• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of welding consumables on tensile and impact properties of multi-pass SMAW Armox 500T steel joints vis-a-vis base metal

    2018-07-06 02:51:26AmujSxenKumrswmyMdhusudhnReddyVemuriMdhu
    Defence Technology 2018年3期

    Amuj Sxen,A.Kumrswmy,*,G.Mdhusudhn Reddy,Vemuri Mdhu

    aDefence Institute of Advanced Technology(DU),Pune 411025,India

    bDefence Metallurgical Research Laboratory,Kanchanbagh,Hyderabad 500048,India

    1.Introduction

    Armor steels are widely used in building civil and military structures such as battle tanks,armored vehicles,helicopter components etc.Armor steels possess high density with excellent mechanical properties i.e.ultra-high strength and high hardness to resist penetration against projectiles and shaped charge threats.Armox 500T steel is one such quenched and tempered steel having martensitic structure subjected tohigh loading rates in applications such as ballistic impact,collision,detonation etc.[1-3].Shielded metal arc welding(SMAW)process is widely used for joining of armor steel plates in the fabrication of turret and ship hulls,landing gears,earth moving,mining equipment,mortar casings,armored personnel carrier,cash in transit vehicle,patrol vehicle etc.Quenched and tempered steel SMA weldments must be of good quality especially when used for construction of combat vehicles in military applications[4].

    A number of welding processes are available to fabricate high strength armor steel structures;however,SMAW is commonly used for joining of thick steel sections due to less cost and easy availability of the equipment[5].Austenitic stainless steel(ASS)and low hydrogen ferrite(LHF)steel welding consumables(electrodes)are commonly used for SMAW of quenched and tempered steels to prevent hydrogen induced cracking(HIC),as they have higher solubility for hydrogen in austenitic phase.Further,ASS consumable as filler metal is used in welding of heavy structures in ship building,pressure vessels and heavy vehicles to obtain good impact properties along with adequate strength.Magudeeswaran et al.performed shielded metal arc welding(SMAW)and flux cored arc welding(FCAW)using austenitic stainless steel(ASS)and low hydrogen ferrite(LHF)steel welding consumables for joining of quenched and tempered steels[6-9].The weldments were used to investigate the transverse tensile,impact and dynamic fracture toughness properties and hydrogen induced cold cracking in welding joints.Results revealed that,the joints fabricated using LHF steel electrodes have superior transverse tensile properties and the joints fabricated by ASS electrodes exhibited higher impact toughness and superior dynamic fracture irrespective of welding process used.In addition,ASS welds made out of fCAW process offered a higher resistance to hydrogen induced cracking.Datta et al.[10,11]presented the weldability properties of ASTM A 537 Cl.1 pressure-vessel quality steel and 20 mm thick O SA 517 Gr.F steel plates using single pass and multi-pass SMAW process respectively with AWS A5.5 E11018 M(LHF)consumables.Results from previous investigations reveal that,single pass welded joint was found to possess adequate strength,impact toughness and meet the MSTS requirements for ASTM A 537C l.1 steel and the impact toughness of the parent material was superior to that of multi-pass weld zone and heat affected zone(HAZ)at all test temperatures.Reddy et al.[12,13]revealed in their investigation that,SMAW joint efficiency of ASS filler metal deposits was found to be around 72%of its counterpart high-strength low-alloy steel base metal.In addition,the weld deposits exhibited good toughness and better ballistic performance.Lakshminarayanan et al.[14]studied the effect of SMAW,GMAW and GTAW processes on tensile and impact properties of AISI 409M grade steel using duplex stainless steel consumables.They have observed that,GTAW ferritic stainless steel joints have superior tensile and impact properties compared to SMAW and GMAW joints.Bott and Teixeira[15]investigated the influence of multiple post weld heat treatment(PWHT)on mechanical properties of quenched and tempered BS7191 Grade 450EM steel(0.10 wt%C-1.08 wt%Mn)and its ferritic multipass SMA weldments prepared by AWS E-9018 M type electrode.Results revealed that,the base metal was affected byPWHTs and presented a brittle mode of fracture and this tendency tends to increase with increasing numbers of cycles.Further,the weld metal Charpy V-notch toughness showed lesser reduction than the base metal after extended PWHT.

    From the above discussions,it is clear that,welding consumables and welding processes have considerable effect on the performance of quenched and tempered steel joints that are specially used in military applications.Further,the data on tensile and impact properties of multi-pass SMAW Armox 500T joints fabricated by ASS and LHF welding consumables is seldom available in the literature.In order to fill up this knowledge gap albeit partially and in view of importance of this data in the design of structures,the present investigation is oriented towards understanding the effect of these consumables on transverse tensile and impact properties of multi-pass SMAW Armox 500T steel joints in comparison with its base metal.Further,microstructural characterization and fractographic analysis of test materials is also carried out and feasibility of using LHF over ASS welding consumables for joining of Armox 500T structures is suggested.

    2.Experimental details

    2.1.Welding of Armox500T plates-sample preparation

    As received Armox500T steel was water quenched from 1273K and tempered in the range of temperatures 473-773 K.Prior to quenching and tempering the steel was hot rolled at 1523 K.Test plates measuring 150×200×25 mm were carefully machined and butt-welded by shielded metal arc welding(SMAW)with five welding passes using two different electrodes i.e.austenitic stainless steel(ASS)consumable and low hydrogen ferrite(LHF)as shown in Fig.1(a).The welding process parameter details are given in Table 1.Tensile test and charpy impact test samples were wirecut from Armox500T steel plate in rolling direction(hereafter referred to as base metal)and fusion zone of two weldments in the configuration shown in Fig.1(b).The smooth(un-notched)tensile specimens as shown in Fig.1(c)were prepared to evaluate yield strength,UTS and ductility of joints.Notched tensile specimens as shown in Fig.1(d)were prepared to evaluate notch tensile strength and notch strength ratio of the joints.The geometry of charpy impact test samples is as shown in Fig.1(e).Weldments produced by low hydrogen ferrite(LHF)and austenitic stainless steel(ASS)consumable electrodes are referred to as weldment-1 and weldment-2 respectively.In order to ensure the repeatability and consistency,three samples were tested for tension and impact as described in the following sections.

    2.2.Tension test

    The tensile test samples as described under section 2.1 were pulled to fracture at a nominal strain rate of 10-3s-1on a computer controlled Walter+Bai Ag UTM.The load-extension data was converted to engineering stress-strain andtrue stress-true plastic strain(σ-ε)data.

    2.3.Charpy impact test

    The Charpy impact test was performed on an instrumented Zwick-Roell test setup.The experimental setup consists of anvils on which the standard notched specimen(Fig.1(e))prepared as per ASTM,E23[16]is freely supported and a pendulum with a mass of 30kg attached to a rotating arm pinned at the machine body.The span length between the anvils was kept at 40mm.The released pendulum hammer follows a circular trajectory and hits the test specimen at the middle span at a striking velocity of 5.23 m/s thus transferring kinetic energy to it.Energy losses due to bearing friction and air resistance have been ignored while calculating the energy absorbed by the specimen.The impact test data was obtained in terms of load vs.displacement as well as the maximum energy absorbed vs.displacement of the specimen.

    2.4.Microstructural characterization

    The standard metallographic technique was used to prepare the sample for microstructural characterization of test samples.Solution made of 1gm picric acid,5ml HCl and 100ml ethanol was used for etching of base metal for 15s and weldments for 25s.Optical microstructures were taken from semi-automatic microscope(Make:Leica Microsystems)and back scattered SEM images(20kV electron high tension)have been taken from Gemini SEM Σigma(Make:Zeiss).

    3.Results and discussion

    3.1.Microstructural observations

    The back scattered SEM image and optical micrograph of the base metal,weldment-1 and weldment-2 are shown in Fig.2(a-b),Fig.3(a-b)and Fig.4(a-b)respectively.The chemical composition(wt.%)determined by EDX method is given in Table 2.The detailed microstructural observations from SEM and optical microscope are given in the following sections.

    3.1.1.Armox500T steel(base metal)

    Back scattered SEM image of Armox500T steel(Fig.2(a))indicates tempered martensite lath in acicular form with coarse and fine precipitate along with some grain boundaries.On the other hand,the optical micrograph of Armox500T(Fig.2(b))shows the presence of columnar laths and blocks of laths.Pandey et al.[17]and Li et al.[18]have highlighted that,mechanical properties are structure sensitive and they vary with the amount and distribution of phases like retained austenite with martensite.Therefore,in the present work,micrographs with higher magnification were used for closer identification of precipitation.Amount of retained austenitewill reduce the tendencyof cracking.Further,the retained austenite may get transformed to bainite or martensite,which was clearly observed in micrographs of parent materials.Further,optical micrograph is showing white etching wedge-shaped widmanstatten ferrite plates in a matrix quenched to martensite.These plates are coarse(notice the scale)and etch clearly because they contain very little substructure.It is evident through strain hardening and uniformity in strain distribution as seen in Fig.5.

    Fig.1.(a)Schematic of SMAW Joint,(b)Test Samples wire cut from Fusion zone,(c)Tensile test sample,(d)Notched tensile test sample,(e)Charpy impact test sample(All dimensions are in mm).

    Table 1SMAW welding process parameters.

    3.1.2.Weldment-1(processed using LHF consumable electrode)

    Back scattered SEM image and optical micrograph of weldment-1(Fig.3(a-b))indicatessound and clear welding jointwith novoids and micro-cracks.Nucleation and growth tendencies are influenced by chilling action of the parent metal and gives variable grain size(dendritic size)within the weld.The microstructure of weldment-1 is mainly acicular ferrite associated with second phase containing widmanstallen and bainite phase without martensite[10,19-21].This type of microstructure containing large colony size and oriented laths is undesirable in welding because it of fers little resistance to crack propagation[22-25].Presence of low carbon martensite clearly distorted by presence of C content i.e.the axial ratio of its unit cell is almost unity.Under this condition,the system tries to reduce its energy to the maximum level and hence the phase separation occurs at the interfaces having similar atomic spacing.Since,these phases cannot migrate to the grain boundaries;they get separated inside the grains.In addition,the acicular ferrite microstructure(Fig.3(a))also consists of small particles of intergranular nucleated ferrite without any particular orientation.Thus,the resulting small effective grain size and lack of orientation makes acicular ferrite a desirable weld microstructure with excellent mechanical properties compared to weldment-2 as described in the following section.

    3.1.3.Weldment-2(processed using ASS consumable electrode)

    Fig.2.Armox500T base metal(a)Back scattered SEM,(b)Optical micrograph.

    Fig.3.Weldment-1(a)Back scattered SEM,(b)Optical micrograph.

    Table 2Chemical composition(wt.%)of test samples under investigation.

    Back scattered SEM image and optical micrograph of weldment-2(Fig.4(a-b))mainly composed of martensite and partiallyδferrite phase.In general,coarse grained or mixed grain size structure obtained by fast heating and cooling in the weld region causes the properties of the weld region to be completely different from the properties of the parent metal.In addition,residual stresses are developed in the weld region due to high hardness martensite formation resulting from rapid cooling of the weld zone.The grain size changes from coarse to fine with decrease in temperature.Therefore,it is recommended to do annealing for stress-relieving and recrystallization to increase the life of weld region[11,22,26,27].The amount of delta-ferrite was estimated using Cr and Ni equivalents[26]of weld metal chemical composition.Cr and Ni equivalents are found to be 22 and 10.5 respectively and based on the Schaeffler diagram,about 20(vol.%)ferrite was expected to exist in the austenitic matrix.

    Fig.5.(a)Engineering stress-strain and(b)True stress-True Plastic strain.

    3.2.Effect of welding consumables on tensile and impact properties

    Tensile tests were carried out for base metal and weldments as described under section 2.2.The load vs.elongation data was converted to engineering stress-strain and subsequently true stress vs.true plastic strain(σ-ε)data as shown in Fig.5(a)and(b).The strain hardening index,n was estimated using a relation σ=Kεn,whereKis strength coefficient,σ and ε are the flow stress and true plastic strain respectively.The tensile properties such as yield strength,ultimate tensile strength,n,K,%elongation,notch tensile strength,notch strength ratio and joint efficiency of base metal and weldments are presented in Table 3.The UTS or in other words joint efficiency of weldment-1 and weldment-2 was observed to be 41.7 and 30.6%of its base metal respectively indicating the influence of electrode consumable used in SMAW welding process on tensile properties of the test materials.During tensile test,all the specimens(joints)were found to fracture in the weld region only.Thus,it may be assumed that,the UTS data presented in Table 3 are primarily the ultimate tensile strength of the welded joint.From the comparison of results,it is noted that,the use of LHF steel consumable for welding of test materials has enhanced the transverse tensile properties of the joints compared to ASS consumable.

    The microstructure of fusion zone of weldment-1(Fig.3(a))is mainly acicular ferrite associated with second phase containing widmanstallen and bainite phase without martensite[10,19-21].Small interweaving ferrite plates formed within austenite grains transforms during the cooling of low alloy steel weld deposits results in a good combination of strength and toughness.Therefore,this is considered to be desirable structure in low carbon steels in view of its commercial importance[28].Weldment-1 with acicular ferrite in which each lath is divided by high boundary angle displaying fine grain size(typically 1-3μm)[29]usually possesses high tensile strength compared to weldment-2 as given in Table 3.The microstructure of fusion zone of weldment-2(Fig.3(b))shows skeletalδ-ferrite in a plain austenitic matrix.Presence of high Ni(9.45%)in weldment-2 balances the austenitic structure against the formation of martensite[30].

    The load-displacement curves obtained from the instrumented charpy impact test are not smooth because of serrated oscillations present in the data points.Therefore,data points were smoothened by method of moving averages[31].Load vs.displacement and E-nergy vs.displacement curves are plotted as shown in Fig.6(a)&(b)respectively.Results indicated that,in case of weldment-2,the crack initiation at notch occurred before general yielding and in case of base metal and weldment-1,the same occurred at the peak load without general yielding.It is known that,Ni content influences the formation of austenitic phase(high impact toughness)and reduction of the ferrite content(increased brittleness)in the fusion zone compared toweldment-1 possessing verysmall content of Ni(0.03%).It is evident from Table 3 that,impact toughness of weldment-2(9.45%Ni)is 20%more than its counterpart base metal(0.82%Ni);on the other hand,impact toughness of weldments-1(0.03%Ni)is 12%less than that of base metal.

    3.3.Fractrography

    SEM Fractrography images of Armox 500T base metal,weldment-1 and weldment-2 are shown in Fig.7(a-b),Fig.8(a-b)and Fig.9(a-b)respectively.Fractrographic analysis of base metal indicates that,the zone under the notch and the sphere along the edges of the test specimen,only ductile dimple fracture mostly of shear character was present.This type of failure mechanism in the base metal is considered as trans-crystalline ductile.On the other hand,fractrograph of weldment-1 shows mainly ductile fracture with bimodal morphology(combination of coarse and fine dimples)with pores and voids,whereas ductile fracture with uniformly distributed dimples was observed in case of weldments-2.

    Table 3Tensile and Impact properties of test samples under investigation.

    Fig.6.(a)Load vs.Displacement and(b)Energy vs.Displacement.

    Fig.7.SEM Fractrography images of Armox 500T base metal.

    Fig.8.SEM Fractrography images of Weldment-1.

    4.Feasibility of LHF over ASS consumables for joining of Armox 500T steels

    The weldment-2 produced by ASS consumable has a duplex microstructure consisting of delta ferrite in a plain austenitic matrix(Fig.4(a-b))and weldment-1 fabricated by LHF consumable produces an acicular ferrite structure(Fig.3(a-b)).This acicular ferrite microstructure influences superior tensile properties i.e.yield strength,UTS,strength coefficient,notch strength ratio and joint efficiency as presented in Table 3 compared to weldment-2.However,it is interesting to note that,weldment-2 showed superior impact toughness compared to weldment-1.Recent studies on hydrogen induced cracking(HIC)of quenched and tempered armor steel welds with LHFand ASS consumables[32]demonstrated that,the measured diffusible hydrogen level in two consumables is much lower than the maximum level permitted in the boiler pressure vessel codes of the American Society of Mechanical Engineers[33]and further revealed that,there was no evidence of delayed cracking(owing to HIC).Thus,the LHF consumables can be accepted as an alternative to the conventional ASS consumables for joining of Armox 500T steels particularly in defense applications.

    Fig.9.SEM Fractrography images of Weldment-2.

    5.Conclusions

    1)The joint efficiency of weldment-1(processed by LHF)and weldment-2(processed by ASS)was observed to be 41.7 and 30.6%of its base metal respectively indicating the influence of electrode consumable on tensile properties of the joints.

    2)Impact toughness of weldment-2(9.45%Ni)is 20%more than its counterpart base metal(0.82%Ni);on the other hand,impact toughness of weldments-1(0.03%Ni)is 12%less than that of base metal.This indicates that,Ni content influences the impact toughness of test materials.

    3)The failure mechanism in base metal was observed to be transcrystalline ductile.On the other hand,fractrograph of weldment-1 shows mainly ductile fracture with bimodal morphology with pores and voids,whereas in case of weldments-2,ductile fracture with uniformly distributed dimples was observed.

    4)The feasibility study as described under section 4 indicates that,the LHF consumables may be accepted as an alternative to the conventional ASS consumables for joining of Armox 500T steels particularly under tensile loading conditions.However,vice versa is true for impact applications.

    Acknowledgements

    The authors are grateful to Vice Chancellor,DIAT(DU),Pune for permitting to publish this paper in the journal.The authors are also thankful to Director,DMRL,Hyderabad for extending the facilities for conducting a number of experiments.Acknowledgements are also due to scientists and technical staff of Armor division,Metal Joining Group,DMRL,Hyderabad.

    [1]Xu Z,Huang F.Plastic behavior and constitutive modeling of armor steel over wide temperature and strain rate ranges.Acta Mech Solida Sin 2012;25:598-608.

    [2]Banerjee S,Dhar S,Acharya D,Datta Nayak N.Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armor steel.Mater Sci Eng A 2015;640:200-9.

    [3]Barenyi I,Híres O,Liptak P.Changes in mechanical properties of armoured UHSLA steel ARMOX 500 after over tempering.Probl.Mech Armament Aviat Safety Eng 2013;4:7-14.

    [4]Magudeeswaran G,Balasubramanian V,Sathyanarayanan S,Reddy GM,Moitra A,Venugopal S,Sasikala G.Dynamic fracture toughness of armour grade quenched and tempered steel joints fabricated using low hydrogen ferritic fillers.J Iron Steel Res Int 2010;17:51-6.

    [5]Ahmed SR,Agarwal LA,Daniel BSS.Effect of different post weld heat treatments on the mechanical properties of Cr-Mo boiler steel welded with SMAW process.Mater Today Proc 2015;2:1059-66.

    [6]Magudeeswaran G,Balasubramanian V,Reddy GM,Balasubramanian TS.Effect of welding processes and consumables on tensile and impact properties of high strength quenched and tempered steel joints.J Iron Steel Res Int 2008;15:87-94.

    [7]Magudeeswaran G,Sathyanarayanan S,Reddy GM,Moitra A,Venugopal S,Sasikala G,Balasubramanian V.Effect of welding consumables and processes on dynamic fracture toughness(J 1d)of armour grade Q&T steel joints.Iron mak Steel mak 2009;36:50-62.

    [8]Magudeeswaran G,Balasubramanian V,Sathyanarayanan S,Reddy GM,Moitra A,Venugopal S,Sasikala G.Dynamic fracture toughness(JId)behavior of armor-grade Q&T steel weldments:effect of weld metal composition and microstructure.Met Mater Int 2009;15:1017-26.

    [9]Magudeeswaran G,Balasubramanian V,Reddy GM.Hydrogen induced cold cracking studies on armour grade high strength,quenched and tempered steel weldments.Int J Hydrogen Energy 2008;33:1897-908.

    [10]Datta R,Mukerjee D,Mishra S.Weldability and toughness evaluation of pressure vessel quality steel using the shielded metal arc welding(SMAW)process.J Mater Eng Perform 1998;7(6):817-23.

    [11]Datta R,Mukerjee D,Jha S,Narasimhan K,Veeraraghavan R.Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates.J Mater Eng Perform 2002;11:5-10.

    [12]Reddy GM,Mohandas T,Tagore GRN.Weldability studies of high-strength low-alloy steel using austenitic fillers.J Mater Eng Perform 1995;49:213-28.

    [13]Reddy GM,Mohandas T,Papukutty KK.Effect of welding process on the ballistic performance of high-strength low-alloy steel weldments.J Mater Process Technol 1998;74:27-35.

    [14]Lakshminarayanan AK,Shanmugam K,Balasubramanian V.Effect of welding processes on tensile and impact properties,hardness and microstructure of AISI 409M ferritic stainless joints fabricated by duplex stainless steel filler metal.J Iron Steel Res Int 2009;16:66-72.

    [15]Bott IDS,Teixeira JCG.Toughness evaluation of a shielded metal arc carbonmanganese steel welded joint subjected to multiple post weld heat treatment.J Mater Eng Perform 1999;8:683-92.

    [16]Designation ASTM.Standard test methods for notched bar impact testing of metallic materials.1996E23-96.

    [17]Pandey C,Mahapatra MM,Kumar P,Saini N,Srivastava A.Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint.J Manuf Process 2017;28:220-34.

    [18]Li Q,Zhu Y,Guo J.Microstructure and mechanical properties of resistancewelded NiTi/stainless steel joints.J Mater Process Technol 2017;249:538-48.

    [19]Alipooramirabad H,Paradowska A,Ghomashchi R,Reid M.Investigating the effects of welding process on residual stresses,microstructure and mechanical properties in HSLA steel welds.J Manuf Process 2017;28:70-81.

    [20]Pamnani R,Jayakumar T,Vasudevan M,Sakthivel T.Investigations on the impact toughness of HSLA steel arc welded joints.J Manuf Process 2016;21:75-86.

    [21]Verma J,Taiwade RV.Dissimilar welding behavior of 22%Cr series stainless steel with 316L and its corrosion resistance in modified aggressive environment.J Manuf Process 2016;24:1-10.

    [22]Shirmohammadi D,Movahedi M,Pouranvari M.Resistance spot welding of martensitic stainless steel:effect of initial base metal microstructure on weld microstructure and mechanical performance.Mater Sci Eng A 2017;703:154-61.

    [23]Barenyi I,Híres O,Liptak P.Degradation of mechanical properties of armoured steels after its welding.In:Proceedings of international conference of scientific paper;2011.p.845-8.AFASES2011,26-28 May2011,Brasov,Romania.

    [24]Grajcar A,Morawiec M,R′o˙za′nski M,Stano S.Twin-spot laser welding of advanced high-strength multiphase microstructure steel.Opt Laser Technol 2017;92:52-61.

    [25]Sarsilmaz F,Kirik I,Bat? S.Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding.J Manuf Process 2017;28:131-6.

    [26]Schaeffler AL.Constitution diagram for stainless-steel weld metal.2.Schaeffler diagram.Metal progress 1974;106.227-227.

    [27]Srinivasan PB,Muthupandi V,Sivan V,Dietzel W.Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel.J Mater Eng Perform 2006;15:758-64.

    [28]Parmar RS.Welding engineering and technology[M].second ed.New Delhi:Khanna Publishers;2003.

    [29]Rao EJ.Studies on fatigue crack growth behaviour of welded cruciform and butt joints of a low alloy(Q&T)high strength steel with austenitic and ferritic fillers.PhD diss.,Ph.D Thesis.Madras,India:IIT;1998.

    [30]Wang W,Liu S.Alloying and microstructural management in developing SMAW electrodes for HSLA-100 Steel.Weld J 2002;81:132.S.

    [31]Kobayashi T.Analysis of impact properties of A533 steel for nuclear reactor pressure vessel by instrumented Charpy test.Eng Fract Mech 1984;19:49-65.

    [32]Magudeeswaran G,Balasubramanian V,Reddy GM.Effect of welding consumables on hydrogen induced cracking of armour grade quenched and tempered steel welds.Ironmak Steelmak 2008;35:549-60.

    [33]II C-SFA American society of mechanical Engineer's boiler pressure vessel code5.5;2007.p.105-7.

    少妇熟女aⅴ在线视频| 亚洲成人中文字幕在线播放| 91精品一卡2卡3卡4卡| 少妇丰满av| 女人被狂操c到高潮| 美女国产视频在线观看| 色哟哟·www| 国产亚洲精品av在线| 蜜桃亚洲精品一区二区三区| 一级毛片黄色毛片免费观看视频| 国产精品熟女久久久久浪| .国产精品久久| 18禁在线播放成人免费| 亚洲av男天堂| 2022亚洲国产成人精品| 国产高清不卡午夜福利| 欧美xxxx性猛交bbbb| 亚洲怡红院男人天堂| 亚洲激情五月婷婷啪啪| 亚洲成人中文字幕在线播放| 欧美最新免费一区二区三区| 久久久久久久久中文| 久久人人爽人人爽人人片va| 免费看日本二区| 日本一二三区视频观看| 夫妻午夜视频| 午夜福利视频精品| 免费人成在线观看视频色| 身体一侧抽搐| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区| 国产欧美日韩精品一区二区| 国产亚洲5aaaaa淫片| 国产午夜福利久久久久久| 综合色av麻豆| 国产男人的电影天堂91| 男人舔奶头视频| 永久免费av网站大全| 熟女人妻精品中文字幕| 蜜臀久久99精品久久宅男| 好男人视频免费观看在线| 人妻少妇偷人精品九色| 亚洲美女视频黄频| av在线老鸭窝| 亚洲av日韩在线播放| 国产成人一区二区在线| 国产视频内射| 久久韩国三级中文字幕| 午夜视频国产福利| 国产亚洲av片在线观看秒播厂 | 亚洲一级一片aⅴ在线观看| 亚洲av中文av极速乱| 国产av码专区亚洲av| 婷婷六月久久综合丁香| 黄色日韩在线| 三级经典国产精品| 最近手机中文字幕大全| 久久久久久久久大av| 国产高清三级在线| av黄色大香蕉| 淫秽高清视频在线观看| 亚洲无线观看免费| 别揉我奶头 嗯啊视频| 日本av手机在线免费观看| 午夜激情久久久久久久| 日本一本二区三区精品| 亚洲欧美精品专区久久| 97超视频在线观看视频| 午夜福利在线在线| 亚洲国产精品成人久久小说| 18禁在线无遮挡免费观看视频| 网址你懂的国产日韩在线| 国产精品麻豆人妻色哟哟久久 | 一级片'在线观看视频| 搡老乐熟女国产| 日韩欧美三级三区| 一边亲一边摸免费视频| 18禁在线播放成人免费| 日韩强制内射视频| 观看美女的网站| 日韩欧美 国产精品| 久久久久久久久久久免费av| 两个人的视频大全免费| 日本av手机在线免费观看| 精品99又大又爽又粗少妇毛片| 欧美性猛交╳xxx乱大交人| 最新中文字幕久久久久| 国产三级在线视频| 国产91av在线免费观看| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 国产精品精品国产色婷婷| 日本黄色片子视频| 老司机影院成人| 国产成年人精品一区二区| 蜜臀久久99精品久久宅男| 国产一区有黄有色的免费视频 | 久久这里只有精品中国| 插逼视频在线观看| 日韩,欧美,国产一区二区三区| 搞女人的毛片| 亚洲图色成人| 黄片无遮挡物在线观看| 91精品一卡2卡3卡4卡| 2022亚洲国产成人精品| 乱码一卡2卡4卡精品| 亚洲精品乱久久久久久| 国产午夜精品论理片| 国产不卡一卡二| 日韩亚洲欧美综合| 搡女人真爽免费视频火全软件| 国产精品综合久久久久久久免费| 在线观看一区二区三区| 国产v大片淫在线免费观看| 伊人久久国产一区二区| 秋霞在线观看毛片| 啦啦啦啦在线视频资源| 18禁动态无遮挡网站| 久久久久久久久久成人| 国产黄片视频在线免费观看| 中文在线观看免费www的网站| 一级毛片黄色毛片免费观看视频| 男人舔女人下体高潮全视频| 男女视频在线观看网站免费| 少妇熟女欧美另类| 国产精品综合久久久久久久免费| 亚洲美女视频黄频| 精品久久久久久成人av| 中文字幕人妻熟人妻熟丝袜美| 欧美变态另类bdsm刘玥| 免费黄色在线免费观看| 亚洲成人中文字幕在线播放| 汤姆久久久久久久影院中文字幕 | 老女人水多毛片| 国产一区有黄有色的免费视频 | 欧美3d第一页| av网站免费在线观看视频 | 精品久久国产蜜桃| 日韩大片免费观看网站| 在线观看一区二区三区| 欧美激情久久久久久爽电影| 国产 亚洲一区二区三区 | 97精品久久久久久久久久精品| 卡戴珊不雅视频在线播放| 久久久久久久久大av| 国产精品日韩av在线免费观看| 18禁在线播放成人免费| 亚洲aⅴ乱码一区二区在线播放| 久久国内精品自在自线图片| 内地一区二区视频在线| 国产探花在线观看一区二区| 国产亚洲av片在线观看秒播厂 | 一二三四中文在线观看免费高清| 日韩av免费高清视频| 一夜夜www| 亚洲国产精品成人久久小说| 婷婷色av中文字幕| 久久久久久久亚洲中文字幕| 99久久精品一区二区三区| 国产爱豆传媒在线观看| 七月丁香在线播放| 男女国产视频网站| 国国产精品蜜臀av免费| 最近手机中文字幕大全| 亚洲久久久久久中文字幕| 久久久久久久午夜电影| 不卡视频在线观看欧美| 中文字幕亚洲精品专区| 99久国产av精品| av黄色大香蕉| 极品少妇高潮喷水抽搐| 亚洲丝袜综合中文字幕| 午夜老司机福利剧场| 亚洲精品第二区| 欧美成人精品欧美一级黄| 久久久久久久久久久丰满| 免费av观看视频| 黄色日韩在线| 免费看a级黄色片| 国产伦精品一区二区三区视频9| 久久久久久国产a免费观看| 青春草亚洲视频在线观看| 国国产精品蜜臀av免费| 99九九线精品视频在线观看视频| 免费看美女性在线毛片视频| 久久99热这里只频精品6学生| 国产黄色小视频在线观看| 亚洲精品色激情综合| 国产有黄有色有爽视频| 视频中文字幕在线观看| 亚洲国产欧美在线一区| 97在线视频观看| 一级毛片电影观看| or卡值多少钱| 免费不卡的大黄色大毛片视频在线观看 | 国产成人免费观看mmmm| 久久精品夜夜夜夜夜久久蜜豆| 国产黄频视频在线观看| 日韩精品青青久久久久久| 亚洲熟女精品中文字幕| 26uuu在线亚洲综合色| 男的添女的下面高潮视频| 国产av在哪里看| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人爽人人片va| 日韩精品有码人妻一区| 国产精品av视频在线免费观看| 能在线免费观看的黄片| 最后的刺客免费高清国语| 免费观看无遮挡的男女| 国产一区二区亚洲精品在线观看| 日韩强制内射视频| 激情五月婷婷亚洲| 免费高清在线观看视频在线观看| 午夜福利成人在线免费观看| 插逼视频在线观看| 天堂中文最新版在线下载 | 久久久久精品久久久久真实原创| 国产黄片视频在线免费观看| 精品久久久久久久久av| 99九九线精品视频在线观看视频| 国产精品一及| 国产精品人妻久久久影院| 色综合色国产| 人体艺术视频欧美日本| 久久久精品免费免费高清| 免费观看性生交大片5| 国产极品天堂在线| 日韩欧美 国产精品| 国产精品福利在线免费观看| 国产高潮美女av| av在线老鸭窝| 亚洲精品中文字幕在线视频 | 国产精品日韩av在线免费观看| 美女大奶头视频| 亚洲熟女精品中文字幕| 亚洲精品久久久久久婷婷小说| 中文字幕亚洲精品专区| 丝袜喷水一区| 夜夜看夜夜爽夜夜摸| 国产成人freesex在线| 国产av码专区亚洲av| www.av在线官网国产| 久久久久性生活片| 极品教师在线视频| 在线观看人妻少妇| 久久久欧美国产精品| 国产精品国产三级国产专区5o| kizo精华| 欧美人与善性xxx| 夫妻性生交免费视频一级片| 成年免费大片在线观看| 色哟哟·www| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 大陆偷拍与自拍| 亚洲欧美日韩东京热| 欧美性猛交╳xxx乱大交人| 国产av不卡久久| 五月伊人婷婷丁香| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 超碰av人人做人人爽久久| 丰满乱子伦码专区| a级毛色黄片| 男人狂女人下面高潮的视频| 18+在线观看网站| 秋霞在线观看毛片| 亚洲在久久综合| 国国产精品蜜臀av免费| 九九久久精品国产亚洲av麻豆| 搡老乐熟女国产| 五月天丁香电影| 精品午夜福利在线看| 97超碰精品成人国产| 午夜福利网站1000一区二区三区| 亚洲精品国产成人久久av| 午夜激情欧美在线| 欧美激情久久久久久爽电影| 久久人人爽人人爽人人片va| 久久精品久久久久久久性| 看黄色毛片网站| 久久久久免费精品人妻一区二区| 欧美bdsm另类| 精品欧美国产一区二区三| 99热这里只有是精品50| 1000部很黄的大片| 欧美另类一区| 一级av片app| 国产精品不卡视频一区二区| 国产老妇女一区| 美女大奶头视频| 欧美日韩综合久久久久久| 亚洲综合色惰| 国产乱来视频区| 久久久久免费精品人妻一区二区| 亚洲美女视频黄频| 人妻少妇偷人精品九色| 女人久久www免费人成看片| 一级片'在线观看视频| 超碰97精品在线观看| 国产精品久久久久久久电影| 一级二级三级毛片免费看| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 精品亚洲乱码少妇综合久久| 成人毛片60女人毛片免费| 日韩av免费高清视频| 国产亚洲午夜精品一区二区久久 | 精品久久久精品久久久| 国产精品一区www在线观看| 亚洲精品中文字幕在线视频 | 天天一区二区日本电影三级| 久久久久久久午夜电影| 国产成人精品久久久久久| 免费观看在线日韩| 成人亚洲精品一区在线观看 | 亚洲人成网站在线观看播放| 网址你懂的国产日韩在线| 人人妻人人澡欧美一区二区| 日韩欧美三级三区| 欧美一区二区亚洲| 一级毛片久久久久久久久女| 校园人妻丝袜中文字幕| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| 精品国产露脸久久av麻豆 | 欧美xxⅹ黑人| 日韩中字成人| 亚洲精华国产精华液的使用体验| 亚洲久久久久久中文字幕| 日韩视频在线欧美| 美女脱内裤让男人舔精品视频| 水蜜桃什么品种好| 免费看a级黄色片| 亚洲久久久久久中文字幕| 亚洲av国产av综合av卡| 搡女人真爽免费视频火全软件| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 日韩av在线大香蕉| 国产精品久久久久久av不卡| 亚洲乱码一区二区免费版| 神马国产精品三级电影在线观看| 亚洲图色成人| 国产伦一二天堂av在线观看| 国产不卡一卡二| 日韩亚洲欧美综合| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 深爱激情五月婷婷| 国产精品1区2区在线观看.| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影| 国产免费一级a男人的天堂| 午夜福利高清视频| 亚洲国产日韩欧美精品在线观看| 国产在线男女| 久久鲁丝午夜福利片| 赤兔流量卡办理| 22中文网久久字幕| av一本久久久久| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 久久久a久久爽久久v久久| 色网站视频免费| 丰满人妻一区二区三区视频av| 可以在线观看毛片的网站| 嫩草影院精品99| 夫妻性生交免费视频一级片| 亚洲精品aⅴ在线观看| 黄片wwwwww| 亚洲精品日韩av片在线观看| 免费看a级黄色片| 国产成人freesex在线| 国产精品蜜桃在线观看| 一二三四中文在线观看免费高清| 亚洲在久久综合| 中文字幕av在线有码专区| 亚洲性久久影院| 少妇猛男粗大的猛烈进出视频 | 日本熟妇午夜| 1000部很黄的大片| 久久精品夜夜夜夜夜久久蜜豆| 青春草亚洲视频在线观看| 51国产日韩欧美| 乱系列少妇在线播放| 色播亚洲综合网| 日韩视频在线欧美| 精品一区二区三卡| 黄色一级大片看看| 欧美xxⅹ黑人| 国产成人freesex在线| 99热这里只有精品一区| 中文资源天堂在线| 欧美97在线视频| 国产在视频线精品| 日本三级黄在线观看| 亚洲精品成人av观看孕妇| 国产一级毛片在线| 99热这里只有是精品50| 欧美一级a爱片免费观看看| 波多野结衣巨乳人妻| 一区二区三区高清视频在线| 极品教师在线视频| 18禁动态无遮挡网站| 建设人人有责人人尽责人人享有的 | 99久国产av精品国产电影| 亚洲欧美清纯卡通| 国产高清国产精品国产三级 | 日韩三级伦理在线观看| 午夜福利视频精品| 中文字幕亚洲精品专区| 精品久久久久久久久亚洲| 国产高清有码在线观看视频| 免费在线观看成人毛片| 秋霞在线观看毛片| 婷婷色av中文字幕| www.av在线官网国产| 国产精品一二三区在线看| av线在线观看网站| 中国美白少妇内射xxxbb| 亚洲欧美清纯卡通| 国产探花在线观看一区二区| 肉色欧美久久久久久久蜜桃 | 麻豆精品久久久久久蜜桃| 男女那种视频在线观看| 久久久久久久亚洲中文字幕| 亚洲av一区综合| 两个人视频免费观看高清| 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 欧美xxⅹ黑人| 国产人妻一区二区三区在| 亚洲av福利一区| 亚洲精品久久午夜乱码| 免费观看的影片在线观看| 久久韩国三级中文字幕| 亚洲性久久影院| 天天躁夜夜躁狠狠久久av| 久久久久免费精品人妻一区二区| 99视频精品全部免费 在线| 国产乱来视频区| 精品久久久噜噜| 特级一级黄色大片| 热99在线观看视频| 国产69精品久久久久777片| 国产免费福利视频在线观看| 精品久久久久久久人妻蜜臀av| 国产亚洲精品av在线| 日本黄大片高清| 成人特级av手机在线观看| 国产亚洲一区二区精品| 亚洲成人一二三区av| 一级毛片电影观看| 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站 | 国产又色又爽无遮挡免| www.av在线官网国产| 免费av毛片视频| 秋霞在线观看毛片| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 欧美日韩亚洲高清精品| 九九在线视频观看精品| 亚洲丝袜综合中文字幕| 国产免费一级a男人的天堂| 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱| 久久久国产一区二区| 天堂俺去俺来也www色官网 | 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 观看美女的网站| 国产成人精品一,二区| 久久99热这里只有精品18| 天堂俺去俺来也www色官网 | 亚洲美女视频黄频| 国产美女午夜福利| 色5月婷婷丁香| 亚洲精品久久久久久婷婷小说| 精品久久久久久久末码| 亚洲av中文字字幕乱码综合| 国产精品国产三级国产av玫瑰| 能在线免费观看的黄片| 国产精品一区二区性色av| 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 国产乱人视频| 51国产日韩欧美| 国内精品美女久久久久久| 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 午夜福利网站1000一区二区三区| 天天躁日日操中文字幕| www.av在线官网国产| 免费av毛片视频| 国产精品久久久久久久久免| 91av网一区二区| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 我要看日韩黄色一级片| 国产在线一区二区三区精| 国产黄色免费在线视频| 色视频www国产| 国产黄片美女视频| 18禁在线播放成人免费| 中文资源天堂在线| 亚洲av成人av| 春色校园在线视频观看| 亚洲欧美一区二区三区黑人 | 全区人妻精品视频| 黄色一级大片看看| 床上黄色一级片| 美女被艹到高潮喷水动态| 不卡视频在线观看欧美| 日日啪夜夜撸| 黄片wwwwww| 高清av免费在线| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 亚洲人与动物交配视频| 在线a可以看的网站| 狂野欧美激情性xxxx在线观看| 啦啦啦韩国在线观看视频| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 一区二区三区高清视频在线| 在线观看免费高清a一片| 国产成人精品福利久久| 国产av不卡久久| 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花 | 婷婷色av中文字幕| 最近中文字幕2019免费版| 青青草视频在线视频观看| 国产综合懂色| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人综合色| 精品亚洲乱码少妇综合久久| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 亚洲在久久综合| 久久综合国产亚洲精品| 老女人水多毛片| 亚洲精品成人久久久久久| 亚洲精品456在线播放app| 纵有疾风起免费观看全集完整版 | 成人漫画全彩无遮挡| 国产男人的电影天堂91| 婷婷色av中文字幕| .国产精品久久| 国产视频首页在线观看| 51国产日韩欧美| 岛国毛片在线播放| 日韩不卡一区二区三区视频在线| 91精品国产九色| 亚洲av成人精品一二三区| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 亚洲四区av| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| av卡一久久| 大陆偷拍与自拍| 亚洲av电影在线观看一区二区三区 | 少妇高潮的动态图| 国产精品女同一区二区软件| 亚洲国产日韩欧美精品在线观看| 丰满乱子伦码专区| 午夜免费观看性视频| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看| 观看美女的网站| 欧美人与善性xxx| av在线天堂中文字幕| 免费大片黄手机在线观看| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 国产精品女同一区二区软件| 国产成人一区二区在线| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 高清在线视频一区二区三区| 欧美另类一区| 欧美日韩一区二区视频在线观看视频在线 | av国产免费在线观看| 国产探花在线观看一区二区| 激情 狠狠 欧美| 国产高清不卡午夜福利| 国产淫片久久久久久久久| 亚洲怡红院男人天堂| 日韩电影二区| 六月丁香七月| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲av天美| 国产精品久久久久久精品电影| 成人欧美大片| 最后的刺客免费高清国语| 精品人妻视频免费看| 久久精品熟女亚洲av麻豆精品 | 日韩成人伦理影院| 嫩草影院新地址| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 九九久久精品国产亚洲av麻豆|