• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area

    2018-07-04 11:28:12PanfengLiuXianrongLuoMeilanWenJialiZhangWenGaoFeiOuyangXuchuanDuan
    Acta Geochimica 2018年3期

    Panfeng Liu?Xianrong Luo?Meilan Wen?Jiali Zhang?Wen Gao?Fei Ouyang?Xuchuan Duan

    1 Introduction

    Electrogeochemical prospection,one of the deep-penetration geochemical exploration approaches,effectively works in pinpointing concealed deposits or ones that are hard to locate with other prospecting methods.It is based on a theory proposed by Safronov N.I.,a Soviet researcher,who suggested that an artificial electric field could act on orebodies deeply buried in the Earth and force metal ions contained within these orebodies to transport them to surface.The theory,together with its technology application on mineral exploration,was documented and published first in 1973(Ryss and Goldberg 1973).In 1978,Soviet began to use the method in exploration for Cu–Ni,W–Mo,and gold ores buried at a depth between 600 and 800 m,and also for oil and gas reservoirs of 2000–3000 m deep(Rysset al.1990).It wasnot until 1985 that the method had been introduced to other countries,including India,Canada,the U.S.,and Australia(Shmakin 1985;Salapatra et al.1986;Govett and Atherden 1987;Ryss and Siegel 1992;Smith et al.1991,1993).Later,U.S.expert Leinz R.W.and Israeli scholar A.Levitski made improvements to the extraction device of the method and proposed the socalled ‘‘NEO–CHIM’’and ‘‘Dipole CHIM’’approaches,respectively,to better apply these method to ore deposit survey(Leinz and Hoover 1994,Leinz et al.1998;Levitski et al.1996).

    In the late 1970s,several Chinese researchers,including Fei Xiquan and Xu Bangliang,blazed a trail in electrogeochemical exploration in China by introducing the concept into the country and publishing papers on the issue in Chinese journals including Geophysical and Geochemical Exploration and Geology and Prospecting(Fei 1984;Xu et al.1984).Since then,and especially after 2000,electrogeochemical exploration has been applied and advanced in China,gradually forming a technology featuring lowvoltage,dipole,and independent power supply.The technology can be used to find ore deposits or perform assessment of the deposits through metal ion anomalies related to ore deposits.It relies upon an external electric field to move metal ions that were already transported to the Earth’s surface to assigned extraction electrodes,and then collects and analyzes the electrolytes on the adsorbing materials of the electrodes(Luo et al.2002a,b;Kang and Luo 2003).The technology was applied to various regions covered by dry deserts,forests,prairies,and swamps,with positive results achieved(Chen et al.2007;Shu et al.2009;Wang et al.2011;Yan et al.2014).This paper documents an electrogeochemical exploration test in the Bangzhuoma gold deposit covered by alpine meadow in Tibet Plateau and compares the results(sections and planes)with that of conventional soil measurements to further demonstrate the reliability and efficiency of the technology.

    The study area is located in a high mountain region with an average elevation of 4800 m,in Longzi County,Shannan Prefecture of Tibet Automonous Region,China.It is higher in the north and west and lower in the south and east.Featuring low temperature,wide-spreading tundra,an annual precipitation of 297.41 mm and less evaporation,the area is mostly covered by 10–20 cm-thick sods of welldeveloped roots(Fig.1).

    The area sits on the Himalayan block at the southern part of the Tibet Plateau and the central-eastern part of the Himalayan Tethys orogenic belt.It is defined to the north by the Yarlung Zangbo River structure zone(Fig.2a)(Zheng et al.2004;Wang et al.2013).The area contains complicated structures as a result of intensive magmation and metamorphism asaresult of the Himalayan orogeny.It is a second order tectonic unit of the Kangma-Longzi fold belt and sandwiched by an extension-detachment fault and the Gudui-Longzi fault.The Yelaxiangbo metamorphic core complex developed in the north of the area is the Miocene binary mica and monzonitic granite.The Zhegu-Ridang fold thrust bundle in the south of the area contains Late Cretaceous diabase dyke swams,which provide partial heat source for metallogenic thermal fluidsrising along faults,folds or other tectonic structures(Wang et al.2013).The intensive collision orogenesis between the Himalayan Block and the Gangdise Block and the subsequent largescale extension and detachment are regarded as important factors behind the formation of the Zhegu Au–Sn deposit in the western part of the area and the Mazala gold ore and Zhaxikang lead zinc ore in the southern part of the area,now an important Au–Sn metallogenic belt in the Tibet Plateau(Fig.2b)(Du et al.1993;Nie et al.2005,2006).

    There is only one strata-the Nieru Formation of the Triassic(T3n)—outcropped in the study area.In the northwestern and central southern parts,the second member of the Formation(T3n2)contains dark grey to black layers of sericite silty slates with some laminas of greywacke;in the central part,the third member of the Formation(T3n3)has wide-spreading grey-dark grey silty sericite slates interbedded with medium-thick fine-grained metamorphic feldspar and quartz greywacke;and the fourth member of the Formation(T3n4)also exposesa little as grey silty sericite slates interbedded with thick-massive layers of metamorphic feldspar and quartz greywacke.Faults in the area mostly extend in nearly east-westward and north-westward directions.The former is represented by the Sederenjin-Duolazeri fault(F2)—a low angle thrust nappe structure—and a series of secondary faults(F4,F6),which are the main ore-controlling structures and spatial location to most mineralization alteration zonesin the area.The latter is represented by the Xinna fault,a trust fault(F5)(Dong et al.2012;Chen et al.2016).Nine gold veins and five gold ore bodies were delineated in the Bangzhuoma mining area.The major veins are③,④and⑤veins with strike length ranging between 900 and 1300 m and Au grade between 1.02×10-6and 5.47×10-6.They occur mainly in fractured alteration zoneswith altered sandstone/quartz veins.The mineralization types include arsenopyritization,pyritization,and ferritization,and the alterationtypes are largely silicification and carbonatization(Chen et al.2016).

    Fig.1 Geomorphic features of areascovered by alpinemeadow

    2 Method and technology

    2.1 Sampling

    A prospecting study wascarried out in areaswith available prospecting lines with a total length of 1000 m and 170°strike angle in the Bangzhuoma mining area and its periphery.Ten sampling lines labeled from 001 to 010 were laid out.Sampling was performed every 40 m inside the mining area and every 200 m×40 m in the periphery.For sampling points with basement crops,sampling was deviated east-westward normally less than 10 m from being perpendicular to the sampling lines.Electrogeochemical samples as well as soil samples were taken at each sampling point.

    For electrogeochemical extraction,we used the dipole CHIM extraction device with independent power supply developed by Buried Ore Deposit Research Institute of Guilin University of Technology(Fig.3).The extraction processlasted for 48 h with 1000 mL of extracting solution at a voltage of 9 V.Electrodes were buried in B layer(the illuvium horizon,Fig.3)with a depth of 30–50 cm.Extraction electrodes were placed 100 cm apart,and extraction material was treated in high-density foamed plastic.The soil sampling depth was the same as the electrodes,and samples were sieved with a 20 mesh sifter.

    2.2 Analysis method

    Electrogeochemical samples(extracted with foamed plastic)and soil samplesweretested with a U.S.-made X-series inductively coupled plasma mass spectrometer in the Test Center of China Nonferrous Metals(Guilin)Geology and Minging Co.,Ltd.

    The test was carried out with the following conditions:ICP power:1300 W,cooling air flow rate(Ar):13.0 L/min,auxiliary air(Ar)flow rate:0.90 L/min,atomization air(Ar)flow rate:0.76 L/min,sampling cone size(Ni):1.0 mm,skimming cone size(Ni):0.7 mm,resolution:05–0.1 aum,test mode:peak jumping,analysis mode:pulse counting,sampling depth:60 Step,scan times:50,dwell time:10 ms,sample uptake rate:1.0 m,and quality channel number:3(Shi et al.2009).

    3 Results

    3.1 Section comparison

    Table 1 lists test results of electrogeochemical and soil samples taken from layers above the exploratory lines in Bangzhuoma mining area.Figure 4 shows anomalies of each element with corresponding sections.

    1. Original data comparison shows order of magnitude difference between test data of the two kinds of samples.For instance,the electrogeochemical sample measurement yielded the maximum As value of 32.91μg/g,which was equal to the minimum value of As for soil sample measurement.The maximum As value for the soil sample was as high as 85.71μg/g.Analyses of curve shapes and angles indicate that electrogeochemical measurements produce more single-or multiple-peak anomalies with local trapezoid shapes and can be used to reveal the locations of shallow veins and their extension directions.Meanwhile the soil sample measurements yielded mostly single peaks,revealed only the locations of shallow veins(no response to deep veins).The method also appeared to be easily affected by secondary actions.

    Fig.2 Simplified mapsof relevant geotectonic structures and thestudy area.a Approximate location of relevant geotectonic elements,b outline map of structure elements in the study area,c outline map of the mining area.1.Quaternary glacier,alleviation and lacustrine deposits,2.cretaceous marine clastic rocks,3.Jurrasic marine clastic rocks,4.second to fourth members of the Upper Triassic,5.binary and monzonitic granite,6.quartz diorite,7.sillite,8.diorite 9.extension-detachment fault,10.ductile shear zone,11.plate stylolite,12.fault line,13.deduced fault line,14.geological boundary,15.river,16.revealed veins and their serial numbers,17.exploratory trench,18.location of the study area

    2. Analyses of correspondence between anomalies and locations of veins showed that samples from No.8 to No.14 prospecting lineshad their elements Au,Ag,As and Bi corresponding well to the locations of cropped veins,samples from No.3 to No.5 prospecting lines had their Au and Ag indicating the locations of veins buried in deeper layers,and samples from No.17 to No.19 prospecting lineshad their Biand Mo providing clues by forming three element combinations through giving signals of Au–Ag,Au–Ag–As–Bi,and Bi-Mo perpendicular to veins.Only soil samples from No.10 to No.14 prospecting lines were measured to have elements of Au,Ag,As,Bi and Mo,corresponding well to outcropped shallow veins,and the anomalies had smaller widths than those in the electrogeochemical samples.

    Fig.3 Diagrams showing sampling methods and the dipole CHIM extraction device with independent power supply.1.Controllable power source,2.extraction electrodes,3.connecting wire,4.adsorptive foamed plastic material,5.fixed wire,6.filter paper,7.graphite carbon rod

    Table 1 Test results of electrogeochemical and soil samples above the No.4 prospecting line in Bangzhuoma mining area

    Fig.4 Comparison of sections derived from measurements of electrogeochemical and soil samples.1.Quaternary,2.second member of the Nieru Formation of the Upper Triassic,3.veins,4.exploratory trench and serial number,5.perforation and serial number,6.electrogeochemical anomalies,7.soil measurement anomalies,8.background value line

    3.2 Plane comparison

    Section comparisonscan be used to assessthe effectiveness of exploration and determine indicative element combinations through aspects of element content and curve shape.However,information such as element characteristics,the abnormal spatial distribution,and intensity and range of elements,is acquired through statistics of element content and abnormal element planes based on plane comparison.

    3.2.1 Statistic comparison of electrogeochemical and soil measurements

    Statistics of geochemical elements can be analyzed and used as indicators to ore deposits.Table 2 lists statistics of soil and electrogeochemical measurementsin theperiphery of Bangzhuoma mining area.It shows that:

    1. Background values are important indicators of geochemical anomalies.However,element contentsof the samples are sometimesextremely high or low,causing the background values for both measurements to be lower than the average element content values.

    2.The difference between the maximum and minimum values was more obvious in electrogeochemical samples than in soil measurements.For example,the content of Au in electrogeochemical samples ranged between 0.03 and 105.40μg/g,which was 3515 times apart.In contrast,the soil samples had an Au content rangeof 1.2 and 119μg/g,only 99 timesapart between the maximum and the minimum.The maximum and minimum content values of element Bi in electrogeochemical samples(56 times)were also many more times apart than that in soil samples(5.8 times),indicating a higher dispersion degree in the former samples than the latter,thus better representing the distribution of elements in the area.

    Table 2 Statistics of element content in electrogeochemical and soil samples from the periphery of the Banzhuoma mining area

    3. The average element content values of electrogeochemical sampleswere orders of magnitude lower than that of soil measurements,which was consistent with the results of section analyses of the two kinds of samples.To reduce the effect of measurement scale and dimension upon the differentiation of elements in the area,we calculated the differentiation coefficients(standard deviation/averagevalue)of each element and listed them in Table 2.From Table 2 and Fig.5,we have differentiation coefficients of elements for electrogeochemical and soil samples in an ascending orders of Ag(0.67)<Mo(0.85)<Bi(0.97)<Au(1.51)<As(2.35)and Bi(0.33)<Mo(0.42)<Ag(0.87)<Au(1.03)<As(1.87),respectively.The differentiation coefficients of Au and As for both kindsof sampleswerebigger than 1,which meant high differentiation and possible mineralization of gold in certain parts of the area.The differentiation coefficients of Ag,Mo and Biin electrogeochemical samples ranged between 0.5 and 1,meaning medium differentiation.Meanwhile those in soil samples were all less than 0.5,indicating low differentiation or no differentiation at all.This shows that electrogeochemical samples yield more differentiated element results.

    Fig.5 Comparison of element differentiation coefficients of electrochemical and soil samples from the periphery of Bangzhouma mining area

    3.2.2 Comparison of plane anomalies in electrogeochemical and soil measurements

    To better compare the plane anomalies of electrogeochemical and soil measurements,we used ‘‘single-point anomaly contrast value’’of 1.2 and 2.5 as contour line to map the anomalies with the universal Kring method.

    The single-point contrast value(K,dimensionless)refers to the ratio of the original value to the background value of certain elementsin each sampling point.With K larger than 1,we may presume relative enrichment of elements,and with K less than 1,we may infer relative depletion of elements(Zhang et al.2015;Li et al.2016).The value is therefore used to indicate the enrichment or depletion of certain elements.It may be represented by an equation of K=C/C0,in which K is the single-point contrast value,C is the content of certain element,and C0is the background value of certain element.

    Anomaly contrast shows how clear an anomaly is.It can be used not only as an anomaly marker but also to eliminate interference caused by background value differences and to compare anomaly scale and enrichment degree of different elements in samples.Figures 6 and 7 are plane graphs of anomaly contrast of elements Au,Ag,As,Mo and Bi,derived from soil and electrogeochemical measurements.It can be concluded from the figures that:

    1. It is topographically higher in the south than the north and the east than the west within the study area.A deep V-shaped gully with running water of near E–W direction winds in the north and two V-shaped gullies of near S–N direction run in the south.Soil measurement anomalies are mostly from the lower northwest part(probably affected by the topography).The anomalies of elements Au,Ag and As occupy larger areas and are higher in values.However,the correspondence between these anomalies and revealed veins are not as strong due to secondary actions and topography.Elements Mo and Bi generate small-area anomalies and low values and thus are worthless as indicators.

    Fig.6 Plane maps of contrast anomalies of elements from soil measurements.1.Third to fourth members of the Upper Triassic Nieru Formation,2.diabase vein,3.exploratory trench,4.gold grade,5.geological boundary,6.river,7.vein,8.sampling point,9.1.5 isoline of contrast anomalies,10.2.5 isoline of contrast anomalies

    Fig.7 Plane maps of electrogeochemical contrast anomalies of elements in the study area.1.Third to fourth members of the Upper Triassic Nieru Formation,2.diabasevein,3.exploratory trench,4.gold grade,5.geological boundary,6.river,7.vein,8.sampling point,9.1.5 isolineof contrast anomalies,10.2.5 isoline of contrast anomalies

    2.Anomalies of elements derived from electrogeochemical sample measurements have several high-value areas,showing no clear sign of being affected by topography.Elements Au and Ag not only generate anomalies matching well with revealed veins but also show significant anomalies along lines 003 and 004 and in parts of lines 008 and 009.Element As yields large-area anomalies and higher anomaly values,with anomalies along line 004 corresponding well with revealed veinsand synchronized with(weaker)anomalies of elements Mo and Bi at the third and fourth members of the Nieru Formation at the south part of the line004.Elements Ag,Mo,and Biyield anomalies simultaneously at measure points 14–17 of lines 002,003 and 004;elements Au,As,and Biyield anomalies at measure points 10–15 of lines 008 and 009.

    3.The Au grade changesobviously in measurepointsand in ongoing exploratory trenches of known gold mineralization and revealed veins(Fig.7)in the study area.The grade rises from 3.64 to 4.78 g/t from measure points D1 to D2 and is 0.29 and 0.23 g/t for two veins within TC070,respectively.Enrichment of Au is more obvious in TC027,where the Au grade is 0.58 g/t.

    Fig.8 Ideal model of electrogeochemical anomaly formation in alpine meadow-covered areas

    4 Discussions

    Element anomalies derived from soil measurements are mostly single peaks and easily affected by secondary actions.They are only good at defining the locations of shallow veins,showsno obviousanomaliesto deeper ones.Au anomalies are the most common ones in the plane,corresponding well to revealed veins.Ag and Asanomalies are similar.Mo and Bi anomalies are rare and are only present in outcropped veins,indicating a limitation of applying soil measurements in the area.

    In contrast,electrogeochemical measurements generate high-to low-temperature anomaly associations of Bi-Mo,Au–Ag–As–Bi,and Au–Ag with vertical veins with obvious zonation.Combining the facts that gold mineralization and arsenopyrite mineralization occur in the second member of the Nieru Formation in the Upper Triassic(T3n2),we suggest that the Formation contains a set of semi-pelagic slope flysch association of dark black–black laminated silt-slate with high content of Au associated with unevenly distributed high-grade Ag(4.25×10-6).We therefore decided to use Au and Ag as major electrogeochemical indicators and As,Bi,and Mo as minor electrogeochemical indicators for defining the locations of veins in the area.In electrogeochemical plane maps,contrast anomalies of elements Au,Ag,Mo,and Bi all show corresponding anomalies to known vein,indicating reliability of the method and better results than that of soil measurements.The Au contrast anomaly with high contrast value is found at the south of lines 002 and 003.Together with synchronized anomalies of elements As,Mo,and Bi in central parts of adjacent lines 004 and 005,they form element combination anomalies.Integrating actual mineralization at the measurement points and gold enrichment at TC026 and TC067,we suggest tendency of downward extension of the vein and the possibility of deeper buried ore bodies.While synchronized anomalies of elements Au,Ag,As,Mo,and Bi in central parts of lines 008 and 009 and Au grade rising from 0.23 g/t at Tc070 to 0.58 g/t at TC027 suggest mineralization in shallow layers in the study area.

    The above discussion verifies the applicability of electrogeochemical method in the study area for its effective formation and extraction of anomalies.The electrogeochemical anomalies are generated mainly through dissolution of mineralization bodies, including (1)electrochemical dissolution caused by primary battery as a result of potential difference between different minerals,(2)re-dissolution caused by temperature build-up or surface area enlargement during magmatic evolution,and(3)tectonic pre-solution.Among them,electrochemical dissolution is the most common process,during which an ionic halo is produced around mineralization bodies and then transported upwardly and continuously through diffusion,permeation,evaporation,and soil capillarity,to near surface,where it there unloads the metal ions it has carried all the way up when encountered by some geochemical barriers(such as all kinds of secondary soluble salts,clay,oxides,organic matter,and colloidal substance).The electrogeochemcial method utilizes the external electric field to transport active metal ions to assigned extraction electrodes.By collecting and analyzing electrolytes on adsorbing materials of the electrodes one can discover ion anomaliesconnecting with information of oredeposits.The study area is a very suitable candidate for applying this method,for it has moderate rainfall,high altitude,low air pressure,and a well-developed vegetation root system,all of which are favorable for ion halo migration.The overlying lamina of carbonaceous sandy slate in the area also provides a closed environment for the formation of electrogeochemical anomalies.It is therefore suggested that the establishment of an ideal electrogeochemical anomaly mode for the study area is a necessary theoretical preparation for exploring buried gold deposit in similar areas covered by alpine meadow(Fig.8).

    5 Conclusions

    1.The electrogeochemical method works more effectively in ore deposit exploration than soil measurement in the study area.It generates data that are more representative,especially in places with complicated topography and no obvious tectonic regions.

    2.By combining the fact that electrogeochemical anomalies yield low-to high temperature element combinations of Bi–Mo,Au–Ag–As–Bi,and Au–Ag along vertical veins with geological features of ore deposits in the study area,we use elements Au,Ag,and As as electrogeochemical indicators,and elements Bi and Mo as auxiliary indicators of ore deposits.Apart from revealed veins corresponding well to electrogeochemical anomalies,we also observed anomalies at the southern part of lines 004 and 005 and the central part of lines 008 and 009.Based on the observation of Au grade changing from lean to rich,we suggest the possibility of buried ore deposits in the study area.

    3. A three-stage electrogeochemical ideal model was established to guide buried ore deposit exploration in regions similar to this alpine-meadow-covered area,which features moderate rainfall,high altitude,low air pressure,well-developed vegetation and roots as well as an Upper Triassic Nieru Formation carbonaceous sandy slateasoverburden.The three stagesrefer to ore body dissolution,mineralogenetic particle migration,and mineralogenetic particle unloading.

    AcknowledgementsThis study was supported by the National Key Research and Development Program of China (Grant No.2016YFC0600603).

    Chen XQ,Luo XR,Wang XH et al(2007)Deep penetration geochemistry survey for the gold mine prospecting in Hulalin,inner Mongolia.J Guilin Univ Technol 27(04):480–483(in Chinese with English abstract)

    Chen DT,Chen W,Hu KW et al(2016)Geological characteristics and geochemical anomaly of Bangzhuoma gold deposit in Longzi County,Tibet.Gold 37(08):25–28(in Chinese with English abstract)

    Dong FQ,San J,Wang F et al(2012)Geological characteristics and genesis of gold antimony in Longzi-Gudui area,Tibet.J Sichuan Geol 32(S1):24–27+32(in Chinese with English abstract)

    Du JS,Feng XL,Chen FZ et al(1993)The Geology of She gold deposits in Xizang(Tibet).Southwest Jiaotong University Press,Chengdu,pp 150–177(in Chinese with English abstract)

    Fei XQ(1984)The result of experiment with method of partial metal extraction in several mining areas.Geophys Geochem Explor 8(3):162–166(in Chinese with English abstract)

    Govett GJS,Atherden PR(1987)Electrogeochemical patterns in surface soils-detection of blind mineralization beneath exotic cover,Thalanga,Queensland,Australia.J Geochem Explore 28:201–218

    Kang M,Luo XR(2003)Improvement and applied results of geoelectrical chemistry methods.Geol Explor 39(05):63–66(in Chinese with English abstract)

    Leinz RW,Hoover DB(1994)Ideal CHIM with newly-developed Neo-CHIM electrode.Explore 83:10–15

    Leinz RW,Hoover DB,Fey DL,Smith DB,Patterson T(1998)Electrogeochemical sampling with NEO-CHIM results of tests over buried gold deposits.JGeochem Explore 61:57–86

    Levitski A,Filanovski B,Bourenko S,Sannenbaum E,BarAm G(1996) ‘Dipole’CHIM:concept and application.J Geochem Explore 51:101–114

    Li H,Xu GZ,Liu HZ et al(2016)Draw geochemical exploration anomaly map by the contrast method. Mod Min 06:158–159+162(in Chinese with English abstract)

    Luo XR,Chen SM,Du JB,Hu YH(2002a)Study of geoelectrochemical method in search for different hidden deposits.J Mineral Petrol 22(04):42–46(in Chinese with English abstract)

    Luo XR,Wang GQ,Du JB,Hu YH(2002b)The Geo-electrochemical anomaly feature mechanism and finded ore extrapolate for stibium deposit.Geol Explor 38(02):59–62(in Chinese with English abstract)

    Nie FJ,Hu P,Jiang SH et al(2005)Type and temporal–spatial distribution of gold and antimony deposits(prospects)in Southern Tibet,China.Acta Geol Sin 79(03):373–385

    Nie FJ,Hu P,Jiang SH et al(2006)40Ar–39Ar isotope age dating on biotite samples of two monzogranite occurring in the Qiongduojiang area,southern Tibet and their geological significances.Acta Petrol Sin 22(11):2704–2710

    Ryss YS,Goldberg IS(1973)The method of partial extraction of metals(CHIM)for exploration of ore deposits.Methods Tech Explore 5-19

    Ryss YS,Siegel HO(1992)Some results of applying Russian geoelectrochemical methods in Canada.Scintrex Ltd.,Concord

    Ryss YS,Goldberg IS,Vasilyeva VIet al(1990)A feasibility of geoelectrochemical technique application in exploration for oil and gas.Sov Geol 6:28–33(in Russian)

    Salapatra AK,Salukdar RC,De PK(1986)Electrogeochemical technique for exploration of base metal sulfides.J Geochem Explore 25:389–396

    Shi YH,Yang ZP,Huang JH et al(2009)Determination of trace elements in electrical absorption prospecting polyform sample by inductively coupled plasma mass spectrometry.Spectrosc Spectral Anal 29(06):25–28(in Chinese with English abstract)

    Shmakin BM(1985)The method of partial extraction of metals in a constant current electrical field for geochemical exploration.JGeochem Explore 23:27–33

    Shu LX,Luo XR,Wu MSet al(2009)Geo-electrochemical method for polymetal ore deposit prospecting in arid desert area—taking Yindonggou exploration of Baiyin as an example.JGuilin Univ Technol 29(04):439–444(in Chinese with English abstract)

    Smith DB,Hoover DB,Sanzolone RF(1991)Development and testing of the CHIM electrogeochemical exploration method.In:USGS research on mineral resources,program and abstracts.U.S.Geological Survey Circular,1062,pp 74–75

    Smith DB,Hoover DB,Sanzolone RF(1993)Preliminary studies of the CHIM electro geochemical method at the Kokomo Mine,Russel Gulch,Colorado.JGeochem Explore 46:257–278

    Wang BH,Wen ML,Ou Yang F et al(2011)Features of geoelectrochemical anomaly and Pb–Zn–Ag exploration forecast in Plains—Taking Hardattolgoi Lead–Zinc–Silver polymetallic deposit of inner Mongolia as an example.JGuilin Univ Technol 31(02):192–197(in Chinese with English abstract)

    Wang LQ,Pan GS,Ding Jet al(2013)Regional geology of Xizang autonomous region.Geological Publishing House,Beijing

    Xu BL,Fei XQ,Wang HP(1984)A new kind of gold ore prospecting method—electrochemical gold sampling test.Geol Explor 10:55–59(in Chinese with English abstract)

    Yan W,Luo XR,Wen ML et al(2014)Prospecting for concealed copper polymetallic deposit by geo-electrochemical method in forest and marsh covered area—a case study in Tong shan copper deposit, Heilongjiang. J Guilin Univ Technol 34(03):439–445(in Chinese with English abstract)

    Zhang YJ,Luo XR,Duan HC et al(2015)Application of geo-electro chemical prospecting method for concealed gold deposit in Liushaogou district of West Qinling Origen.J Guilin Univ Technol 35(03):473–481(in Chinese with English abstract)

    Zheng YY,Su X,Tian LM et al(2004)Mineralization,deposit type and metallogenic age of the gold antimony polymetallic belt in the eastern part of north Himalayan.Earth Sci 38(01):108–118(in Chinese with English abstract)

    狠狠婷婷综合久久久久久88av| 欧美国产精品va在线观看不卡| 啦啦啦视频在线资源免费观看| 丝袜美足系列| 精品卡一卡二卡四卡免费| 一边摸一边抽搐一进一出视频| 国产精品久久久久久久久免| 高清在线视频一区二区三区| 国产xxxxx性猛交| 亚洲精品久久成人aⅴ小说| 蜜桃在线观看..| 精品少妇黑人巨大在线播放| 国产一区二区三区综合在线观看| 国产又爽黄色视频| 亚洲av电影在线进入| 香蕉国产在线看| 国产视频首页在线观看| 最近的中文字幕免费完整| 巨乳人妻的诱惑在线观看| 色网站视频免费| 免费在线观看黄色视频的| 在线观看国产h片| 美女国产高潮福利片在线看| 97在线人人人人妻| 色网站视频免费| 亚洲美女视频黄频| 热re99久久国产66热| 老汉色∧v一级毛片| 另类亚洲欧美激情| 久久免费观看电影| 日本猛色少妇xxxxx猛交久久| 一本大道久久a久久精品| 人人妻,人人澡人人爽秒播 | 熟女av电影| 满18在线观看网站| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 日韩视频在线欧美| 51午夜福利影视在线观看| 久久这里只有精品19| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 欧美变态另类bdsm刘玥| 最近最新中文字幕大全免费视频 | 国产片内射在线| 9热在线视频观看99| 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 最近最新中文字幕免费大全7| netflix在线观看网站| 自线自在国产av| 亚洲,欧美精品.| 又大又爽又粗| 国产人伦9x9x在线观看| 国产片特级美女逼逼视频| 国产精品久久久av美女十八| 欧美97在线视频| 天堂中文最新版在线下载| 色吧在线观看| 高清欧美精品videossex| 免费黄频网站在线观看国产| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 老司机影院成人| 亚洲欧美色中文字幕在线| 一级毛片黄色毛片免费观看视频| 大片电影免费在线观看免费| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看| 街头女战士在线观看网站| 国产人伦9x9x在线观看| 妹子高潮喷水视频| 九草在线视频观看| 国产精品秋霞免费鲁丝片| 午夜福利视频精品| 国产亚洲精品第一综合不卡| av有码第一页| 亚洲成色77777| 黄色毛片三级朝国网站| 91精品国产国语对白视频| 久久久久精品性色| 黑人巨大精品欧美一区二区蜜桃| 久久av网站| 人人妻人人爽人人添夜夜欢视频| 日韩一区二区视频免费看| 亚洲少妇的诱惑av| 女人被躁到高潮嗷嗷叫费观| 国产成人欧美| 免费黄网站久久成人精品| 新久久久久国产一级毛片| 亚洲国产看品久久| 精品一品国产午夜福利视频| 人妻 亚洲 视频| 91精品三级在线观看| 亚洲av日韩精品久久久久久密 | 精品亚洲乱码少妇综合久久| 亚洲在久久综合| 亚洲一卡2卡3卡4卡5卡精品中文| 国产在视频线精品| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 激情五月婷婷亚洲| 999精品在线视频| av有码第一页| 国产男女内射视频| 国产精品免费视频内射| 蜜桃在线观看..| 日本av免费视频播放| 久久精品久久精品一区二区三区| 新久久久久国产一级毛片| 国产成人精品久久久久久| 亚洲精品国产一区二区精华液| 欧美日韩av久久| 蜜桃在线观看..| 亚洲天堂av无毛| 啦啦啦在线免费观看视频4| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 国产一区亚洲一区在线观看| 亚洲精品第二区| 国产探花极品一区二区| 精品久久久久久电影网| 午夜福利影视在线免费观看| 赤兔流量卡办理| 亚洲精品,欧美精品| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 免费观看av网站的网址| 日韩伦理黄色片| 新久久久久国产一级毛片| 精品人妻一区二区三区麻豆| 亚洲成人av在线免费| 香蕉国产在线看| 久久久国产一区二区| 一本久久精品| 18禁观看日本| 美女中出高潮动态图| 亚洲人成77777在线视频| av福利片在线| 9色porny在线观看| 在现免费观看毛片| 狠狠精品人妻久久久久久综合| av在线app专区| 最近中文字幕2019免费版| 成人国语在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲av综合色区一区| 赤兔流量卡办理| 亚洲av日韩在线播放| 国产国语露脸激情在线看| 久久久久久久精品精品| 另类精品久久| 久久毛片免费看一区二区三区| 成人毛片60女人毛片免费| 在线观看三级黄色| 啦啦啦在线免费观看视频4| 久热爱精品视频在线9| 美女午夜性视频免费| 成人亚洲精品一区在线观看| 亚洲精品久久久久久婷婷小说| 一本色道久久久久久精品综合| 成人影院久久| 亚洲国产最新在线播放| 亚洲成人免费av在线播放| 精品免费久久久久久久清纯 | 欧美日韩亚洲高清精品| 国产成人欧美| 亚洲人成网站在线观看播放| 午夜免费男女啪啪视频观看| av有码第一页| 黄频高清免费视频| 又大又黄又爽视频免费| 爱豆传媒免费全集在线观看| 亚洲情色 制服丝袜| 好男人视频免费观看在线| 在线观看www视频免费| 伦理电影大哥的女人| 大码成人一级视频| 国产成人欧美| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 精品国产一区二区三区四区第35| 亚洲美女黄色视频免费看| 好男人视频免费观看在线| 午夜福利乱码中文字幕| 国产国语露脸激情在线看| 亚洲精品日本国产第一区| 亚洲成人国产一区在线观看 | 嫩草影院入口| 亚洲国产精品999| 精品久久久久久电影网| 精品少妇一区二区三区视频日本电影 | 日本欧美视频一区| 亚洲天堂av无毛| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 最新在线观看一区二区三区 | 纯流量卡能插随身wifi吗| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 日韩 亚洲 欧美在线| 午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 9色porny在线观看| 国产日韩欧美在线精品| 99香蕉大伊视频| 久久精品久久精品一区二区三区| 久久久久久人妻| 满18在线观看网站| 熟女少妇亚洲综合色aaa.| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看| 欧美另类一区| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 狂野欧美激情性bbbbbb| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看 | 国产精品偷伦视频观看了| 女人爽到高潮嗷嗷叫在线视频| 国产成人午夜福利电影在线观看| 成年女人毛片免费观看观看9 | 久久久久久久大尺度免费视频| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 免费少妇av软件| 一区在线观看完整版| www日本在线高清视频| 99国产精品免费福利视频| 中文字幕色久视频| 在线亚洲精品国产二区图片欧美| 永久免费av网站大全| 久久青草综合色| 国产淫语在线视频| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 免费女性裸体啪啪无遮挡网站| 亚洲情色 制服丝袜| 少妇精品久久久久久久| 美女主播在线视频| 麻豆乱淫一区二区| 亚洲精品aⅴ在线观看| 啦啦啦在线免费观看视频4| 一区福利在线观看| 亚洲伊人久久精品综合| 悠悠久久av| 天天操日日干夜夜撸| 青青草视频在线视频观看| 一级爰片在线观看| 日韩制服骚丝袜av| 久久精品久久久久久久性| 制服丝袜香蕉在线| 亚洲婷婷狠狠爱综合网| 男女床上黄色一级片免费看| 黑人猛操日本美女一级片| 久久精品国产a三级三级三级| 亚洲人成电影观看| 久久精品亚洲熟妇少妇任你| 亚洲成人av在线免费| 黑人欧美特级aaaaaa片| 美女午夜性视频免费| 亚洲欧美成人综合另类久久久| 精品少妇一区二区三区视频日本电影 | 久久精品久久久久久噜噜老黄| 狂野欧美激情性bbbbbb| 男女免费视频国产| 一级毛片我不卡| 国产精品二区激情视频| 精品一区在线观看国产| 国产免费又黄又爽又色| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 天天影视国产精品| 桃花免费在线播放| 自线自在国产av| 大香蕉久久成人网| 国产精品免费视频内射| 亚洲第一区二区三区不卡| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 十分钟在线观看高清视频www| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 老司机深夜福利视频在线观看 | 成人18禁高潮啪啪吃奶动态图| 99久久人妻综合| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 色网站视频免费| 校园人妻丝袜中文字幕| 深夜精品福利| √禁漫天堂资源中文www| 在线观看人妻少妇| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 美女大奶头黄色视频| 美国免费a级毛片| 看免费成人av毛片| 久久综合国产亚洲精品| 黄片小视频在线播放| 午夜久久久在线观看| 精品亚洲成国产av| 极品人妻少妇av视频| 亚洲精品在线美女| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 久久人妻熟女aⅴ| 午夜日韩欧美国产| 色94色欧美一区二区| 看免费av毛片| 亚洲国产日韩一区二区| 午夜免费鲁丝| 在线精品无人区一区二区三| 观看美女的网站| 少妇被粗大的猛进出69影院| 欧美少妇被猛烈插入视频| 日本欧美视频一区| 操美女的视频在线观看| av线在线观看网站| 日本wwww免费看| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 日韩 亚洲 欧美在线| 亚洲国产精品一区二区三区在线| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 国精品久久久久久国模美| 亚洲,欧美,日韩| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 久久久精品国产亚洲av高清涩受| 激情视频va一区二区三区| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 国产成人一区二区在线| av一本久久久久| 亚洲国产毛片av蜜桃av| 国产麻豆69| 热re99久久精品国产66热6| 一级毛片黄色毛片免费观看视频| 日日爽夜夜爽网站| 91精品三级在线观看| 精品一区在线观看国产| 自线自在国产av| 久久精品国产亚洲av高清一级| 国产成人a∨麻豆精品| 午夜福利,免费看| 又粗又硬又长又爽又黄的视频| 日韩制服丝袜自拍偷拍| 少妇被粗大猛烈的视频| 黄色 视频免费看| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 美女高潮到喷水免费观看| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 免费不卡黄色视频| 999久久久国产精品视频| 街头女战士在线观看网站| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影 | 黑人猛操日本美女一级片| 妹子高潮喷水视频| 国产高清不卡午夜福利| 亚洲国产中文字幕在线视频| 在线观看www视频免费| 国产在线免费精品| 777米奇影视久久| 亚洲少妇的诱惑av| 国产一区二区在线观看av| 飞空精品影院首页| 一区二区三区精品91| 国产精品一区二区精品视频观看| 亚洲精品视频女| 午夜激情av网站| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 亚洲欧美精品综合一区二区三区| 亚洲精品aⅴ在线观看| 曰老女人黄片| 18在线观看网站| 亚洲精品成人av观看孕妇| 又大又爽又粗| 日韩中文字幕欧美一区二区 | 国产视频首页在线观看| 亚洲第一青青草原| 日本av手机在线免费观看| 亚洲成av片中文字幕在线观看| 黄色怎么调成土黄色| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看| 精品人妻熟女毛片av久久网站| 日韩成人av中文字幕在线观看| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 黑丝袜美女国产一区| 丰满少妇做爰视频| 久久99一区二区三区| 亚洲欧美中文字幕日韩二区| 久久天躁狠狠躁夜夜2o2o | 国产成人午夜福利电影在线观看| 欧美久久黑人一区二区| 日韩,欧美,国产一区二区三区| 精品少妇久久久久久888优播| 黄色一级大片看看| 好男人视频免费观看在线| 精品国产露脸久久av麻豆| 夜夜骑夜夜射夜夜干| 男女免费视频国产| 精品少妇一区二区三区视频日本电影 | √禁漫天堂资源中文www| 久久精品aⅴ一区二区三区四区| 精品一区在线观看国产| 欧美人与善性xxx| 国产99久久九九免费精品| 五月开心婷婷网| 精品少妇久久久久久888优播| av有码第一页| 久久久国产一区二区| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 精品人妻在线不人妻| 久久热在线av| 在线天堂中文资源库| 色视频在线一区二区三区| 亚洲视频免费观看视频| 最新在线观看一区二区三区 | 91老司机精品| 精品视频人人做人人爽| 99香蕉大伊视频| 免费黄色在线免费观看| 51午夜福利影视在线观看| 中文字幕高清在线视频| 久久久久久久久久久免费av| 久久久久久久久免费视频了| 91国产中文字幕| 色视频在线一区二区三区| 另类亚洲欧美激情| 在线观看三级黄色| 涩涩av久久男人的天堂| 欧美日韩福利视频一区二区| 天堂俺去俺来也www色官网| 亚洲精品久久久久久婷婷小说| 一二三四在线观看免费中文在| 国产福利在线免费观看视频| 亚洲综合精品二区| 叶爱在线成人免费视频播放| 精品少妇久久久久久888优播| 黄片小视频在线播放| 观看美女的网站| 亚洲成色77777| 热99国产精品久久久久久7| 伊人亚洲综合成人网| 国产 精品1| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 中文字幕高清在线视频| 制服丝袜香蕉在线| 国产日韩欧美视频二区| 少妇被粗大猛烈的视频| av在线老鸭窝| 成人18禁高潮啪啪吃奶动态图| 欧美日本中文国产一区发布| 一本久久精品| 又大又爽又粗| 亚洲精品国产av蜜桃| 国产成人欧美在线观看 | 成年美女黄网站色视频大全免费| 免费黄色在线免费观看| 国产极品粉嫩免费观看在线| 波多野结衣av一区二区av| 亚洲欧洲日产国产| 亚洲久久久国产精品| 久久精品国产综合久久久| 国产成人精品久久二区二区91 | 国产成人精品无人区| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人看| 一级爰片在线观看| 黑人欧美特级aaaaaa片| 波野结衣二区三区在线| 国产精品99久久99久久久不卡 | 免费黄频网站在线观看国产| 丰满乱子伦码专区| 日韩熟女老妇一区二区性免费视频| 一本大道久久a久久精品| 婷婷色麻豆天堂久久| 免费黄网站久久成人精品| 日韩中文字幕视频在线看片| 亚洲,欧美精品.| 男男h啪啪无遮挡| 欧美在线一区亚洲| 激情视频va一区二区三区| 久久 成人 亚洲| 少妇被粗大的猛进出69影院| xxxhd国产人妻xxx| 成年美女黄网站色视频大全免费| 国产亚洲av高清不卡| 视频区图区小说| 精品视频人人做人人爽| 校园人妻丝袜中文字幕| 成年美女黄网站色视频大全免费| 久久久精品区二区三区| 日韩一卡2卡3卡4卡2021年| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 性色av一级| 性少妇av在线| 日韩一区二区视频免费看| 久久97久久精品| 欧美xxⅹ黑人| 欧美亚洲日本最大视频资源| 日韩大片免费观看网站| 欧美黄色片欧美黄色片| 丰满少妇做爰视频| 视频在线观看一区二区三区| 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久| 日韩,欧美,国产一区二区三区| 国产精品熟女久久久久浪| 制服诱惑二区| 国产成人系列免费观看| 久久综合国产亚洲精品| 叶爱在线成人免费视频播放| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| 成年动漫av网址| 黄色毛片三级朝国网站| 纵有疾风起免费观看全集完整版| 亚洲国产成人一精品久久久| 午夜久久久在线观看| 成年人免费黄色播放视频| 免费在线观看视频国产中文字幕亚洲 | 十八禁高潮呻吟视频| 多毛熟女@视频| 久久精品人人爽人人爽视色| 日韩 亚洲 欧美在线| 亚洲美女视频黄频| 国产午夜精品一二区理论片| 色播在线永久视频| 国产高清不卡午夜福利| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 午夜av观看不卡| 欧美av亚洲av综合av国产av | 欧美日韩亚洲综合一区二区三区_| 侵犯人妻中文字幕一二三四区| 极品人妻少妇av视频| 国产又色又爽无遮挡免| 一区二区三区乱码不卡18| 青草久久国产| 国产精品麻豆人妻色哟哟久久| 人人妻人人添人人爽欧美一区卜| 大话2 男鬼变身卡| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| 岛国毛片在线播放| 97人妻天天添夜夜摸| 日韩制服骚丝袜av| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美软件| 国产熟女午夜一区二区三区| 青春草视频在线免费观看| 美女福利国产在线| 汤姆久久久久久久影院中文字幕| 女人高潮潮喷娇喘18禁视频| 国产精品女同一区二区软件| 久久99一区二区三区| 久久久久久久大尺度免费视频| 国产精品欧美亚洲77777| 大陆偷拍与自拍| 建设人人有责人人尽责人人享有的| 日韩中文字幕视频在线看片| 岛国毛片在线播放| 国产黄色视频一区二区在线观看| 操美女的视频在线观看| 亚洲久久久国产精品| 我要看黄色一级片免费的| 日本午夜av视频| 国产精品香港三级国产av潘金莲 | 国产在线一区二区三区精| 成人影院久久| 精品免费久久久久久久清纯 | 高清视频免费观看一区二区| 国产精品久久久久成人av| 看非洲黑人一级黄片| 精品人妻在线不人妻| 美国免费a级毛片| 国产熟女午夜一区二区三区| 亚洲精品久久成人aⅴ小说| 午夜91福利影院| 日本色播在线视频| 男人添女人高潮全过程视频| 亚洲国产欧美网| 黄片无遮挡物在线观看| 亚洲国产看品久久| av国产久精品久网站免费入址| 如日韩欧美国产精品一区二区三区| 美女午夜性视频免费| 好男人视频免费观看在线| 国产精品一国产av|