• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the characteristics of PCBN materials at home and abroad

    2018-07-06 09:23:46,,,
    金剛石與磨料磨具工程 2018年3期

    , , ,

    (1. China University of Mining and Technology (Beijing), Beijing 100083, China)(2. Henan Huanghe Whirlwind Co., Ltd., Changge 461500, Henan, China)

    The automotive and aerospace industries generally use polycrystalline cubic boron nitride (PCBN) cutting tools to achieve higher productivity. PCBN has lower affinity to iron and high hardness properties means that it delivers a superior cutting performance especially during high speed machining of hardened steel, cast iron and sintered alloys etc[1-2].

    PCBN material is produced by mixing CBN (cubic boron nitride), whose hardness is second only to diamond, with a special binder, such as ceramic, metal or both. It is then sintered at 5-6 GPa and 1300-1500 ℃. PCBN material is divided into high and low content categories according to CBN content, which has different applications. Also, the dense microstructure of PCBN material with different CBN granularity is often obtained by sintering in a certain proportion. At present, Dinger-Funk equation[3]is the optimum theory that describes the continuous grain size distribution compared to that of real particle size distribution, which is applicable only to PCBN material with high CBN content.

    Another factor that affects the quality of PCBN is the type of binder. As a binding phase, composite metals of the elements in groups IV-VI of the periodic table, or their compounds, are most frequently used.

    The main objective of this study was to evaluate the characteristics and trends of PCBN materials with different CBN contents and grains, and different binders.

    1 Materials and methods

    1.1 PCBN categories

    There are many series of different PCBN tools, which are used to meet different application requirements. In Table 1 there list representatives of main manufacturers. It can be seen that most Chinese manufacturers produce solid PCBN tools, which is related with the synthesis equipment i. e. cubic press and the high price of foreign solid PCBN. Other companies mainly produce PCBN composite blade due to two-anvil presses they use, but each company would have one or two solid PCBN products for rough processing or semi-finishing.

    In recent years, the manufacturers push out new PCBN products with medium or low content CBN and Ti-based ceramic matrix, which are ideal for finishing hardened steels at high speeds, such as BZN-PM161, BZN-V35, BZN-HPT130, DIA500, DHA650, solid PCBN or composites with cemented carbide substrate.

    During the development of Chinese superhard material, the cavity of cubic press is limited, so it is difficult to make larger composite blade. At present, the largest diameter of composite blade in cubic press isφ58 mm[4], which can be madeφ54-φ110 mm by using two-anvil press in foreign manufacturers. Larger diameter blade has higher cutting efficiency, each tool only requiring very small PCBN tip for welding blade. Even though the price of the whole composite is higher, the price of each blade is lower, thus, many PCBN composites from abroad used in Chinese brazing tool industries. Compared to two-anvil press, the cubic press is more applicable to direct synthesis solid PCBN conformity with ISO tool standard, and the price is a quarter of that of foreign products, which contributes to China′s dominant position in solid PCBN tools. But in the case of PCBN composites, things go different. The different hydraulic press used in synthesizing superhard products at home and abroad lead to different ideas of material development, leading to many PCBN composite blades in foreign companies, and fast development of solid PCBN tools in China.

    Table 1 Categories of PCBN tools

    1.2 Binders

    The properties of PCBN materials are closely related to the choice of binders. Several PCBN samples are studied to analyze their element composition through JSM-6390LA scanning electron microscopy and EDS. The results are shown in Table 2.

    Table 2 Elements obtained by energy spectrum analysis PCBN samples from abroad

    It can be seen that Al, Ti, Co, Ni, W et al. are the common elements in the binder, and C, O elements are also find in the sample. Al, Co, Ni, W are usually used as metallic binder, which provide liquid phase to fill the voids when sintered, such as SUMIBORON BN7000 designed for cast iron and ferrous powder metal machining[5].

    Al can easily react with CBN during sintering under high pressure and high temperature, thus generating AlN and AlB2[2, 6-7]. Sometimes AlN or/and Al2O3are chosen as the binder[8-9].

    Titanium is often added in the form of nitrides or carbides and was studied with different molar ratio[6, 10-11]. TiN/TiC reacts with BN forming new phase at the BN-binders interface, obtaining the densest microstructure. Hf element was found in the form of HfC for its good properties[12]. With HfC and Al as the binders, CBN reacted with Al and HfC, and produced AlN, AlB2, HfB2and B2C5N2, whose content increased with Al disappearing, and the Vickers hardness of the sintered samples increased with the CBN content. BENKO[13]studied CBN-Ti3SiC2composites with different CBN volume ratio.

    1.3 Uniform mixing

    The uniform mixing of initial raw materials plays a very important role in the preparation of PCBN materials. Agglomeration microstructural will become a weak point and affect the service life of PCBN cutting tools, especially when the granularity of CBN is finer such as nanostructured. There are more stringent requirements on raw material mixing process.

    Fig. 1 shows SEM microstructure of some PCBN products from China. It can be seen that the overall distribution of coarse grains is relatively uniform, but there are still some binder agglomerations (Fig. 1a). The microstructure distribution of fine grains is uneven, and there are more binder agglomerations (Fig. 1b).

    The microstructure of foreign PCBN products are shown in Fig. 2. It is found that they are uniformly distributed, even at nanometer size as shown in Fig. 2b. Uniform and dense microstructure distribution effectively ensures the stability of the products.

    (a) coarse-grained (8-16 μm) (b) fine-grained (1-2 μm) Fig. 1 SEM microstructure of Chinese PCBN products

    (a) S1(6-22 μm)(b) S2 (nano-meter)(c) S5(1-4 μm)(d) S6 (2-6 μm)Fig. 2 SEM microstructure of foreign PCBN products

    Three-dimensional mixer, roller ball mill, and planetary ball mill are always chosen as mixing equipment to meet the requirements for uniform mixing powder. Vacuum and ultrasonic are also used in mixing equipment. The parameters, such as ratio of grinding media to material, rotational speed and mixing time in mixing process, are strictly controlled to obtain uniform sintered microstructure. In most case, dry mixing are used for coarse-grained powders and wet mixing for fine-grained powders. The binders are pre-milled in ethanol in ceramic ball mill tank, and then fine-grained powders were added to the slurries milling to the required time[14-15].

    1.4 High toughness PCBN

    The impact toughness of PCBN is particularly concerned when used as cutting tools. It is expected that PCBN tools has high abrasion and high impact toughness. In actual cutting process, CBN abrasive grain on the cutting edge of PCBN tools drastically contacts with the machined components at a very high speed, which would impose a heavy shock load on the CBN grains, especially in intermittent cutting. Under the joint action of internal stress and finally result in grain shedding and macro-fracture. HUANG et al[16]indicate that elongated microcrystalline CBN particles and crack branching contribute to the effect of size distribution of the contained microcrystalline CBN particles on the bulk toughness of the PCBN abrasive grains, by using the theory of Voronoi Diagram. LIU et al[17]sintered PCBN compact with CBN grain sized 1-2 μm on WC-16wt%Co substrates without any sintering agent, which indicated that liquid substance infiltrated from the substrates and chemically reacted with CBN powder, therefore forming plenty of direct BN-BN bondings. The hardness of the product was 38.5 GPa, which ensures the comprehensive properties of PCBN material. When the CBN size is 10-14 μm, by using the infiltrating method in situ, the workpiece surface has a good finish after cut by PCBN tool, which has a dense concrete microstructure and the Vickers hardness of 29.3 GPa[18]. Furthermore, the addition of lanthanon can make the sintered material with compact-grain structure, which can improve the wear resistance and impact toughness of PCBN[19-21]. The SiC whiskers mix in the microstructures as a strip can effectively improve the strength and fracture toughness of PCBN materials[22-23].

    2 New PCBN materials

    2.1 Nano - polycrystalline cubic boron nitride

    Nano-polycrystalline CBN is expected to replace single crystal CBN as a superhard and superstiff material for it has higher hardness and transverse rupture strength than single crystal even when exposed to high temperatures. So nano-polycrystalline CBN tools not only have excellent wear resistance and thermal conductivity, but also have excellent impact resistance, suitable for applications at high speed under heavy load impact. Fig. 3 shows the synthesis regions of nano - polycrystalline CBN which are always synthesized in the pressure range of 8-20 GPa and temperature range of 1300-2400 ℃ without using any binder that lies on the boundaries of CBN grains and significantly affects the mechanical properties and thermal stability of the sintered compact[24-25].

    Fig. 3 Nano-polycrystalline diamond / CBN synthesis regions[25]

    It was suitable for the determination of nano-PCBN with Knoop hardness. Nano-polycrystals consisting of smaller CBN grains increase the elastic recovery of indentations during unloading of the indenters and the diagonal of Vickers indentations, and the minor diagonal of Knoop indentations significantly decrease in length. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged through measured the longitudinal-wave elastic constant and Vickers and Knoop hardness of nano-PCBNs[26]. SUMIYA, et al[27]found that incorrect Vickers hardness values in excess of 80 GPa were obtained from nano-polycrystalline CBN with a grain size of 50 nm or less, while the hardness of each type of CBN was around 45 GPa by using a Knoop indenter ensures an accurate hardness evaluation. The Knoop hardness of the single-phase nano-PCBN with a uniform microstructure increased with decreasing mean grain size, which complied with the Hall-Petch relationship[28].

    2.2 Non-binder PCBN

    The non-binder PCBN avoids the influence of binders, and has excellent higher hardness, heat resistance, and thermal conductivity performance than conventional sintered PCBN, which was sintered with binder in the CBN powder and the binder affected the mechanical properties of CBN. Cutting tools made using non-binder PCBN exhibit superior performance in high-speed and high efficiency machining of ferrous materials[29]. However, the sintering of non-binder PCBN needs higher pressure and higher temperature as described in Fig. 2. OHASHI, et al[30]using HBN disks treated under ultra high pressure of 6.8 GPa and at temperature of 2100 ℃ to get non-binder PCBN directly, and the tools exhibited better wear resistance in cutting of Co base super alloy and cemented carbide. When the fine-grained (<0.5 μm) and high purity (CBN mass fraction>99.9%) polycrystalline sintered body synthesized at 7.7 GPa, 2200-2400 ℃, it has highest hardness and TRS at any temperature[31]. If the pressure is increased to 25 GPa[32], a mean grain size smaller than 100 nm nano-polycrystalline CBN could be synthesized at temperature of 1950 ℃ or lower, and the single-phase non-binder PCBN was harder than 53.5 GPa in Knoop hardness. Similarly, sintering pure diamond compacts with submicron grain size have the same situation[33]. Non-binder PCBN will be a very promising new material based on suitable synthesis conditions and lower cost.

    3 Conclusions

    (1)The application of PCBN has strong pertinence with material and machining technic of workpiece, the series of different PCBN tools are needed to meet the application requirements according to contents and particle size of CBN, binder category and so on. Foreign manufacturers have formed a relatively complete series of PCBN materials applied in different fields, but different condition in domestic manufacturers whose product category is relatively single, and lack of R&D and tools application service.

    (2)The uniform mixing of initial raw materials plays a very important role in the preparation of PCBN material. Agglomeration microstructural will become a weak point and affect the service life of PCBN cutting tools, especially when the granularity of CBN is finer as nanostructure, there are more stringent requirements for the raw material mixing process. Another important factor is the binder, which often chooses the metallic phase such as Al, Co, W and Ti-based cermet matrix with appropriate proportion, according to the actual cutting requirements.

    (3)The impact toughness of PCBN is particularly concerned when used as cutting tool in the industries, In order to obtain high impact toughness based on higher hardness of PCBN, the PCBN composite can be sintered on cemented carbide substrates by using the infiltrating method in situ. Furthermore, the addition of lanthanon and SiC whiskers can improve the strength and fracture toughness of PCBN materials.

    (4)Nano-polycrystalline CBN has higher hardness and transverse rupture strength than single crystal even when exposed to high temperatures. Non-binder PCBN has excellent higher hardness, heat resistance, and thermal conductivity performance. There will be very promising new materials based on more suitable synthesis conditions and lower cost.

    [1] MCKIE A, WINZER J, SIGALAS I. Mechanical properties of CBN-Al composite materials [J]. Ceram. Int., 2011, 37(1): 1-8.

    [2] BENKO E, WYCZESANY A, BARR T L. CBN-metal/metal nitride composites [J]. Ceram. Int., 2000, 26(6): 639-644.

    [3] DINGER D R, FUNK J E. Particle-packing phenomena and their application in materials processing [J]. MRS Bulletin, 1997, 22(12): 19-23.

    [4] LI S, QU J, FANG H. Synthesis and characterization of φ58 mm polycrystalline diamond compact [J]. Dia. Abra. Eng., 2016, 36(1): 38-42.

    [5] MATSUDA Y, OKAMURA K, UESAKA S, et al. Development of new grade "SUMIBORON BN7000" for cast iron and ferrous powder metal machining [J]. SEI Technical Review, 2012(75): 13-17.

    [6] YANG L, YUE Z, GONG J, et al.compositions, mechanical properties and microstructures of CBN-based composites sintered with Al or TiC [J]. Adv. Appl. Ceram., 2017, 116(5): 1-6.

    [7] SITHEBE H S L, MCLACHLAN D, SIGALAS I, et al. Pressure infiltration of boron nitride preforms with molten aluminum [J]. Ceram. Int., 2008, 34(6): 1367-1371.

    [8] LV R, LIU J, LI Y, et al. High pressure sintering of cubic boron nitride compacts with Al and AlN [J]. Dia. & Relat. Mater., 2008, 17(12): 2062-2066.

    [9] ZHANG M, SUN X, XIU Z, et al. Influences of sintering temperature on chemical reaction and microstructure in Al2O3-Ti(C0.7N0.3)-CBN composite [J]. J. Nanoelectron. Optoe., 2017, 12(7): 701-705.

    [10] RONG X, TSURUMI T, FUKUNAGA O, et al. High-pressure sintering of CBN-TiN-Al composite for cutting tool application [J]. Dia. Relat. Mater., 2002, 11(2): 280-286.

    [11] BENKO E, STANISLAW J S, KROLICKA B, et al. CBN-TiN, CBN-TiC composites: chemical equilibria, microstructure and hardness mechanical investigations [J]. Dia. Relat. Mater., 1999, 8(10): 1838-846.

    [12] ZHANG L, LIN F, LV Z, et al. CBN-Al-HfC composites: Sintering behaviors and mechanical properties under high pressure [J]. Int. J. Refract. Met. H., 2015, 50: 221-226.

    [13] BENKO E, KLIMCZYK P, MACKIEWICZ S, et al. CBN-Ti3SiC2composites [J]. Dia. Relat. Mater., 2004, 13(3): 521-525.

    [14] MAWEJA K, CORNISH L A, CAN N. Effects of tungsten and aluminum on the oxidation and phase formation in mechanically alloyed Ti(C,N)-W-Al systems [J]. J. Eur. Ceram. Soc., 2012, 32(13): 3583-3592.

    [15] LINDGREN K E, KAUPPI A, FALK L K L. Development of matrix microstructure in polycrystalline cubic boronnitride ceramics [J]. J. Eur. Ceram. Soc., 2017, 37(9): 3017-3026.

    [16] HUANG X, DING W, ZHU Y, et al. Influence of microstructure and grinding load on the bulk toughness and fracture behavior of PCBN abrasive grains [J]. Int. J. Adv. Manuf. Tech., 2017, 94(3): 1-12.

    [17] LIU G, KOU Z, YAN X, et al. Sintering of fine grained polycrystalline cubic boron nitride compacts without binder [J]. Appl. Mech. Mater., 2014, 665: 79-84.

    [18] JIA H S, LE Y, LI J, et al. Preparation of polycrystalline cubic boron nitride compact by high-pressure infiltration using cemented carbide [J]. Int. J. Refract. Met. H., 2013, 41(4): 138-142.

    [19] ERASMUS R M, COMINS J D, FISH M L. Raman and photoluminescence spectra of indented cubic boron nitride and polycrystalline cubic boron nitride [J]. Dia. Relat. Mater., 2000, 9(6): 600-604.

    [20] SIGALAS I, DAVIES, GEOFFREY J. Ulna-hard WC-diamond and WC-BN composite materials for abrasive tools: WO, 2004040029 [P]. 2004-05-28.

    [21] ZANG J, WANG M, WANG Y, et al. Structure and properties of Si3N4bond polycrystalline cubic boron nitride toughened with ZrO2(Y2O3) [J]. Chin. J. Mater. Res., 2000, 14(6): 595-598.

    [22] DOGAN C P, HAWK J A. Influence of whisker toughening and microstructure on the wear behavior of Si3N4- and Al2O3-matrix composites reinforced with SiC [J]. J. Mater. Sci., 2000, 35(23): 5793 - 5807.

    [23] DONG Q, WEI X, PENG J, et al. Study of micro-structure of PCBN with Si3N4whisker binders [J]. Dia. Abra. Eng., 2010, 30(1): 50-52.

    [24] SUMIYA H, HARANO K, ISHIDA Y. Mechanical properties of nano-polycrystalline CBN synthesized by direct conversion sintering under HPHT [J]. Dia. Relat. Mater., 2014, 41(1): 14-19.

    [25] SUMIYA H, HARANO K. Innovative ultra-hard materials: binderless nano-polycrystalline diamond and nano-polycrystalline cubic boron nitride [J]. Sei Technical Review, 2016(82): 21-26.

    [26] NAGAKUBU A, OGI H, SUMIYA H, et al. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect [J]. Appl. Phys. Lett., 2014, 105(8): L9.

    [27] SUMIYA H, ISHIDA Y, ARIMOTO K, et al. Real indentation hardness of nano-polycrystalline CBN synthesized by direct conversion sintering under HPHT [J]. Dia. & Relat. Mater., 2014, 48(3): 47-51.

    [28] ICHIDA Y, OHFUJI H, IRIFUNE T, et al. Synthesis of coarse-grain-dispersed nano-polycrystalline cubic boron nitride by direct transformation under ultrahigh pressure [J]. Dia. Relat. Mater., 2017, 77: 25-34.

    [29] UESAKA S, SUMIYA H. Mechanical properties and cutting performances of high purity polycrystalline CBN compact [J]. ASME Manuf. Sci. Eng. Med., 1999, 10: 759-766.

    [30] OHASHI T, YAMAMOTO K, HAMADA Y, et al. Some properties and cutting performance of polycrystalline cubic boron nitride with no additives [J]. Int. J. Refract. Met. H., 1998, 16: 403-407.

    [31] SUMIYA H, UESAKA S, SATOH S. Mechanical properties of high purity polycrystalline CBN synthesized by direct conversion sintering method [J]. J. Mater. Sci., 2000, 35(5): 1181 - 1186.

    [32] ICHIDA Y, OHFUJI H, IRIFUNE T, et al. Synthesis of coarse-grain-dispersed nano-polycrystalline cubic boron nitride by direct transformation under ultrahigh pressure [J]. Dia. Relat. Mater, 2017, 77: 25-34.

    [33] LU J, KOU Z, LIU T, et al. Submicron binderless polycrystalline diamond sintering under ultra-high pressure [J]. Dia. Relat. Mater., 2017, 77: 41-45.

    Author introduction

    XIE Hui, male, born in 1983. Mainly engaged in the research and development of high-pressure synthesis of PCBN, PDC and diamond-related new materials and their applications.E-mail: xiehui9019@126.com

    精品久久久久久成人av| 精华霜和精华液先用哪个| 国产亚洲精品综合一区在线观看| 性欧美人与动物交配| 性色avwww在线观看| 国产亚洲欧美在线一区二区| 国产男靠女视频免费网站| 亚洲熟女毛片儿| 中文资源天堂在线| 亚洲精品456在线播放app | 日本黄色视频三级网站网址| 日本一本二区三区精品| 欧美日韩福利视频一区二区| 91av网站免费观看| 亚洲18禁久久av| 亚洲欧美日韩无卡精品| 精品国产亚洲在线| 日韩精品中文字幕看吧| 日日摸夜夜添夜夜添小说| 婷婷丁香在线五月| 99精品久久久久人妻精品| 色播亚洲综合网| 欧美黄色片欧美黄色片| 免费看a级黄色片| 亚洲专区国产一区二区| 黑人操中国人逼视频| 制服人妻中文乱码| 最新在线观看一区二区三区| 亚洲国产色片| 老鸭窝网址在线观看| 国产精品日韩av在线免费观看| 国产精品久久久久久精品电影| 男人舔女人下体高潮全视频| 日韩欧美国产一区二区入口| 999精品在线视频| 老司机在亚洲福利影院| 啦啦啦韩国在线观看视频| 校园春色视频在线观看| 国产成人一区二区三区免费视频网站| 色播亚洲综合网| 精品久久久久久久毛片微露脸| 国产欧美日韩精品亚洲av| 午夜a级毛片| 日本与韩国留学比较| 精品电影一区二区在线| 动漫黄色视频在线观看| 国产精品99久久99久久久不卡| 国产精品99久久久久久久久| netflix在线观看网站| 国产激情欧美一区二区| 国产久久久一区二区三区| 欧美成人免费av一区二区三区| 国产成人一区二区三区免费视频网站| 男人和女人高潮做爰伦理| 久久中文字幕人妻熟女| 国产一区二区激情短视频| 亚洲熟妇中文字幕五十中出| 日韩 欧美 亚洲 中文字幕| 97人妻精品一区二区三区麻豆| 2021天堂中文幕一二区在线观| 日韩人妻高清精品专区| 亚洲人成网站在线播放欧美日韩| 激情在线观看视频在线高清| 久久久久久久久中文| 天堂影院成人在线观看| 国产97色在线日韩免费| av女优亚洲男人天堂 | 久久热在线av| 成人鲁丝片一二三区免费| 99久久无色码亚洲精品果冻| avwww免费| 亚洲国产精品999在线| 97碰自拍视频| 国产爱豆传媒在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲色图 男人天堂 中文字幕| 亚洲国产欧洲综合997久久,| 精品国产三级普通话版| 日本五十路高清| 午夜福利高清视频| 人妻夜夜爽99麻豆av| 国产99白浆流出| 亚洲精品一卡2卡三卡4卡5卡| 香蕉久久夜色| 国产午夜精品论理片| 日韩欧美在线乱码| 特级一级黄色大片| 搡老熟女国产l中国老女人| 国产综合懂色| 国产成人啪精品午夜网站| 美女高潮的动态| 精品无人区乱码1区二区| 18禁裸乳无遮挡免费网站照片| 国产精品 国内视频| 欧美xxxx黑人xx丫x性爽| 最近最新中文字幕大全免费视频| 99国产综合亚洲精品| a级毛片a级免费在线| 美女黄网站色视频| 亚洲av美国av| 免费高清视频大片| 国产精品九九99| 中文字幕人妻丝袜一区二区| 88av欧美| 国产精品日韩av在线免费观看| 中文字幕熟女人妻在线| 亚洲性夜色夜夜综合| 免费大片18禁| 国产伦人伦偷精品视频| 母亲3免费完整高清在线观看| www.www免费av| 欧美成人一区二区免费高清观看 | 亚洲专区字幕在线| 成人永久免费在线观看视频| 欧美日韩国产亚洲二区| 国产免费男女视频| 国产乱人伦免费视频| 白带黄色成豆腐渣| 全区人妻精品视频| 999久久久精品免费观看国产| 国产精品久久久久久久电影 | 亚洲午夜理论影院| 久久久久免费精品人妻一区二区| 久久精品国产综合久久久| 中文资源天堂在线| 亚洲av五月六月丁香网| 免费av不卡在线播放| 午夜福利在线观看免费完整高清在 | 日韩三级视频一区二区三区| 国产精品免费一区二区三区在线| 精品乱码久久久久久99久播| 日韩欧美三级三区| 久久中文看片网| 中文字幕人成人乱码亚洲影| 亚洲国产精品999在线| 亚洲国产精品sss在线观看| 国产av在哪里看| 无遮挡黄片免费观看| 日本五十路高清| 亚洲精品在线观看二区| 久久国产乱子伦精品免费另类| 亚洲乱码一区二区免费版| 人人妻人人澡欧美一区二区| 亚洲成人精品中文字幕电影| 国产野战对白在线观看| 18禁黄网站禁片免费观看直播| 午夜a级毛片| 日韩欧美一区二区三区在线观看| 美女黄网站色视频| 宅男免费午夜| 国产黄a三级三级三级人| 久久久久久国产a免费观看| 露出奶头的视频| 一个人免费在线观看电影 | 中文资源天堂在线| 国产免费男女视频| 亚洲午夜理论影院| 18禁黄网站禁片午夜丰满| av在线蜜桃| 中文字幕人妻丝袜一区二区| 最近视频中文字幕2019在线8| 欧美日韩国产亚洲二区| 成熟少妇高潮喷水视频| 亚洲国产精品久久男人天堂| 最新美女视频免费是黄的| 国产精品电影一区二区三区| 一本综合久久免费| 99国产极品粉嫩在线观看| 男女床上黄色一级片免费看| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 久久久久久国产a免费观看| e午夜精品久久久久久久| 老司机在亚洲福利影院| 国产一区二区三区在线臀色熟女| 亚洲欧洲精品一区二区精品久久久| 1000部很黄的大片| 天天躁日日操中文字幕| 亚洲午夜理论影院| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 国产精品亚洲一级av第二区| 久久久国产精品麻豆| 特大巨黑吊av在线直播| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 性欧美人与动物交配| 久久香蕉精品热| 久久香蕉国产精品| 中文字幕最新亚洲高清| www日本黄色视频网| 久久午夜亚洲精品久久| 精品福利观看| 天天添夜夜摸| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩无卡精品| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看 | 丰满人妻一区二区三区视频av | 久久伊人香网站| 精品电影一区二区在线| 桃红色精品国产亚洲av| 激情在线观看视频在线高清| 极品教师在线免费播放| 国产探花在线观看一区二区| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 香蕉丝袜av| 国产高清三级在线| 国产不卡一卡二| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 欧美一区二区国产精品久久精品| 黑人欧美特级aaaaaa片| avwww免费| 国产麻豆成人av免费视频| 国产乱人伦免费视频| 久久久久久久午夜电影| 国产精品 欧美亚洲| 身体一侧抽搐| 亚洲精品美女久久久久99蜜臀| 久久久久九九精品影院| 国产精品国产高清国产av| 国产午夜精品久久久久久| 美女扒开内裤让男人捅视频| 午夜影院日韩av| 俺也久久电影网| 国产熟女xx| 深夜精品福利| av黄色大香蕉| 一区福利在线观看| 亚洲精品456在线播放app | 国产成人欧美在线观看| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 久久久国产成人免费| 欧美日韩精品网址| 观看美女的网站| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女| 51午夜福利影视在线观看| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| www国产在线视频色| 成人av一区二区三区在线看| a在线观看视频网站| 99国产精品一区二区三区| 麻豆国产97在线/欧美| 国产久久久一区二区三区| 精品人妻1区二区| 欧美乱妇无乱码| 欧美不卡视频在线免费观看| 亚洲精品中文字幕一二三四区| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区视频9 | 九色国产91popny在线| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 99久久久亚洲精品蜜臀av| 日本 欧美在线| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 啦啦啦韩国在线观看视频| 日韩欧美一区二区三区在线观看| 亚洲男人的天堂狠狠| av天堂在线播放| 99在线视频只有这里精品首页| 亚洲精品一卡2卡三卡4卡5卡| 偷拍熟女少妇极品色| 免费在线观看日本一区| 日韩欧美三级三区| 中文在线观看免费www的网站| 日韩欧美精品v在线| 亚洲色图 男人天堂 中文字幕| h日本视频在线播放| 极品教师在线免费播放| 9191精品国产免费久久| 色综合站精品国产| 国产伦精品一区二区三区四那| 国产私拍福利视频在线观看| 成人亚洲精品av一区二区| 国产av在哪里看| 在线观看日韩欧美| 亚洲成人久久性| 一边摸一边抽搐一进一小说| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 亚洲欧美日韩东京热| 嫩草影院精品99| 啦啦啦韩国在线观看视频| 国产精品一及| av黄色大香蕉| 香蕉av资源在线| 美女扒开内裤让男人捅视频| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 日韩 欧美 亚洲 中文字幕| e午夜精品久久久久久久| 午夜福利高清视频| 操出白浆在线播放| 日韩免费av在线播放| 毛片女人毛片| 国产一级毛片七仙女欲春2| 久久亚洲真实| 网址你懂的国产日韩在线| 亚洲av第一区精品v没综合| 看黄色毛片网站| 波多野结衣高清作品| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 美女扒开内裤让男人捅视频| 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 男人舔奶头视频| 99精品久久久久人妻精品| 成年女人看的毛片在线观看| 毛片女人毛片| 色哟哟哟哟哟哟| 午夜福利视频1000在线观看| 动漫黄色视频在线观看| tocl精华| 三级国产精品欧美在线观看 | 亚洲真实伦在线观看| 熟女人妻精品中文字幕| 看免费av毛片| 中文字幕人妻丝袜一区二区| 啦啦啦观看免费观看视频高清| 在线免费观看的www视频| 国产高清videossex| 久久精品aⅴ一区二区三区四区| 99久久综合精品五月天人人| 人人妻,人人澡人人爽秒播| 女警被强在线播放| 91字幕亚洲| 欧美日韩福利视频一区二区| 亚洲成人久久性| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 麻豆av在线久日| 黄色日韩在线| 日韩高清综合在线| 成年女人看的毛片在线观看| 真人一进一出gif抽搐免费| 亚洲精品在线美女| 99在线视频只有这里精品首页| 精品国产亚洲在线| 欧美色视频一区免费| 成年女人看的毛片在线观看| 最近在线观看免费完整版| 国产一区二区三区视频了| 久久久久九九精品影院| 国内精品美女久久久久久| 欧美乱妇无乱码| 成年女人看的毛片在线观看| 亚洲成av人片免费观看| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲精品一区二区www| 90打野战视频偷拍视频| 国产伦在线观看视频一区| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看 | 日本黄色片子视频| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 啦啦啦免费观看视频1| 精品午夜福利视频在线观看一区| 国产又色又爽无遮挡免费看| 久久伊人香网站| 久久久成人免费电影| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 国产精品电影一区二区三区| or卡值多少钱| 一个人看视频在线观看www免费 | 国产精品 欧美亚洲| 婷婷六月久久综合丁香| 级片在线观看| 深夜精品福利| 国产伦精品一区二区三区四那| 琪琪午夜伦伦电影理论片6080| 成人精品一区二区免费| 免费看美女性在线毛片视频| www日本在线高清视频| 国产成人精品久久二区二区91| 亚洲av五月六月丁香网| a在线观看视频网站| 精品国产亚洲在线| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 亚洲人成伊人成综合网2020| 97人妻精品一区二区三区麻豆| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 午夜久久久久精精品| 久久久久久久久久黄片| 丁香六月欧美| 国产精品精品国产色婷婷| 亚洲自偷自拍图片 自拍| 欧美乱码精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品久久男人天堂| 18禁国产床啪视频网站| 日日夜夜操网爽| 淫秽高清视频在线观看| 少妇的逼水好多| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 99国产精品一区二区蜜桃av| 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 亚洲成人久久性| 中文字幕精品亚洲无线码一区| 99国产极品粉嫩在线观看| 国产成人欧美在线观看| 男女做爰动态图高潮gif福利片| 高清在线国产一区| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区免费| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 国模一区二区三区四区视频 | 两性夫妻黄色片| 两个人的视频大全免费| 中文字幕精品亚洲无线码一区| 久久国产乱子伦精品免费另类| 欧美另类亚洲清纯唯美| 国产成年人精品一区二区| 丁香六月欧美| 熟女电影av网| 禁无遮挡网站| 18禁观看日本| 国产v大片淫在线免费观看| 婷婷六月久久综合丁香| 怎么达到女性高潮| 黄色视频,在线免费观看| 搞女人的毛片| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 国产单亲对白刺激| 香蕉av资源在线| 一级毛片女人18水好多| 免费大片18禁| 一级黄色大片毛片| 熟女人妻精品中文字幕| 亚洲成人中文字幕在线播放| 天堂影院成人在线观看| 久久久久久国产a免费观看| 成人永久免费在线观看视频| 麻豆av在线久日| 两个人的视频大全免费| 欧美丝袜亚洲另类 | 最近最新中文字幕大全电影3| 中文字幕人妻丝袜一区二区| 中文资源天堂在线| 中亚洲国语对白在线视频| 身体一侧抽搐| 首页视频小说图片口味搜索| 亚洲激情在线av| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 国产野战对白在线观看| 精品久久久久久久久久久久久| 国产欧美日韩精品亚洲av| 国产熟女xx| 久久亚洲真实| ponron亚洲| 欧美丝袜亚洲另类 | 亚洲avbb在线观看| 亚洲国产欧洲综合997久久,| 香蕉久久夜色| 99riav亚洲国产免费| 18禁观看日本| 亚洲av电影不卡..在线观看| 十八禁网站免费在线| 国产熟女xx| 久久天躁狠狠躁夜夜2o2o| 老汉色∧v一级毛片| 最新在线观看一区二区三区| 91麻豆精品激情在线观看国产| 国产1区2区3区精品| 欧美日韩乱码在线| 亚洲国产高清在线一区二区三| 非洲黑人性xxxx精品又粗又长| 少妇丰满av| 日韩欧美国产在线观看| 一个人免费在线观看的高清视频| 欧美不卡视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 色在线成人网| 日韩欧美国产在线观看| 亚洲av电影在线进入| 老司机在亚洲福利影院| 操出白浆在线播放| 在线观看一区二区三区| 可以在线观看毛片的网站| 免费观看人在逋| 国产视频一区二区在线看| 国产精品美女特级片免费视频播放器 | 禁无遮挡网站| 久久人人精品亚洲av| 午夜久久久久精精品| 国产精品爽爽va在线观看网站| 国产乱人伦免费视频| 在线观看免费午夜福利视频| 在线观看一区二区三区| 可以在线观看毛片的网站| 91在线精品国自产拍蜜月 | 变态另类丝袜制服| 亚洲国产精品合色在线| 最近在线观看免费完整版| 少妇人妻一区二区三区视频| 精品久久久久久久久久免费视频| 制服丝袜大香蕉在线| 一区二区三区激情视频| 日本黄色片子视频| 丰满人妻一区二区三区视频av | 小说图片视频综合网站| 99久久国产精品久久久| 99久久精品热视频| 亚洲国产欧美网| 麻豆av在线久日| 神马国产精品三级电影在线观看| 亚洲第一电影网av| 视频区欧美日本亚洲| 手机成人av网站| 日韩有码中文字幕| 久久这里只有精品中国| 国产激情偷乱视频一区二区| 日本 欧美在线| 97碰自拍视频| 日韩欧美国产在线观看| 亚洲九九香蕉| 日本黄色视频三级网站网址| 狂野欧美激情性xxxx| 男女床上黄色一级片免费看| 两性午夜刺激爽爽歪歪视频在线观看| 青草久久国产| 美女免费视频网站| 看免费av毛片| 99久久无色码亚洲精品果冻| 日韩精品青青久久久久久| 黄色丝袜av网址大全| 最近视频中文字幕2019在线8| 99视频精品全部免费 在线 | 18禁国产床啪视频网站| 国产成+人综合+亚洲专区| 男人和女人高潮做爰伦理| 亚洲成人中文字幕在线播放| 国产av麻豆久久久久久久| 国产成人精品无人区| 日韩免费av在线播放| 午夜成年电影在线免费观看| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 女人被狂操c到高潮| 长腿黑丝高跟| 国产乱人伦免费视频| 老司机午夜十八禁免费视频| 日韩欧美三级三区| 成人高潮视频无遮挡免费网站| 成人性生交大片免费视频hd| 国产蜜桃级精品一区二区三区| 91在线观看av| 男人和女人高潮做爰伦理| 中文字幕人成人乱码亚洲影| 99国产精品99久久久久| 又大又爽又粗| 丁香欧美五月| 天堂av国产一区二区熟女人妻| 18美女黄网站色大片免费观看| 2021天堂中文幕一二区在线观| 久久久精品大字幕| cao死你这个sao货| 国产精品影院久久| 观看免费一级毛片| 岛国在线免费视频观看| 成人国产一区最新在线观看| 国产又黄又爽又无遮挡在线| а√天堂www在线а√下载| 亚洲专区中文字幕在线| av黄色大香蕉| 国产黄色小视频在线观看| 欧美日韩黄片免| 日韩欧美在线二视频| 99国产综合亚洲精品| av在线蜜桃| 日本在线视频免费播放| 偷拍熟女少妇极品色| 亚洲成人久久性| 亚洲第一电影网av| 日本免费a在线| 午夜视频精品福利| 日韩欧美国产在线观看| 亚洲精品中文字幕一二三四区| 91字幕亚洲| 男女那种视频在线观看| cao死你这个sao货| 人人妻人人澡欧美一区二区| 脱女人内裤的视频| 一边摸一边抽搐一进一小说| 国产精品久久久av美女十八| 少妇的逼水好多| 国产亚洲精品久久久com| 国产真人三级小视频在线观看|