• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental research on kinematics of breaking waves *

    2018-07-06 10:01:38DeWangChiaLongbinTaoXinWangYaliZhangArunKrDev

    De Wang Chia , Longbin Tao , Xin Wang , Yali Zhang Arun Kr Dev

    1. Lloyd’s Register Singapore Pte Ltd, Singapore

    2. Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, UK

    3. Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, UK

    Introduction

    Wave breaking may induce a significant slamming load on offshore structures and understanding the kinematics behind this extreme event would be beneficial in many aspects, in areas of offshore structure design, and the physical science of water waves.

    Predicting the occurrence of a breaker has generated great interest amongst researchers. One of the commonly used kinematic criteria is the “ /U c”ratio, “U” being the horizontal crest particle velocity and “c” being the phase speed. It is accepted that if the horizontal crest velocity exceeds the wave celerity,the crest will form a jet and would subsequently topple due to gravitational forces. However, recent literature and observations from several researchers have shown contradictory results of this theory.

    Kjeldsen[1]created breaking waves via the superposition of 43 regular waves of carrying frequencies.High speed cameras were used for the capturing of the horizontal crest particle velocity. The phase speed was calculated using wave probes, via the zero downcrossing method. He measured a “ /U c” ratio of 1.73 upon breaking.

    wheregis the gravitational acceleration,ZTis the zero down-crossing period, the time taken for a successive wavelength, measured at the free surface.

    Perlin et al.[2]created breaking waves via dispersive focusing, which involved a range of wave frequencies to generate breaking waves. particle image velocimetry (PIV) and particle tracking velocimetry(PTV) were used to determine the fluid’s particle velocity. The wavelength was post-processed from the obtained images, and this wavelength value was used to estimate the phase celerity via linear wave theory.Perlin et al.[2]found that the PIV and PTV-measured“ /U c” were 0.74 and 1.028 respectively. Perlin et al.[2]concluded that prior to breaking, the crest front becomes nearly vertical and the wave-particle at the crest starts to accelerate horizontally.

    Stansell and Macfarlane[3]performed experiments using a focused spectrum to generate plunging breakers and spilling breakers to observe the “ /U c”ratio upon breaking. Wave gauges were used for surface elevation measurements and PIV for the measurement of the surface crest particle velocity. It is found that the “ /U c” recorded for plunging and spilling breakers were 0.81 and 0.95 respectively,which was less than 1. It is further confirmed that the common understanding of “ /U c” ratio > 1, was not a necessary criterion to predict the onset of a breaker.

    The above literature reviews showed that the obtained wave kinematics is dependent on the methods used to generate the breaking waves and methodologies for post processing the data. “ /U c”values ranging from 0.74 to 1.73 were obtained.However, the phase speed of a wave, just before undergoing breaking would experience dramatic kinematic changes. It might not be accurate to assume a constant phase speed for the entire phase of the pre-breaking wave. Understanding the kinematics of wave breaking, would be beneficial for understanding the geometry breaking criterion and breaking wave impact loading. Not limiting to kinematic breaking criterion, geometric breaking criterion was one of the most debated topics in recent decades. Traditionally,wave steepness had been used to describe wave breaking parameter. However, in the actual case,non-linear waves behaved asymmetrically. The crest of a near breaking wave would be more than 0.5H(His the wave height), and the crest front length of the wave wouldn’t be exactly 0.25L(Lis the wavelength).

    Kjeldsen and Myrhaug[4]separate wave steepness into two geometric parameters. They introduced “ε”and “δ” which were used to describe crest-front and crest-rear steepness respectively. These new geometric breaking parameters took into consideration the asymmetric behaviour of non-linear waves (Fig. 1).

    Fig. 1 (Color online) Local wave parameters defined by Kjeldsen and Myhuang[4]

    The crest-front steepness can be written as

    The crest-rear steepness can be written as

    However, for simplicity, researchers using wave probes in their experimental studies had been applying the above equation to calculate both the crest-front and crest-rear steepness. In the above equations, it was noted that a constant phase speed was used for deriving the crest-front and crest-rear length respectively. Breaking wave is a dynamic phenomenon,hence assuming a constant phase speed during the entire phase of the wave might cast a shadow on the accuracy of the applied formulas used above.

    In the present research, experimental work would be carried out to generate breaking waves of different intensities. This research aims to establish the dynamic behaviour of the breaking wave kinematics at the point of jet forming and to revisit past literature surveys of the kinematic breaking criterion.

    1. Experimental set-up

    Breaking waves were generated at Newcastle University, in the wind, wave and Current tank (Fig. 2)measuring 11 m by 1.8 m by 2 m, length, width and height respectively, via the focused spectrum method.This wave tank uses a piston type wave maker, and with the input of the relevant wave parameters, the wave maker’s strokes displacements were calculated by the computer software. The creation of breaking waves used the JONSWAP spectrum.

    The JONSWAP spectrum reads as follows

    where ω is the angular frequency,Pω is the peak angular frequency,rγ is the peak enhancement factor.

    Fig. 2 (Color online) Newcastle University wind wave and current tank

    The JONSWAP spectrum describes the irregular sea state with dozens of regular waves with varying frequencies, in this case a frequency range of 0.25 Hz to 2 Hz. The breaking wave intensities were modified by adjusting the peak frequency value. The breaking wave could be intensified by lowering the peak frequency value due to the negative correlation between the peak frequency and the spectrum.

    And the surface elevation can be expressed by

    whereais the amplitude,kis the wave number,φ is the phase shift,xis the being the spatial distance from the wave maker.

    A breaking focal point (χB) was chosen as 9 m.To unleash the full potential of the wave package and to obtain the critical amplitude to aid the generation of a breaker, each of the individual wave phase would be modified to satisfy the below equation

    Wave probes having recording frequency of 100 Hz,were placed at =x7.25 m, 7.75 m, 8 m, 8.5 m and 9 m respectively. Camera having a recording capability of 240 fps was placed just before the breaking location.

    Breaking waves of 6 different intensities were generated in this study, with the peak frequency ranging from 0.47 Hz to 0.52 Hz. As explained above,lower peak frequencies would equate to stronger breaking intensities. Below figure (Fig. 3) shows a time history of the initial formation of the jet, till the jet overturn and collapsed with the aid of gravitational force.

    Fig. 3 (Color online) Wave profile time history of F p= 0 .49Hz ,focused JONSWAP spectrum, time step = 0.023 s

    The above figure (Fig. 4) clearly illustrates the matured formation of the plunging jet.

    The value of the horizontal crest particle velocity and wave celerity was measured by wave probes and high speed cameras respectively. Using both wave probe (Eulerian method) and high speed camera(Lagrangian method) of 240 fps, horizontal crest particle velocity and wave celerity just before breaking were measured and compared.

    Fig. 4 (Color online) Jet overtopping

    wherex2-x1is the spatial distance traveled between 2 spatial locations,t2-t1is the time taken to travel from1xto2x.

    The lagrangian wave celerity measured using this tool was measured by taking a fixed elevation point at free surface. The spatial horizontal distance ropagated by the wave is measured and the celerity is calculated(Eq.(7)). The lagrangian wave crest velocity was measured using the same methodology, with the elevation point of interest being at the crest level.Wave celerity can be measured by the zero downcrossing method via the probes, known as the Eulerian Wave Celerity. The horizontal crest velocities were estimated by the time needed for the crest to travel to the succeeding probes.

    whereNxis the spatial distance of a wave probe,xN+1is the spatial distance of a succeeding wave probe,crest,Ntis the time, when crest reaches probeN,crest,+1Ntis the time, when crest reaches successive probe.

    However, the above Eulerian method didn’t account for the dynamic changes of the kinematics of the breaking wave, before breaking. This Eulerian method assumed constant wave celerity during the entire breaking wave period, which contributed a level of inaccuracy. The use of the maximum crest values for wave probes with different spatial, wouldn’t necessarily accurately describe the actual horizontal crest velocity, as the jet does not occur at the maximum crest value during collapsing. Hence, high speed camera of 240 fps was used to determine the wave celerity and the jet velocity, simply using d/dx t.

    2. Results and discussions

    The obtained wave celerity via the Lagrangian method, during the rise of the crest before breaking hereby known as “Lc”

    The “cL/cE” ratios range from a value of 1 to 1.24 (Fig. 5), and it also appears that the actual wave celerity “Lc” is slightly higher than “Ec” just before breaking at =8 mx. It is worthwhile to note that a higher “cL/cE” ratio was obtained with increasing breaking wave intensity as compared with decreasing wave celerity readings.

    Fig. 5 (Color online) “c L ” ratios for different breaking intensities

    The obtained horizontal crest velocity via the Lagrangian method is now known as “LU”. The horizontal crest velocity obtained via the Lagrangian method is higher than the linear eulerian method. The values of both “LU” and“EU” increases with greater breaking intensities (forFp<0.49).

    Fig. 6 (Color online) “U L ” values for different breaking intensities at x= 8m

    Contrary to the findings of the “cL/cE” ratio, the“UL/UE” ratio (Fig. 6) is not affected by the breaking wave intensities. The “UL/UE” ratio ranges from 1.04 to 1.14.

    The wave celerity based on the 3rdorder Strokes theory can be written as

    Fig. 7 (Color online) “c L /c” values for different non-dimensional breaking intensities “T Z /TP” at x = 8m, using 3rd order Stokes theory

    Comparing the “cL/c” ratio (Fig. 7) against“TZ/TP” ratio, in which a lower “TZ/TP” represents higher breaking intensities (Eq. (4)), a regression analysis of the parameters is shown above. Hence the semi-empirical breaking wave celerity is formulated as below[5]

    The maximum “ /U c” tends to occur at =8 mx,just before the formation of the plunging jet.According to the above findings, the value of “U”tends to be different depending on the methodology used. In this study, “LU” tends to be 8% to 14%greater than the horizontal crest velocity measured by the wave probes, and the differential increases with stronger wave breaking intensities. The value of “Lc”also tends to be 7% to 24% greater than the Eulerian wave celerity. As a result, an overall lower value of“UL/cL” ranging from 1.26 to 1.31 was achieved, as breaking criteria, with the “UL/cL” giving a lower maximum value of 1.31 for the strongest breaker in compared with 1.27 to 1.48 using the reading post-process from wave probes. Both methodologies achieved “ /U c” ratio>1, satisfying the kinematics this study.

    3. Conclusions

    It is convenient to use the Eulerian method to measure wave celerity. However, for strong nonlinear waves, this method proved to be questionable.Breaking waves with varying breaking intensities were generated, and a semi-empirical relation of the breaking wave celerity was established as above.There is a negative correlation between “cL” and“TZ/TP” ratio, meaning that the predicted breaking wave speed increases with increasing wave breaking intensities (lowerTZ/TPratio). The above equation would not hold, for non-breaking waves or waves with higher “TZ/TP” ratios.

    This study has explored the dynamic nature of wave leading to breaking. It was found that leading up to wave breaking, the wave celerity decreases and allowing the horizontal crest velocity to exceed,forming a jet which finally leads to breaking. Past literature survey[1,4], assuming a constant wave celerity, would have underestimated the crest-front length and overestimated the geometry breaking criteria by a significant margin depending on the breaking intensities, and also overestimating the kinematic breaking criteria. In past literature survey[6-7], the slamming load formula acting on a cylinder is largely dependent on the breaking wave celerity (Eq. (12)). Chan et al.[8]suggested that breaking wave is shown to be the most destructive, when there is a well-formed jet due to the association of the additional slamming load induced by the jet. Chella et al.[6], further proposed expanding the Morison’s Equation to account for the additional wave breaking force arising from the breaking waveby including an additional slamming force term and into the existing drag and inertia term.

    The equation is as follows

    where ρ is the density of medium,SCis the slamming force coefficient,BCis the breaking wave celerity, λ is the curling factor of breaking wave,expressed as a ratio of the impact length on cylinder over the breaking wave elevation, η is the surface elevation and λη is the breaking wave impact area on structure per unit length.

    Researchers have been proposing wave models[9-11]to predict the value of the slamming load coefficient.Using the above semi-empirical formula to predict the breaking wave celerity, it would benefit future work on analysing the additional slamming load that acts on a structure due to wave breaking. A more accurate slamming coefficient based on the above theory could be modelled. The above semi-empirical formula would give a convenient method for esti- mation of the kinematics of breaking waves just by using wave probes.

    Acknowledgements

    The authors would like to express their gratitude towards Singapore Economic Development Board(EDB) and Lloyd’s Register Singapore Pte Ltd for funding this project work. Special thanks to the Hydrodynamics Lab Team at Newcastle University who provided assistance throughout the experimental works.

    [1] Kjeldsen S. P. The experimental verification of numerical models of plunging breakers [C].19th International Conference on Coastal Engineering, Houston, USA, 1984.

    [2] Perlin M., He J. H., Bernal L. P. An experimental study of deep water plunging breakers [J].Physics of fluids,1996,8(9): 2365-2374.

    [3] Stansell P., Macfarlane C. Experimental investigation of wave breaking criteria based on wave phase speeds [J].Journal of Physical Oceanography, 2002, 32(5):1269-1283.

    [4] Kjeldsen S. P., Myrhaug D. Breaking waves in deep water and resulting wave forces [C].11th Offshore Technology Conference, Houston, USA, 1979.

    [5] Cui C., Zhang N. C., Zuo S. H. et al. A study on kinematics characteristic of freak wave [J].China Ocean Engineering, 2013, 27(3): 391-402.

    [6] Chella M. A., Tφrum A., Myrhaug D. An overview of wave impact forces on offshore wind turbine substructures[J].Energy Procedia, 2012, 20(5): 217-226.

    [7] Det Norske Veritas (DNV). Environmental conditions and environmental loads [S]. PNV-RP-C205, 2010.

    [8] Chan E. S., Cheong H. F., Gin K. Y. H. Breaking-wave loads on vertical walls suspended above mean sea level [J].Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121(4): 143-147.

    [9] Det Norske Veritas (DNV). Design of offshore wind turbine structures [S]. Offshore standard DNV-OS-J101,2004.

    [10] Sarpkaya T. Wave impact loads on cylinders [J].Society of Petroleum Engineers Journal, 1979, 19(1): 29-36.

    [11] Wienke J., Oumeraci H. Breaking wave impact force on a vertical and inclined slender pile–theoretical and largescale model investigations [J].Coastal Engineering,2005,52(5): 435-462.

    亚洲国产精品成人久久小说| 久久精品亚洲熟妇少妇任你| 大码成人一级视频| 这个男人来自地球电影免费观看 | 菩萨蛮人人尽说江南好唐韦庄| 两性夫妻黄色片| 深夜精品福利| 91成人精品电影| av在线老鸭窝| 十八禁高潮呻吟视频| 国产精品久久久久久久久免| 国产乱来视频区| 午夜日韩欧美国产| 久久99热这里只频精品6学生| 久久久精品94久久精品| 亚洲av福利一区| 最黄视频免费看| 久久精品亚洲av国产电影网| 狠狠婷婷综合久久久久久88av| 18禁国产床啪视频网站| 成人午夜精彩视频在线观看| 秋霞伦理黄片| 日韩精品免费视频一区二区三区| tube8黄色片| 欧美人与性动交α欧美软件| 秋霞伦理黄片| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 日韩成人av中文字幕在线观看| 亚洲精品自拍成人| 一级爰片在线观看| 黄色视频在线播放观看不卡| 99九九在线精品视频| 国产在视频线精品| 2021少妇久久久久久久久久久| 不卡av一区二区三区| 日本欧美国产在线视频| 日日摸夜夜添夜夜爱| 两个人看的免费小视频| 在线观看国产h片| 久久久久久久精品精品| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 久久久精品94久久精品| av又黄又爽大尺度在线免费看| 日韩中文字幕视频在线看片| 国产精品人妻久久久影院| 亚洲精品国产一区二区精华液| 亚洲精品国产色婷婷电影| 国产精品 欧美亚洲| 欧美中文综合在线视频| 成人三级做爰电影| 中文精品一卡2卡3卡4更新| 一级毛片 在线播放| 又大又黄又爽视频免费| 午夜日本视频在线| 亚洲精品视频女| 在线天堂最新版资源| 国产欧美亚洲国产| 欧美日本中文国产一区发布| 19禁男女啪啪无遮挡网站| 国产成人精品福利久久| 欧美日本中文国产一区发布| 国产精品.久久久| 人人妻人人澡人人爽人人夜夜| 亚洲,欧美,日韩| 国产精品二区激情视频| 亚洲男人天堂网一区| 免费在线观看完整版高清| 国产亚洲精品第一综合不卡| 久久久久精品性色| 久久久久视频综合| 欧美日韩亚洲综合一区二区三区_| 国产乱来视频区| 啦啦啦在线免费观看视频4| 人人妻人人澡人人看| 国产熟女欧美一区二区| 国产精品久久久av美女十八| 超碰成人久久| 成人国产av品久久久| 欧美黑人欧美精品刺激| a 毛片基地| 免费久久久久久久精品成人欧美视频| 亚洲中文av在线| 18禁动态无遮挡网站| av在线播放精品| 亚洲免费av在线视频| 母亲3免费完整高清在线观看| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区91 | 七月丁香在线播放| 操美女的视频在线观看| 免费观看a级毛片全部| 国产极品天堂在线| 青草久久国产| 极品人妻少妇av视频| 国产成人91sexporn| 2018国产大陆天天弄谢| 国产男女内射视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产一区二区精华液| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 午夜日韩欧美国产| 国产精品99久久99久久久不卡 | 亚洲欧美激情在线| 黄色 视频免费看| 国产深夜福利视频在线观看| 国产一区有黄有色的免费视频| 晚上一个人看的免费电影| 韩国av在线不卡| 91国产中文字幕| 麻豆av在线久日| 亚洲av成人精品一二三区| 色综合欧美亚洲国产小说| 久久人人爽av亚洲精品天堂| netflix在线观看网站| 国产精品免费视频内射| 三上悠亚av全集在线观看| 亚洲国产欧美日韩在线播放| 国产亚洲一区二区精品| 国产乱人偷精品视频| 欧美黑人精品巨大| 国产伦理片在线播放av一区| 亚洲精品一二三| 国产毛片在线视频| 在线观看免费视频网站a站| 青春草视频在线免费观看| 精品视频人人做人人爽| 欧美黑人精品巨大| 伦理电影大哥的女人| 老鸭窝网址在线观看| 18在线观看网站| 桃花免费在线播放| 美女主播在线视频| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| 婷婷色av中文字幕| 午夜福利视频在线观看免费| 精品人妻在线不人妻| 国产一卡二卡三卡精品 | 亚洲视频免费观看视频| 97在线人人人人妻| 晚上一个人看的免费电影| 久久久久国产精品人妻一区二区| 久久精品国产综合久久久| www.熟女人妻精品国产| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利网站1000一区二区三区| 国产探花极品一区二区| 亚洲欧美色中文字幕在线| 悠悠久久av| 九色亚洲精品在线播放| 国产成人a∨麻豆精品| 中文字幕最新亚洲高清| 色婷婷av一区二区三区视频| 操出白浆在线播放| 永久免费av网站大全| 欧美亚洲 丝袜 人妻 在线| 少妇被粗大猛烈的视频| 男女高潮啪啪啪动态图| 亚洲综合精品二区| 超碰97精品在线观看| 国产xxxxx性猛交| 色94色欧美一区二区| 狠狠婷婷综合久久久久久88av| 人体艺术视频欧美日本| 日韩av不卡免费在线播放| 精品一区二区三区四区五区乱码 | av网站免费在线观看视频| 这个男人来自地球电影免费观看 | 久久久久久人人人人人| 人妻 亚洲 视频| 欧美日韩亚洲综合一区二区三区_| 国产精品无大码| 亚洲欧洲日产国产| 99九九在线精品视频| 777久久人妻少妇嫩草av网站| 老汉色∧v一级毛片| 三上悠亚av全集在线观看| 午夜福利视频在线观看免费| 日韩欧美一区视频在线观看| 天天添夜夜摸| 亚洲一卡2卡3卡4卡5卡精品中文| 大片电影免费在线观看免费| 美女福利国产在线| 晚上一个人看的免费电影| 欧美精品高潮呻吟av久久| 欧美日韩综合久久久久久| 大香蕉久久成人网| 2018国产大陆天天弄谢| 亚洲精品国产av成人精品| 成年av动漫网址| 一级片'在线观看视频| 久久人人爽av亚洲精品天堂| 欧美日韩av久久| 无遮挡黄片免费观看| 亚洲精品美女久久av网站| 大话2 男鬼变身卡| 精品久久久久久电影网| 久久青草综合色| 亚洲欧美中文字幕日韩二区| 亚洲精品国产av蜜桃| 人妻一区二区av| 男女免费视频国产| 国产97色在线日韩免费| 大片免费播放器 马上看| 婷婷成人精品国产| 亚洲第一青青草原| 国产免费福利视频在线观看| 日韩不卡一区二区三区视频在线| 青青草视频在线视频观看| 国产 精品1| 亚洲第一av免费看| 亚洲国产精品成人久久小说| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看| 老鸭窝网址在线观看| 一本色道久久久久久精品综合| 久久青草综合色| 婷婷色av中文字幕| 午夜福利,免费看| 老鸭窝网址在线观看| 高清av免费在线| 超碰成人久久| 女人高潮潮喷娇喘18禁视频| 少妇被粗大的猛进出69影院| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品国产亚洲av高清涩受| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 久久狼人影院| 欧美xxⅹ黑人| 亚洲成国产人片在线观看| av卡一久久| 国产欧美日韩一区二区三区在线| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 青春草国产在线视频| 免费看不卡的av| 亚洲av国产av综合av卡| 欧美中文综合在线视频| 亚洲国产精品成人久久小说| 男女午夜视频在线观看| 天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频 | 在线观看人妻少妇| videosex国产| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 侵犯人妻中文字幕一二三四区| 赤兔流量卡办理| 午夜日本视频在线| 亚洲精品国产色婷婷电影| 亚洲精品第二区| 久久亚洲国产成人精品v| 国产黄频视频在线观看| 精品第一国产精品| 亚洲av综合色区一区| 免费看不卡的av| av网站免费在线观看视频| 久久久久视频综合| 精品卡一卡二卡四卡免费| 男人舔女人的私密视频| 热99久久久久精品小说推荐| 久久免费观看电影| 欧美精品av麻豆av| 免费日韩欧美在线观看| 高清在线视频一区二区三区| 女性生殖器流出的白浆| 日韩不卡一区二区三区视频在线| 久久青草综合色| 成年av动漫网址| 国产高清不卡午夜福利| 最新在线观看一区二区三区 | 国产视频首页在线观看| 麻豆乱淫一区二区| 亚洲第一青青草原| 亚洲色图 男人天堂 中文字幕| 国产99久久九九免费精品| 狠狠精品人妻久久久久久综合| 91精品三级在线观看| 日韩伦理黄色片| 大片免费播放器 马上看| av线在线观看网站| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久人妻精品电影 | 国产成人精品在线电影| 少妇人妻 视频| 日韩欧美精品免费久久| 丁香六月天网| 午夜福利网站1000一区二区三区| 国产精品欧美亚洲77777| 亚洲熟女毛片儿| 看免费成人av毛片| 午夜日本视频在线| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 欧美激情 高清一区二区三区| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 久久精品久久久久久久性| 亚洲精品美女久久av网站| 日韩一卡2卡3卡4卡2021年| 欧美日韩视频高清一区二区三区二| 国产在线一区二区三区精| 久久女婷五月综合色啪小说| 一区二区av电影网| 老司机深夜福利视频在线观看 | 亚洲精品av麻豆狂野| 亚洲国产成人一精品久久久| 亚洲av日韩精品久久久久久密 | 亚洲七黄色美女视频| 久久久精品94久久精品| 老司机亚洲免费影院| 午夜福利乱码中文字幕| 日韩av在线免费看完整版不卡| 青春草亚洲视频在线观看| 一级a爱视频在线免费观看| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 大香蕉久久网| 久久久久视频综合| 一级a爱视频在线免费观看| 十八禁网站网址无遮挡| 亚洲熟女精品中文字幕| 青青草视频在线视频观看| 久久久久久久国产电影| 狠狠婷婷综合久久久久久88av| 一边亲一边摸免费视频| 久久精品久久久久久久性| 亚洲成色77777| 国产一区二区激情短视频 | 亚洲精品国产av蜜桃| 老汉色av国产亚洲站长工具| 日韩制服骚丝袜av| 人妻人人澡人人爽人人| 日韩一区二区视频免费看| 超色免费av| 91精品国产国语对白视频| 午夜影院在线不卡| 日韩av不卡免费在线播放| 亚洲国产精品一区三区| 欧美成人精品欧美一级黄| 天天添夜夜摸| 一边亲一边摸免费视频| 亚洲成人一二三区av| 久久久国产精品麻豆| av片东京热男人的天堂| a级毛片黄视频| 国产不卡av网站在线观看| 青草久久国产| 丝袜美足系列| 免费少妇av软件| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 欧美 日韩 精品 国产| 国产伦人伦偷精品视频| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| av网站免费在线观看视频| 久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 啦啦啦视频在线资源免费观看| 国产成人系列免费观看| 国产黄频视频在线观看| 色播在线永久视频| 搡老岳熟女国产| 香蕉国产在线看| 老司机深夜福利视频在线观看 | 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美一区二区三区国产| 国产在线免费精品| 女人精品久久久久毛片| 国产精品国产三级国产专区5o| 久久国产精品大桥未久av| 亚洲av男天堂| 亚洲婷婷狠狠爱综合网| 男女午夜视频在线观看| 男女之事视频高清在线观看 | 国产在线视频一区二区| 最新在线观看一区二区三区 | 波多野结衣一区麻豆| 不卡av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日韩精品有码人妻一区| 99久国产av精品国产电影| 亚洲久久久国产精品| 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 午夜福利在线免费观看网站| 多毛熟女@视频| 嫩草影视91久久| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 美女中出高潮动态图| 欧美亚洲 丝袜 人妻 在线| 日日爽夜夜爽网站| avwww免费| 日韩精品有码人妻一区| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说| 多毛熟女@视频| 亚洲精品一区蜜桃| 久久99精品国语久久久| 一区二区三区乱码不卡18| 尾随美女入室| 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| 黄频高清免费视频| 丰满迷人的少妇在线观看| 国产亚洲av片在线观看秒播厂| 久久精品亚洲av国产电影网| 不卡av一区二区三区| 黄色视频不卡| 黑人猛操日本美女一级片| 99久久人妻综合| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 午夜福利一区二区在线看| 操美女的视频在线观看| 国产无遮挡羞羞视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 黄色怎么调成土黄色| 久久狼人影院| 亚洲欧洲国产日韩| 黄网站色视频无遮挡免费观看| 久久女婷五月综合色啪小说| 亚洲美女视频黄频| 一区二区三区乱码不卡18| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 午夜福利免费观看在线| 国产精品女同一区二区软件| 国产xxxxx性猛交| 波多野结衣一区麻豆| 99久久综合免费| 日韩 欧美 亚洲 中文字幕| av免费观看日本| 亚洲欧美一区二区三区国产| 国产成人一区二区在线| 久久久久国产一级毛片高清牌| 婷婷色av中文字幕| 亚洲国产欧美一区二区综合| 咕卡用的链子| 捣出白浆h1v1| 搡老乐熟女国产| 嫩草影视91久久| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频| 亚洲成av片中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 九九爱精品视频在线观看| 交换朋友夫妻互换小说| 9191精品国产免费久久| 另类亚洲欧美激情| 少妇人妻 视频| av电影中文网址| 精品少妇黑人巨大在线播放| 色吧在线观看| 亚洲av综合色区一区| 国产成人欧美| 成人毛片60女人毛片免费| 99九九在线精品视频| 亚洲,欧美,日韩| 国产精品三级大全| 精品亚洲成国产av| 看非洲黑人一级黄片| 亚洲欧美日韩另类电影网站| 在线看a的网站| 中文字幕av电影在线播放| 国产又爽黄色视频| 99精品久久久久人妻精品| 日韩 亚洲 欧美在线| av.在线天堂| 99九九在线精品视频| 欧美变态另类bdsm刘玥| av片东京热男人的天堂| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 水蜜桃什么品种好| 99国产综合亚洲精品| 亚洲成人手机| 日韩,欧美,国产一区二区三区| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 亚洲精品乱久久久久久| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 最近2019中文字幕mv第一页| 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 精品人妻在线不人妻| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 午夜老司机福利片| 欧美成人精品欧美一级黄| 亚洲色图 男人天堂 中文字幕| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o | 91老司机精品| 欧美老熟妇乱子伦牲交| 久久久久精品国产欧美久久久 | 交换朋友夫妻互换小说| 精品久久久精品久久久| 久久国产精品大桥未久av| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区| 青青草视频在线视频观看| 免费看不卡的av| 熟女少妇亚洲综合色aaa.| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 建设人人有责人人尽责人人享有的| 1024视频免费在线观看| 午夜激情av网站| 天天躁夜夜躁狠狠久久av| 老司机深夜福利视频在线观看 | 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院| 欧美日韩一级在线毛片| 久热爱精品视频在线9| 老鸭窝网址在线观看| 老司机影院成人| 久久99一区二区三区| 国产精品久久久久久精品电影小说| 精品国产露脸久久av麻豆| 亚洲欧美一区二区三区久久| 午夜福利免费观看在线| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 咕卡用的链子| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 欧美激情高清一区二区三区 | 夫妻性生交免费视频一级片| netflix在线观看网站| 香蕉丝袜av| 日本欧美国产在线视频| 男女下面插进去视频免费观看| 一边摸一边抽搐一进一出视频| 亚洲av欧美aⅴ国产| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 亚洲欧美精品综合一区二区三区| 色精品久久人妻99蜜桃| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 国产精品国产三级国产专区5o| 母亲3免费完整高清在线观看| 成年人午夜在线观看视频| a级毛片在线看网站| 少妇人妻精品综合一区二区| 日韩大码丰满熟妇| 亚洲av综合色区一区| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 国产97色在线日韩免费| 日韩视频在线欧美| 午夜久久久在线观看| 国产一卡二卡三卡精品 | 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久小说| 韩国精品一区二区三区| 亚洲国产av影院在线观看| 波多野结衣av一区二区av| 在线观看三级黄色| 搡老岳熟女国产| 国产精品欧美亚洲77777| 黄片小视频在线播放| 国产99久久九九免费精品| 成人免费观看视频高清| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区久久久樱花| av不卡在线播放| 美女大奶头黄色视频| 国产精品国产三级国产专区5o| 国产精品一国产av| 亚洲精品国产av蜜桃| 最新在线观看一区二区三区 | 久久精品久久久久久久性| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 自拍欧美九色日韩亚洲蝌蚪91| 热99久久久久精品小说推荐| 亚洲精品久久午夜乱码| 日韩熟女老妇一区二区性免费视频| 一本久久精品| 美女大奶头黄色视频| 啦啦啦啦在线视频资源| 精品国产乱码久久久久久小说| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 国产成人午夜福利电影在线观看| 久久影院123| 亚洲成色77777| 曰老女人黄片| 街头女战士在线观看网站| 天天躁夜夜躁狠狠躁躁| 久久久久视频综合| 蜜桃在线观看..| 国产免费视频播放在线视频| 欧美日韩一区二区视频在线观看视频在线| 丝袜脚勾引网站| 国产精品一国产av| 97在线人人人人妻|