站| 电影成人av| 亚洲中文日韩欧美视频| 秋霞在线观看毛片| 久热这里只有精品99| 老汉色av国产亚洲站长工具| 一本一本久久a久久精品综合妖精| 日韩欧美一区视频在线观看| 成人国产一区最新在线观看 | 中文字幕精品免费在线观看视频| 波多野结衣av一区二区av| 国产主播在线观看一区二区 | 精品免费久久久久久久清纯 | 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区黑人| 欧美黄色片欧美黄色片| 成年动漫av网址| 飞空精品影院首页| 精品国产一区二区三区久久久樱花| 精品少妇黑人巨大在线播放| 在线天堂中文资源库| 天天操日日干夜夜撸| 日本wwww免费看| 少妇精品久久久久久久| 国产深夜福利视频在线观看| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 欧美另类一区| 无限看片的www在线观看| kizo精华| 最近最新中文字幕大全免费视频 | 国产99久久九九免费精品| 老司机深夜福利视频在线观看 | 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 一二三四在线观看免费中文在| 美女午夜性视频免费| 免费人妻精品一区二区三区视频| 亚洲精品在线美女| 80岁老熟妇乱子伦牲交| 天天操日日干夜夜撸| 国产精品人妻久久久影院| 久久久精品区二区三区| 午夜福利乱码中文字幕| 满18在线观看网站| 国产精品欧美亚洲77777| 一区二区三区乱码不卡18| 80岁老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 国产精品人妻久久久影院| 亚洲国产欧美网| 韩国高清视频一区二区三区| 18禁国产床啪视频网站| 99国产精品一区二区蜜桃av | 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 亚洲av日韩在线播放| 亚洲成国产人片在线观看| 十八禁网站网址无遮挡| 国产免费福利视频在线观看| 可以免费在线观看a视频的电影网站| 大片免费播放器 马上看| 国产一级毛片在线| 熟女av电影| 伊人亚洲综合成人网| 七月丁香在线播放| 99九九在线精品视频| 老司机亚洲免费影院| 丝袜脚勾引网站| 国产亚洲欧美在线一区二区| 中文字幕人妻丝袜一区二区| 亚洲成人国产一区在线观看 | 精品一品国产午夜福利视频| 免费少妇av软件| 国产不卡av网站在线观看| 免费看不卡的av| 久久中文字幕一级| 欧美+亚洲+日韩+国产| 人妻一区二区av| 天天躁夜夜躁狠狠久久av| 久久久久久亚洲精品国产蜜桃av| 亚洲中文日韩欧美视频| 晚上一个人看的免费电影| 欧美激情 高清一区二区三区| 亚洲精品自拍成人| 免费久久久久久久精品成人欧美视频| 婷婷色综合www| 国产亚洲av片在线观看秒播厂| 一边摸一边抽搐一进一出视频| 黄色 视频免费看| 老汉色av国产亚洲站长工具| 亚洲熟女精品中文字幕| 精品第一国产精品| 亚洲熟女毛片儿| 久久这里只有精品19| 国产成人av教育| 亚洲五月色婷婷综合| 久久狼人影院| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 后天国语完整版免费观看| 国产一区二区 视频在线| 国产在视频线精品| 亚洲成人免费av在线播放| 午夜福利免费观看在线| 一本综合久久免费| 老司机靠b影院| 国产亚洲精品第一综合不卡| 亚洲人成77777在线视频| 亚洲天堂av无毛| 久久99热这里只频精品6学生| 国产精品久久久久久精品古装| 午夜日韩欧美国产| 在线观看一区二区三区激情| 人成视频在线观看免费观看| 色综合欧美亚洲国产小说| 亚洲中文av在线| 男人操女人黄网站| 精品第一国产精品| 国产精品久久久av美女十八| 亚洲欧美一区二区三区黑人| 国精品久久久久久国模美| 伊人久久大香线蕉亚洲五| 天天添夜夜摸| 国产日韩欧美视频二区| 丁香六月天网| 国产福利在线免费观看视频| 国产免费视频播放在线视频| 久久av网站| 别揉我奶头~嗯~啊~动态视频 | av一本久久久久| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 99国产精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 人人妻人人爽人人添夜夜欢视频| 波野结衣二区三区在线| 欧美日韩一级在线毛片| 国产极品粉嫩免费观看在线| 国产1区2区3区精品| 在线观看免费视频网站a站| 日韩av在线免费看完整版不卡| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 欧美日韩亚洲高清精品| 国产在线免费精品| 精品久久蜜臀av无| 久热爱精品视频在线9| 国产精品偷伦视频观看了| 免费在线观看日本一区| 日韩制服丝袜自拍偷拍| 男女下面插进去视频免费观看| 91麻豆av在线| 一级片免费观看大全| 精品国产乱码久久久久久小说| 又大又黄又爽视频免费| 18禁裸乳无遮挡动漫免费视频| 国产精品人妻久久久影院| 最黄视频免费看| 国产极品粉嫩免费观看在线| 久久久久久久久免费视频了| 丰满少妇做爰视频| 亚洲欧美激情在线| 成年人黄色毛片网站| 色精品久久人妻99蜜桃| 丝袜美腿诱惑在线| 超色免费av| 视频区图区小说| 可以免费在线观看a视频的电影网站| www.熟女人妻精品国产| 精品一区二区三区av网在线观看 | 精品卡一卡二卡四卡免费| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 只有这里有精品99| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| 精品少妇内射三级| 国产淫语在线视频| 男女高潮啪啪啪动态图| 亚洲av综合色区一区| av片东京热男人的天堂| 精品福利观看| kizo精华| 亚洲国产av新网站| 三上悠亚av全集在线观看| 国产伦人伦偷精品视频| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 岛国毛片在线播放| 免费不卡黄色视频| 亚洲欧美中文字幕日韩二区| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| 999久久久国产精品视频| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 久久国产精品大桥未久av| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 日本a在线网址| 麻豆av在线久日| 99国产精品99久久久久| 丁香六月天网| 美女大奶头黄色视频| 久久热在线av| 丝瓜视频免费看黄片| 欧美激情高清一区二区三区| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 免费观看人在逋| 国产精品免费大片| 秋霞在线观看毛片| 麻豆av在线久日| 成人午夜精彩视频在线观看| 欧美人与性动交α欧美精品济南到| 自线自在国产av| 亚洲黑人精品在线| 久久久精品94久久精品| 欧美激情极品国产一区二区三区| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 亚洲精品第二区| a级片在线免费高清观看视频| 性高湖久久久久久久久免费观看| 香蕉国产在线看| 两个人看的免费小视频| 亚洲精品久久成人aⅴ小说| 人体艺术视频欧美日本| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 亚洲av美国av| 一级片免费观看大全| 欧美少妇被猛烈插入视频| 少妇粗大呻吟视频| 亚洲精品美女久久av网站| 999精品在线视频| 成人亚洲欧美一区二区av| 国产一区二区在线观看av| 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 亚洲精品美女久久av网站| 亚洲色图 男人天堂 中文字幕| 啦啦啦视频在线资源免费观看| 成人国产一区最新在线观看 | 国产成人欧美在线观看 | 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 女人高潮潮喷娇喘18禁视频| 在线av久久热| 韩国精品一区二区三区| 嫁个100分男人电影在线观看 | 日本色播在线视频| 女性生殖器流出的白浆| 丁香六月欧美| 亚洲,欧美精品.| 搡老乐熟女国产| 在线观看一区二区三区激情| av网站在线播放免费| av线在线观看网站| 少妇人妻久久综合中文| 免费观看av网站的网址| 9色porny在线观看| 国产亚洲av片在线观看秒播厂| 欧美黄色淫秽网站| 久久久久久久国产电影| 欧美日韩一级在线毛片| 欧美日韩精品网址| 中国美女看黄片| 老司机影院成人| 欧美精品一区二区大全| 美女国产高潮福利片在线看| 这个男人来自地球电影免费观看| bbb黄色大片| 午夜免费鲁丝| 美女视频免费永久观看网站| 视频区欧美日本亚洲| 国产成人啪精品午夜网站| 麻豆乱淫一区二区| 欧美激情 高清一区二区三区| 国产一区二区三区av在线| 在线观看免费高清a一片| 久久人人97超碰香蕉20202| 国产精品,欧美在线| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 欧美乱妇无乱码| 老熟妇乱子伦视频在线观看| 在线观看午夜福利视频| 白带黄色成豆腐渣| 一个人观看的视频www高清免费观看 | 精品国产亚洲在线| 久久香蕉激情| 国产精品乱码一区二三区的特点| 久久中文字幕人妻熟女| 老司机午夜福利在线观看视频| 欧美乱色亚洲激情| 亚洲专区国产一区二区| 亚洲,欧美精品.| 国产精品美女特级片免费视频播放器 | 可以在线观看毛片的网站| 波多野结衣高清无吗| 69av精品久久久久久| 国产亚洲精品av在线| 村上凉子中文字幕在线| 久久精品国产亚洲av高清一级| 日日爽夜夜爽网站| 18禁黄网站禁片免费观看直播| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3 | 国产精品久久久久久亚洲av鲁大| 母亲3免费完整高清在线观看| 国产av一区在线观看免费| 亚洲,欧美精品.| 脱女人内裤的视频| 极品教师在线免费播放| 91在线观看av| 日日干狠狠操夜夜爽| 香蕉av资源在线| 中出人妻视频一区二区| 日本 av在线| 成熟少妇高潮喷水视频| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 国产私拍福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品国产一区二区三区四区第35| 少妇粗大呻吟视频| tocl精华| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 亚洲一区二区三区色噜噜| 深夜精品福利| 成人一区二区视频在线观看| 日韩三级视频一区二区三区| 九色国产91popny在线| 久久中文看片网| 国产片内射在线| 欧美日韩精品网址| 久久亚洲真实| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 午夜福利在线在线| 久久久久国产精品人妻aⅴ院| 丝袜美腿诱惑在线| 亚洲专区字幕在线| 88av欧美| av电影中文网址| av在线天堂中文字幕| 成年版毛片免费区| 久久人人精品亚洲av| 欧美日韩乱码在线| 成人18禁高潮啪啪吃奶动态图| 久久婷婷人人爽人人干人人爱| 夜夜躁狠狠躁天天躁| 亚洲人成77777在线视频| 一本综合久久免费| 久久亚洲真实| 久久久久久人人人人人| 狠狠狠狠99中文字幕| 午夜两性在线视频| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 亚洲美女黄片视频| 午夜福利在线观看吧| 老熟妇仑乱视频hdxx| 久久香蕉激情| 亚洲熟女毛片儿| 人妻久久中文字幕网| 999久久久精品免费观看国产| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 97人妻精品一区二区三区麻豆 | 美女 人体艺术 gogo| 18禁观看日本| 欧美黑人巨大hd| 国产高清视频在线播放一区| 一夜夜www| 久久青草综合色| 天堂动漫精品| 日韩一卡2卡3卡4卡2021年| 国产精品免费视频内射| cao死你这个sao货| 一级毛片精品| 国产精品久久久av美女十八| av超薄肉色丝袜交足视频| 日本 av在线| 又大又爽又粗| 久久香蕉精品热| 国产伦人伦偷精品视频| 免费在线观看日本一区| 美女高潮到喷水免费观看| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区色噜噜| 欧美丝袜亚洲另类 | 亚洲人成电影免费在线| 日韩免费av在线播放| 91大片在线观看| 亚洲成人精品中文字幕电影| xxx96com| 天堂√8在线中文| 国产熟女xx| 丝袜人妻中文字幕| 精品人妻1区二区| 中文字幕最新亚洲高清| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 男女之事视频高清在线观看| 色婷婷久久久亚洲欧美| 日本 欧美在线| 精品一区二区三区视频在线观看免费| 亚洲色图 男人天堂 中文字幕| 999精品在线视频| 无人区码免费观看不卡| 波多野结衣高清无吗| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| e午夜精品久久久久久久| 国产三级在线视频| 欧美激情高清一区二区三区| 国产亚洲精品第一综合不卡| 禁无遮挡网站| 亚洲中文字幕日韩| 亚洲成国产人片在线观看| 日本免费a在线| 成年版毛片免费区| 精品一区二区三区av网在线观看| 国产午夜精品久久久久久| 91麻豆av在线| 亚洲国产欧洲综合997久久, | 亚洲五月天丁香| 国产视频一区二区在线看| 男人操女人黄网站| 日韩 欧美 亚洲 中文字幕| 级片在线观看| 免费高清在线观看日韩| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 色哟哟哟哟哟哟| 亚洲成国产人片在线观看| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 精品不卡国产一区二区三区| 人成视频在线观看免费观看| 欧美中文日本在线观看视频| 18禁观看日本| 两个人视频免费观看高清| 人人妻人人看人人澡| 国产欧美日韩一区二区三| 人人澡人人妻人| 91成年电影在线观看| 男女那种视频在线观看| 久久国产精品男人的天堂亚洲| 中文字幕精品亚洲无线码一区 | netflix在线观看网站| 国产私拍福利视频在线观看| 精品久久久久久成人av| 一卡2卡三卡四卡精品乱码亚洲| 大型黄色视频在线免费观看| 国产成人影院久久av| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 久久人妻av系列| 国产精品,欧美在线| 特大巨黑吊av在线直播 | 日本a在线网址| 国产熟女xx| videosex国产| 国产成人欧美在线观看| 欧美中文综合在线视频| 国产成人系列免费观看| 首页视频小说图片口味搜索| 99久久久亚洲精品蜜臀av| 成熟少妇高潮喷水视频| 成人三级黄色视频| 一进一出抽搐动态| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区 | 村上凉子中文字幕在线| 三级毛片av免费| 精品电影一区二区在线| 欧美日韩一级在线毛片| 国产成人欧美| 色播亚洲综合网| 亚洲最大成人中文| 久久久久九九精品影院| 日韩欧美一区二区三区在线观看|