• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antioxidant and antiglycation properties of two mango (Mangifera indica L.) cultivars from Senegal

    2018-07-02 09:24:56SambaFamaNdoyeDidierFraisseBlandineAkendenguMbayeDiawDioumRokhayaSyllaGueyeCheikhSallInsaSeckCatherineFelginesMatarSeckFranoisSenejoux
    關(guān)鍵詞:鹽析酶法輔助

    Samba Fama Ndoye, Didier Fraisse, Blandine Akendengué, Mbaye Diaw Dioum, Rokhaya Sylla Gueye, Cheikh Sall, Insa Seck, Catherine Felgines, Matar Seck, Fran?ois Senejoux?

    1Laboratory of Organic and Therapeutic Chemistry, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University. PB 5005 Dakar-Fann, Sénégal

    2Université Clermont Auvergne, INRA, UNH, F-63000 Clermont-Ferrand, France

    3Department of Pharmacology and Toxicology, Faculty of Medicine and Health Sciences (USS). PB 4009 Libreville, Gabon

    4Laboratory of Chemistry, Training and Research Unit of Health, Thiès University. PB 967 Thiès, Sénégal

    1. Introduction

    Mangifera indica(M. indica) L. (Anacardiaceae) is a large tree native from tropical Asia. Its leaves are spirally arranged on branches and its fruit is a popular edible drupe that contains a solitary seed covered by a fibrous endocarp[1]. Of interest, fruits, seeds, pulp, bark,leaves and roots are widely employed as traditional medications. For instance, seeds are employed as astringent to the bowels and leaves are used to treat piles. Besides, the ripe fruit and the bark are respectively used to treat constipation and diarrhea[2]. In African traditional medicine, water infusion ofM. indicaleaves can also be employed forits antiplasmodial and antipyretic properties[3]. Of note, numerous biological activities have been reported for this plant including antidiarrheal[4], immunomodulatory[5], bactericidal[6], antiviral[7] and anti-inflammatory properties[8].

    The chemical composition ofM. indicahas been widely investigated over the past and numerous terpenoid constituents have been reported including sterols, triterpenes and carotenoids. In addition, phytochemical analyses of this species have led to the characterization of a wide diversity of phenolic components including flavonoids, phenolic acids, gallotannins,benzophenones as well as xanthones such as mangiferin[9].

    It is now well established that phenolic constituents are highly implicated in the health benefits of plant food products consumption[10]. Owing to their hydroxyl substituents and aromatic rings, they exert a major role as antioxidants and are capable of protecting human organism against the deleterious effect of reactive oxygen species and free radicals[11].Overproduction of such species can result in oxidative stress which is contributing to the development of numerous degenerative diseases including chronic inflammation and several type of cancers[12]. Increasing attention has been thus directed towards antioxidant capacity of natural phenolics compounds because of their potential nutritional and therapeutic value[13]. It has to be noted that several studies have also highlighted that some phenolic compounds can be regarded as promising agents for the prevention of Advanced Glycation End products (AGEs) formation[14].AGEs can be defined as altered proteins that become non-enzymatically glycated after reaction with aldose sugars[15]. By inducing protein dysfunction and cell damages, AGEs accumulation is involved in the course of ageing. In addition, AGEs are also increased and play a key role in the development of atherosclerosis, neurodegenerative diseases as well as diabetic complications[16]. Inhibition of AGEs formation represents thus an attractive preventive and therapeutic target.

    It has been clearly shown that qualitative and quantitative phenolic composition of mangoes strongly differs among cultivars, parts and environmental conditions[17]. In addition, there is a lack of chemical and biological data about numerous Senegalese varieties ofM. indica.Therefore, the present study aimed at evaluating total phenolics as well as antioxidant and antiglycation activities of four different parts (leaves,stem barks, roots and kernels) of Sewe and Bouka varieties, two major mango cultivars grown in Senegal.

    2. Materials and methods

    2.1. Reagents

    Methanol, Folin-Ciocalteu’s reagent, bovine serum albumin (BSA),D-ribose, aminoguanidine hydrochloride, gallic acid, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), Trolox, fluorescein, 2,2′-azobis(2-methylpropionamidine) dihydrochloride, Iron (II) chloride and ferrozine were bought from Sigma-Aldrich (Saint-Quentin Fallavier,France). Ethylenediaminetetraacetic acid disodium salt (EDTA) was purchased from Fisher Chemical (Illkirch, France).

    2.2. Plant materials

    Leaves, stem barks, roots and kernels of two varieties (Sewe and Bouka) ofM. indicaL. were obtained from cultivated trees at Diender,Senegal, in July 2016. A sample of each part of the investigated plants was deposited in a laboratory herbarium (Laboratory of Pharmacognosy,Faculty of Medicine, Pharmacy and Odontology from University Cheikh Anta Diop of Dakar, Senegal). Plant material was shade dried with ventilation for six weeks, then powdered using a mechanical grinder.

    2.3. Preparation of extracts

    For each extract, 100 g of plant material were extracted twice with methanol (500 mL) for 48 h at room temperature and under magnetic agitation. After filtration, methanol was removed under reduced pressure and the dried extracts were stored at 4 ℃ before analyses.

    2.4. Total phenolic content (TPC)

    TPC was evaluated according to the method of Folin and Ciocalteu[18],with slight modifications as previously reported[19]. A standard curve of gallic acid in the range of 30 μM to 470 μM was performed (R2= 0.997 9,y= 4.393 7x+ 0.021). Total phenolic content was expressed as mg of gallic acid equivalents per g (mg GAE/g) of extract. All analyses were performed in triplicate and results were indicated as means±SEM.

    2.5. Antioxidant activity

    2.5.1. DPPH radical-scavenging activity assay

    DPPH scavenging activity was evaluated as previously described by Medaet al[19]. A standard curve of Trolox in the range of 0.1 mM to 6 mM was constructed (R2= 0.997 8,y= 1 101.1x+ 1.519 6) and results were indicated as μmol of Trolox equivalents per g (μmol TE/g) of extract.

    2.5.2. Oxygen radical absorbance capacity (ORAC) assay

    The assay was done in 96-well plates with a final volume of 200 μL as previously reported[19]. ORAC values were determined using the respective area under the curve (AUC) and the regression equation between Trolox equivalents and the net AUC (concentration of Trolox in the range of 3 μM to 100 μM,R2= 0.990 4,y= 35.63x+ 11.26). The results were presented as μmol TE/g of extract.

    2.5.3. Iron (II) chelating activity

    在單因素試驗(yàn)的基礎(chǔ)上,通過(guò)Plackett-Burman試驗(yàn)確定對(duì)龍牙楤木皂苷提取得率影響顯著的因素,采用中心組合Box-Benhnken Design (BBD)設(shè)計(jì)試驗(yàn)進(jìn)行響應(yīng)面優(yōu)化鹽析輔助酶法提取龍牙楤木皂苷工藝[11]。

    Metal chelating activities were measured following the protocol of Wanget al[20]. A standard curve of EDTA in the range of 8 μM to 135μM was performed (R2= 0.986,y= 6 648x+ 10.252). The results were indicated as μg of EDTA equivalents per g (μg EDTAE/g) of extract.

    2.6. Advanced glycation end products (AGEs) assay

    Inhibition of AGEs formation was evaluated as previously described by Derbréet al[21], with slight adjustments. Reaction solution (100μL) was prepared by mixing 20 μL of each plant extract (0.05 to 1 mg/mL), 40 μL of 25 mg/mL BSA and 40 μL of 120 mM D-(-)-ribose in a phosphate buffer (50 mM, pH = 7.4). This mixture was incubated at 37 ℃ for 24 h in the dark in 96-well microtiter plates before AGEs fluorescence evaluation. AGEs fluorescence was monitored on a microplate reader (TECAN infinite F200 PRO) using 370 and 440 nm as the excitation and emission wavelengths, respectively. Aminoguanidine was employed as positive control and results were presented as IC50values in μg/mL.

    3. Results

    3.1. Total phenolic content

    As shown in Figure 1, substantial TPC was determined for all the studied extracts. With respective values of (546±1) mg GAE/g and (489±3)mg GAE/g of extract, Sewe kernel extract (SKE) and Bouka kernel extract (BKE) were shown to possess the highest phenolic contents,indicating that kernel is the richest source of phenolics for both varieties.

    Figure 1. TPC of different extracts (means±SEM).

    3.2. Antioxidant activity

    3.2.1. DPPH radical-scavenging assay

    As indicated in Table 1, DPPH scavenging activity of the extracts ranged between (1 702±108) and (5 510±6) μmol TE/g. Once again, kernels exhibited the highest activities with values of (4 980±50) μmol TE/g and(5 510±6 μmol) TE/g for SKE and BKE, respectively. Conversely, extracts from leaves and stem bark from Bouka were shown to be the least effective ones with values lower than 2 000 μmol TE/g.

    3.2.2. ORAC assay

    3.2.3. Iron (II) chelating activity

    Iron (II) chelating activity of the different extracts was presented in Table 1. With a value higher than 10 000 μg EDTAE/g, Sewe stem bark extract (SSBE) was shown to possess very potent Fe2+chelating ability [(10 593±4) μg EDTAE/g]. On the contrary, roots from Bouka cultivar were shown to induce only moderate metal chelating effects[(2 617±0.4) μg EDTAE/g].

    3.3. AGEs assay

    In this study, a BSA/D-ribose model was adopted to assess antiglycation effects ofM. indicaextracts. Our data indicated that roots, leaves and stem barks extracts of both varieties exerted noticeable antiglycation effects, with IC50values lower than the standard positive control aminoguanidine [(259±7) μg/mL]. Of interest, SSBE and Sewe root extracts (SRE) displayed the most potent inhibitory activities, with respective IC50values of (145±5) and (147±3) μg/mL. As attested by their respective IC50values of (165±2) and (185±10) μg/mL, leave extracts from Sewe and Bouka cultivars were also shown to strongly inhibit the formation of AGEs. By contrast, with IC50values higher than 500 μg/mL, kernel extracts of the two studied varieties were found to be almost ineffective in blocking AGEs formation.

    4. Discussion

    The present results demonstrate that all parts from the two investigated varieties ofM. indicapossess high contents of phenolic compounds.Phenolic constituents are well known to be main contributors toantioxidant capacities in plant extracts and are considered as the most predominant antioxidant phytochemicals[22]. Owing to their reactivity as electron or hydrogen-donating agents and metal ion chelating activities,these compounds can exert positive effects on oxidative stress[23,24]. The potent antioxidant properties of the studied extracts were highlighted by three different spectrometric assays. For both varieties, kernels were shown to exert the highest DPPH radical scavenging activity.Conversely, leaves, stem barks and roots of the two varieties possessed higher ORAC values. In addition, potent Fe2+chelating effects were observed for all studied parts including stem bark of Sewe cultivars which had remarkable high activity.

    Table 1DPPH radical scavenging activity, ORAC value, iron (II) chelating activity and extraction yield of extracts from Sewe and Bouka cultivars.

    Discrepancies between antioxidant potency of the different organs found with the three methods can be largely explained by the different principle of the assays. DPPH radical scavenging is one of the most widely employed antioxidant method for plant samples. This assay is mainly based on single electron transfer of antioxidants to neutralize DPPH radical[25]. The reaction leads to the discoloration of the purple-colored DPPH radical which is an indicator of the antioxidant efficacy[26]. ORAC assay is regarded as a relevant protocol for evaluating antioxidant activity of biological samples and foodstuffs[27]. By contrast with DPPH assay, deactivation of radical species is considered to be related to a hydrogen atom transfer mechanism[28]. DPPH and ORAC can be thus regarded as distinct and complementary evaluations that reflect the two major mechanisms leading to radical deactivation,single electron transfer and hydrogen atom transfer. Besides these two radical scavenging assays, metal chelating capacity can be also used as an indicator of antioxidant activity. Indeed, Fenton reaction, which involves transition-metal ions such as Fe2+, is an important source of hydroxyl radical, a highly reactive oxygen species[29]. Furthermore,differences in the observed activities can be also explained by disparities in the chemical composition of the organs. Indeed, previous chemical analyses of variousM. indicaparts indicated that benzophenone and xanthone derivatives represent the major phenolics in leaves as well as in bark, iriflophenone 3-C-β-D-glucoside and mangiferin being the two most abundant compounds in the majority of the studied varieties[30].Conversely, it has been reported thatM. indicakernels mostly contain gallotannin derivatives, with penta-O-galloyl-glucoside as the major one. Of interest, this compound has been previously shown to only exert moderate radical scavenging activities when submitted to ORAC evaluation[30] while mangiferin and iriflophenone 3-C-β-D-glucoside are both known to give excellent results with that assay[31]. Taken together, these data tend to explain why, in the present study, kernel extracts possess the lowest ORAC values despite being the richest source of phenolic compounds.

    It is now well established that AGEs have a significant role in ageing process as well as in numerous degenerative diseases[32]. Inhibition of the formation of these harmful products is now regarded as an attractive preventive or therapeutic target[33] and increasing attention is recently being given to the evaluation of plant extracts and phytochemicals as antiglycating agents. Of interest, a substantial number of natural phenolic compounds have been identified as potent inhibitors of AGEs formation[21,34,35]. However, it has to be noted that only limited data are available regarding the antiglycation activity ofM. indica. Flesh and peel extracts of mango[36,37] have been reported to possess significant anti-AGEs properties. In addition, the antiglycation potential of mango leaves has also been recently documented[38]. However, to our knowledge, no data are available concerning kernels, bark and roots.Furthermore, the present study constitutes the first evaluation taking into account intraspecific variability ofM. indica. By using a BSA/D-ribose system, our experiments established that kernels of both cultivars induced only weak inhibitory effect on AGEs formation.Conversely, leaves of Sewe and Bouka cultivars possess strong anti-AGEs activities with IC50values lower than the reference compound aminoguanidine. The present data also demonstrate for the first time the pronounced interest ofM. indicaroots and bark as antiglycating agents, as attested by the particularly low IC50value of Sewe cultivar bark extract. It is important to note that xanthone and benzophenone derivatives have been reported to exert potent anti-glycation effects[38].They might be thus be regarded as important contributors to the anti-AGEs properties of the studied extracts. Such assumption is further supported by the weak effects of kernel extracts. Indeed, several studies have previously shown that this organ only contains traces of such kind of phenolic compounds[30].

    The present study attests that the two investigatedM. indicacultivars are substantially rich in phenolic constituents and exhibit powerful antioxidant effects. In addition, it demonstrates that their roots, leaves and barks also exert potent antiglycation activities. These results thus suggest that Sewe and Bouka cultivars ofM. indicacan be regarded as potential nutraceutical resources to prevent oxidative stress and carbonyl stress related disorders.

    Conflict of interest statement

    The authors declare that there is no conflict of interest.

    Acknowledgments

    The authors would like to express their profound gratitude to the service of cooperation and cultural action of the embassy of France in Dakar for the financial support.

    [1] Shah KA, Patel MB, Patel RJ, Parmar PK.Mangifera indica(Mango).Pharmacogn Rev2010;4(7): 42-48.

    [2] Chowdhury S, Poddar SK, Zaheen S, Noor FA, Ahmed N, Haque S, et al.Phytochemical screening and evaluation of cytotoxic and hypoglycemic properties ofMangifera indicapeels.Asian Pac J Trop Biomed2017;7(1):49-52.

    [3] Adeneye AA, Awodele O, Aiyeola SA, Benebo AS. Modulatory potentials of the aqueous stem bark extract ofMangifera indicaon carbon tetrachlorideinduced hepatotoxicity in rats.J Tradit Complement Med2015;5(2): 106-115.

    [4] Sairam K, Hemalatha S, Kumar A, Srinivasan T, Ganesh J, Shankar M, et al. Evaluation of anti-diarreal activity in seed extracts ofMangifera indica.J Ethnopharmacol2003;84: 11-15.

    [5] Makare N, Bodhankar S, Rangari V. Immunomodulatory activity of alcoholic extract ofMangifera indicaL. in mice.J Ethnopharmacol2001; 78:133-137.

    [6] Nkuo-Akenji T, Ndip R, McThomas A, Fru EC. Anti-Salmonella activity of medicinal plants from Cameroon.Cent Afr J Med2001; 47: 155-158.

    [7] Yoosook C, Bunyapraphatsara N, Boonyakiat Y, Kantasuk C. Antiherpes simplex virus activities of crude water extracts of Thai medicinal plants.Phytomedicine2000; 6(6): 411-419.

    [8] Garrido G, Gonzalez D, Delporte C, Backhouse N, Quintero G, Nunez-Selles AJ, et al. Analgesic and anti-inflammatory effects ofMangifera indicaL. extract (vimang).Phytother Res2001; 15: 18-21.

    [9] Dorta E, Lobo MG, González M. Using drying treatments to stabilize mango peel and seed: effect on antioxidant activity.LWT-Food Sci Technol2012; 45(2): 261-268.

    [10] Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease.Oxid Med Cell Longev2009; 2(5): 270-278.

    [11] Halake K, Birajdar M, Lee J. Structural implications of polyphenolic antioxidants.J Ind Eng Chem2016; 35: 1-7.

    [12] Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress,inflammation, and cancer: how are they linked?Free Radic Biol Med2010;49: 1603-1616.

    [13] Ajila CM, Naidu KA, Bhat SG, Rao UJSP. Bioactive compounds and antioxidant potential of mango peel extract.Food Chem2007; 105: 982-988.

    [14] Mildner-Szkudlarz S, Siger A, Szwengiel A, Przygonski K, Wojtowicz E,Zawirska-Wojtasiak R. Phenolic compounds reduce formation of Nεε-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system.Food Chem2017; 231: 175-184.

    [15] Yoon SR, Shim SM. Inhibitory effect of polyphenols inHouttuynia cordataon advanced glycation end-products (AGEs) by trapping methylglyoxal.LWTFood Sci Technol2015; 61: 158-163.

    [16] Kaewnarin K, Shank L, Niamsup H, Rakariyatham N. Inhibitory effects of Lamiaceae plants on the formation of advanced glycation end-products(AGEs) in model proteins.J Med Bioeng2013; 2(4): 224-227.

    [17] Dorta E, González M, Lobo MG, Sánchez-Moreno C, Ancos B.Screening of phenolic compounds in by-product extracts from mangoes(Mangifera indicaL.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient.Food Res Int2014; 57: 51-60.

    [18] Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins.J Biol Chem1927; 73(2): 627-650.

    [19] Meda NR, Fraisse D, Gnoula C, Vivier M, Felgines C, Senejoux F.Characterization of antioxidants fromDetarium microcarpumGuill. et Perr.leaves using HPLC-DAD coupled with pre-column DPPH assay.Eur Food Res Technol2017; 243: 1659-1666.

    [20] Wang T, Jónsdóttir R, ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds.Food Chem2009; 116: 240-248.

    [21] Derbré S, Gatto J, Pelleray A, Coulon L, Séraphin D, Richomme P.Automating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers: Application to the screening of a small natural compounds library.Anal Bioanal Chem2010; 398: 1747-1758.

    [22] Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests.Food Chem2009; 113: 1226-1233.

    [23] Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationship of flavonoids and phenolic acids.Free Radic Biol Med1996;20: 933-936.

    [24] Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr Opin Food Sci2016; 8: 33-42.

    [25] Magalh?es LM, Segundo MA, Reis S, Lima JLFC. Methodological aspects aboutin vitroevaluation of antioxidant properties.Anal Chim Acta2008;613(1): 1-19.

    [26] Molyneux P. The use of the stable free radical diphenylpicryl- hydrazyl(DPPH) for estimating antioxidant activity.Songklanakarin J Sci Technol2004; 26(2): 211-219.

    [27] Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants.Free Radic Biol Med1993; 14(3): 303-311.

    [28] Prior RL. Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits.J Funct Foods2015; 18: 797-810.

    [29] Andjelkovi? M, Camp JV, Meulenaer BD, Depaemelaere G, Socaciu C,Verloo M, et al. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups.Food Chem2006; 98: 23-31.

    [30] Barreto JC, Trevisan MTS, Hull WE, Erben G, de Brito ES, Pfundstein B, et al.Characterization and quantitation of polyphenolic compounds in bark, kernel,leaves, and peel of mango (Mangifera indicaL.).J Agric Food Chem2008;56(14): 5599-5610.

    [31] Malherbe CJ, Willenburg E, de Beer D, Bonnet SL, van der Westhuizen JH,Joubert E. Iriflophenone-3-C-glucoside fromCyclopia genistoides: Isolation and quantitative comparison of antioxidant capacity with mangiferin and isomangiferin using on-line HPLC antioxidant assays.J Chromatogr B Analyt Technol Biomed Life Sci2014; 951-952(1): 164-171.

    [32] Liping S, Xuejiao S, Yongliang Z. Preparation, characterization and antiglycation activities of the novel polysaccharides fromBoletus snicus.Int J Biol Macromol2016; 92: 607-614.

    [33] Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings.J Food Drug Anal2017; 25: 84-92.

    [34] Chen H, Virk MS, Chen F. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.Int J Food Sci Nutr2016; 67(4): 400-411.

    [35] Tan D, Wang Y, Lo CY, Ho CT. Methylglyoxal: Its presence and potential scavengers.Asia Pac J Clin Nutr2008; 17: 261-264.

    [36] Gondi M, Basha SA, Salimath PV, Rao UJSP. Supplementation of mango(Mangifera indicaL.) peel in diet ameliorates cataract in streptozotocininduced diabetic rats: mango peel ameliorates cataract in diabetic rats.J Food Biochem2017; 41(1): 1-13.

    [37] Lauricella M, Emanuele S, Calvaruso G, Giuliano M, D’Anneo A.Multifaceted health benefits ofMangifera indicaL. (mango): The inestimable value of orchards recently planted in Sicilian rural areas.Nutrients2017; 9: 1-14.

    [38] Itoh K, Murata K, Sakaguchi N, Akai K, Yamaji T, Shimizu K, et al.Inhibition of advanced glycation end-products formation byMangifera indicaleaf extract.J Plant Stud2017; 6(2): 102-107.

    猜你喜歡
    鹽析酶法輔助
    小議靈活構(gòu)造輔助函數(shù)
    倒開(kāi)水輔助裝置
    減壓輔助法制備PPDO
    α-生育酚琥珀酸酯的酶法合成研究進(jìn)展
    酶法制備大豆多肽及在醬油發(fā)酵中的應(yīng)用
    Sn-2二十二碳六烯酸甘油單酯的酶法合成
    提高車(chē)輛響應(yīng)的轉(zhuǎn)向輔助控制系統(tǒng)
    鹽析法純化新鮮藍(lán)藻中藻藍(lán)蛋白工藝條件的研究
    酶法降解白及粗多糖
    中成藥(2014年11期)2014-02-28 22:29:50
    聯(lián)堿氯化銨過(guò)程鹽析結(jié)晶器溫升
    最新美女视频免费是黄的| 美国免费a级毛片| 久久人妻福利社区极品人妻图片| 久久久水蜜桃国产精品网| 国产主播在线观看一区二区| 亚洲少妇的诱惑av| 国内久久婷婷六月综合欲色啪| 色综合欧美亚洲国产小说| 国产国语露脸激情在线看| 中文字幕人妻熟女乱码| 久久中文字幕一级| 深夜精品福利| 999久久久国产精品视频| 成人永久免费在线观看视频| 精品第一国产精品| 免费久久久久久久精品成人欧美视频| 午夜久久久在线观看| 丝袜人妻中文字幕| 性色av乱码一区二区三区2| 黄片小视频在线播放| 国产高清激情床上av| 动漫黄色视频在线观看| 亚洲专区国产一区二区| 咕卡用的链子| 亚洲情色 制服丝袜| 最新美女视频免费是黄的| 中国美女看黄片| 欧美激情久久久久久爽电影 | 国产成人欧美在线观看| 亚洲一区高清亚洲精品| 亚洲男人的天堂狠狠| 日本在线视频免费播放| 人妻久久中文字幕网| 看片在线看免费视频| 999精品在线视频| 亚洲激情在线av| 国产精品久久久久久人妻精品电影| 成人国语在线视频| 色老头精品视频在线观看| 国产av在哪里看| 亚洲精品粉嫩美女一区| 69精品国产乱码久久久| 日韩大尺度精品在线看网址 | 日韩高清综合在线| svipshipincom国产片| 亚洲va日本ⅴa欧美va伊人久久| 韩国精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 女警被强在线播放| 欧美日本视频| 国产欧美日韩一区二区三区在线| 久久精品人人爽人人爽视色| 麻豆国产av国片精品| 亚洲人成伊人成综合网2020| 一级毛片高清免费大全| 免费无遮挡裸体视频| av天堂在线播放| 午夜福利免费观看在线| 久久这里只有精品19| 老司机福利观看| 宅男免费午夜| 国产精品国产高清国产av| 少妇 在线观看| 麻豆久久精品国产亚洲av| 日本免费一区二区三区高清不卡 | 丁香欧美五月| 少妇被粗大的猛进出69影院| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 一区福利在线观看| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| 午夜福利18| 欧美日韩亚洲综合一区二区三区_| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| av视频免费观看在线观看| 日本 欧美在线| 欧美国产日韩亚洲一区| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久精品吃奶| 久久人人爽av亚洲精品天堂| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 欧美日韩福利视频一区二区| 欧美一级a爱片免费观看看 | 一级a爱视频在线免费观看| 真人做人爱边吃奶动态| 色精品久久人妻99蜜桃| 亚洲无线在线观看| 日韩三级视频一区二区三区| or卡值多少钱| av网站免费在线观看视频| 18禁黄网站禁片午夜丰满| 国内久久婷婷六月综合欲色啪| 又黄又粗又硬又大视频| 欧美日韩黄片免| 久久久久久免费高清国产稀缺| www.熟女人妻精品国产| 啦啦啦观看免费观看视频高清 | 国语自产精品视频在线第100页| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| 老司机深夜福利视频在线观看| 在线观看免费视频日本深夜| av天堂在线播放| 日韩欧美三级三区| 久久精品国产亚洲av高清一级| 精品无人区乱码1区二区| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 男女下面插进去视频免费观看| 国产激情久久老熟女| 一级黄色大片毛片| 久久香蕉国产精品| 精品久久蜜臀av无| 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 69精品国产乱码久久久| 女性被躁到高潮视频| 丰满的人妻完整版| 很黄的视频免费| 无限看片的www在线观看| 国产成人系列免费观看| 久久久精品欧美日韩精品| 女同久久另类99精品国产91| svipshipincom国产片| 国产人伦9x9x在线观看| 亚洲 欧美一区二区三区| 国产在线精品亚洲第一网站| 国产成人免费无遮挡视频| 色婷婷久久久亚洲欧美| 一本综合久久免费| 黑人巨大精品欧美一区二区mp4| 国产一卡二卡三卡精品| 可以在线观看的亚洲视频| 咕卡用的链子| 国产精品,欧美在线| 一区在线观看完整版| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 久99久视频精品免费| 女人爽到高潮嗷嗷叫在线视频| 99re在线观看精品视频| av福利片在线| 岛国在线观看网站| 久久久水蜜桃国产精品网| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 黄色女人牲交| 性少妇av在线| 亚洲中文字幕日韩| 久久久久久久午夜电影| 欧美国产日韩亚洲一区| 亚洲精品在线观看二区| 黄片大片在线免费观看| 一本综合久久免费| 亚洲成av片中文字幕在线观看| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 久久香蕉国产精品| 丰满人妻熟妇乱又伦精品不卡| 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 久久久久久久久免费视频了| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 国产片内射在线| 中文字幕精品免费在线观看视频| 他把我摸到了高潮在线观看| 男人操女人黄网站| 看免费av毛片| av欧美777| 精品欧美国产一区二区三| 色综合婷婷激情| 日韩精品免费视频一区二区三区| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 高潮久久久久久久久久久不卡| 91九色精品人成在线观看| 亚洲 国产 在线| av欧美777| 一个人观看的视频www高清免费观看 | 熟妇人妻久久中文字幕3abv| av视频免费观看在线观看| 99香蕉大伊视频| 一本大道久久a久久精品| 1024香蕉在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲美女黄片视频| 香蕉国产在线看| 久久精品国产综合久久久| avwww免费| 一区在线观看完整版| 熟妇人妻久久中文字幕3abv| 欧美激情极品国产一区二区三区| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| a在线观看视频网站| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 亚洲国产中文字幕在线视频| 欧美日本亚洲视频在线播放| 午夜福利视频1000在线观看 | 夜夜爽天天搞| 脱女人内裤的视频| 久久精品aⅴ一区二区三区四区| 真人一进一出gif抽搐免费| 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 校园春色视频在线观看| 亚洲精品一区av在线观看| 色精品久久人妻99蜜桃| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜一区二区| 欧美黄色淫秽网站| 男人舔女人的私密视频| 给我免费播放毛片高清在线观看| 777久久人妻少妇嫩草av网站| 女性生殖器流出的白浆| 正在播放国产对白刺激| 男女午夜视频在线观看| 久久久国产成人免费| 日韩精品中文字幕看吧| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 日韩欧美国产一区二区入口| 99在线视频只有这里精品首页| 757午夜福利合集在线观看| 变态另类丝袜制服| 国产aⅴ精品一区二区三区波| 久久久久亚洲av毛片大全| 午夜福利在线观看吧| netflix在线观看网站| 欧美午夜高清在线| av片东京热男人的天堂| 欧美一区二区精品小视频在线| 久久亚洲真实| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 91大片在线观看| 最好的美女福利视频网| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 国产伦人伦偷精品视频| 男男h啪啪无遮挡| 国产蜜桃级精品一区二区三区| 精品国产一区二区久久| 国产一区二区三区视频了| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 国产精品久久久久久精品电影 | 欧美日本视频| 女性生殖器流出的白浆| 亚洲在线自拍视频| 久久天堂一区二区三区四区| 欧美中文综合在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 一区二区三区精品91| 日韩国内少妇激情av| av有码第一页| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| e午夜精品久久久久久久| 亚洲精品在线美女| 人成视频在线观看免费观看| 亚洲专区字幕在线| 叶爱在线成人免费视频播放| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久 | 我的亚洲天堂| 亚洲激情在线av| 精品欧美一区二区三区在线| 日韩成人在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 后天国语完整版免费观看| 欧美激情久久久久久爽电影 | 精品福利观看| 高清黄色对白视频在线免费看| 国产亚洲精品综合一区在线观看 | 欧美黑人精品巨大| 欧美日韩亚洲国产一区二区在线观看| av天堂在线播放| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 国产精华一区二区三区| 亚洲成人免费电影在线观看| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲无线在线观看| 精品久久久久久久人妻蜜臀av | 亚洲免费av在线视频| 欧美精品亚洲一区二区| 曰老女人黄片| 夜夜看夜夜爽夜夜摸| 91麻豆精品激情在线观看国产| 国产精品av久久久久免费| 亚洲男人的天堂狠狠| 妹子高潮喷水视频| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 少妇熟女aⅴ在线视频| 午夜免费观看网址| 亚洲人成电影免费在线| 熟妇人妻久久中文字幕3abv| 亚洲久久久国产精品| 很黄的视频免费| 久久久久国产精品人妻aⅴ院| 国产男靠女视频免费网站| 69av精品久久久久久| 午夜成年电影在线免费观看| 国产一级毛片七仙女欲春2 | 亚洲国产看品久久| 18禁裸乳无遮挡免费网站照片 | 亚洲人成电影观看| 国产熟女xx| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看 | 两个人免费观看高清视频| 十分钟在线观看高清视频www| 91字幕亚洲| 一级作爱视频免费观看| 日韩免费av在线播放| 久久九九热精品免费| 久久国产精品影院| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 中国美女看黄片| 97人妻天天添夜夜摸| 久久精品国产亚洲av高清一级| 美国免费a级毛片| 日韩视频一区二区在线观看| 亚洲午夜理论影院| 久久中文字幕一级| 欧美性长视频在线观看| cao死你这个sao货| 亚洲色图av天堂| 51午夜福利影视在线观看| 国产成+人综合+亚洲专区| av在线天堂中文字幕| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 欧美绝顶高潮抽搐喷水| а√天堂www在线а√下载| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 99国产精品一区二区三区| 久久中文字幕人妻熟女| 色综合婷婷激情| 久久久国产精品麻豆| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 国产成人免费无遮挡视频| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| 精品国产乱码久久久久久男人| 国产伦一二天堂av在线观看| 久久精品国产亚洲av高清一级| 天天一区二区日本电影三级 | 免费观看精品视频网站| www国产在线视频色| 不卡av一区二区三区| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 国产一级毛片七仙女欲春2 | 欧美激情极品国产一区二区三区| √禁漫天堂资源中文www| 999精品在线视频| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 久久国产亚洲av麻豆专区| 在线永久观看黄色视频| 国产麻豆成人av免费视频| 18禁观看日本| x7x7x7水蜜桃| 丁香欧美五月| 日本在线视频免费播放| 99热只有精品国产| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 亚洲专区字幕在线| av网站免费在线观看视频| 黄色成人免费大全| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费 | 激情视频va一区二区三区| 午夜免费激情av| 妹子高潮喷水视频| 三级毛片av免费| 国产男靠女视频免费网站| 最新在线观看一区二区三区| 国产xxxxx性猛交| 亚洲男人的天堂狠狠| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 久久香蕉国产精品| 两个人看的免费小视频| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 亚洲 欧美 日韩 在线 免费| 亚洲aⅴ乱码一区二区在线播放 | 午夜亚洲福利在线播放| 日本在线视频免费播放| 色在线成人网| bbb黄色大片| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 看免费av毛片| 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 亚洲精品久久国产高清桃花| 国产一区二区三区视频了| 操出白浆在线播放| 在线视频色国产色| 精品日产1卡2卡| 国产高清激情床上av| 国产高清videossex| 国产精品二区激情视频| 波多野结衣巨乳人妻| 香蕉丝袜av| 亚洲av五月六月丁香网| 久久九九热精品免费| 天天躁夜夜躁狠狠躁躁| 久久精品91蜜桃| 久久天堂一区二区三区四区| 窝窝影院91人妻| 叶爱在线成人免费视频播放| 国产亚洲精品av在线| 女生性感内裤真人,穿戴方法视频| 黄色a级毛片大全视频| 欧美老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 两人在一起打扑克的视频| 一二三四在线观看免费中文在| 免费观看人在逋| 波多野结衣巨乳人妻| 在线免费观看的www视频| 女人精品久久久久毛片| 亚洲电影在线观看av| 国产精品 国内视频| 欧美不卡视频在线免费观看 | 亚洲一区二区三区不卡视频| 99精品欧美一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 91成人精品电影| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 高清毛片免费观看视频网站| 国产精品国产高清国产av| 51午夜福利影视在线观看| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 中文字幕久久专区| 久久精品成人免费网站| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 777久久人妻少妇嫩草av网站| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看 | 极品教师在线免费播放| 丁香六月欧美| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 精品国产乱码久久久久久男人| 国产成人精品久久二区二区免费| 变态另类丝袜制服| 免费在线观看日本一区| 88av欧美| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| www.精华液| 亚洲av美国av| 国产亚洲精品一区二区www| 久久亚洲真实| 午夜福利高清视频| 久久久久国产一级毛片高清牌| 国产精品久久久久久精品电影 | 亚洲全国av大片| 精品欧美一区二区三区在线| 日本精品一区二区三区蜜桃| 精品国产国语对白av| 一级片免费观看大全| 国产99白浆流出| av片东京热男人的天堂| 亚洲视频免费观看视频| 99久久99久久久精品蜜桃| 国产精品 国内视频| 欧美一区二区精品小视频在线| 久久草成人影院| 免费在线观看完整版高清| 久久精品国产综合久久久| 久久天躁狠狠躁夜夜2o2o| 老司机靠b影院| 久久草成人影院| 人人妻人人爽人人添夜夜欢视频| 美国免费a级毛片| 99riav亚洲国产免费| 人人妻,人人澡人人爽秒播| 亚洲国产精品久久男人天堂| 成人免费观看视频高清| av免费在线观看网站| 一进一出抽搐动态| 久久精品国产亚洲av香蕉五月| 中文字幕av电影在线播放| 69av精品久久久久久| 女人被躁到高潮嗷嗷叫费观| 最新在线观看一区二区三区| 免费在线观看完整版高清| 精品久久久精品久久久| 在线观看免费日韩欧美大片| 亚洲成人精品中文字幕电影| 国产精品一区二区在线不卡| 久久久久久大精品| 国产精品免费视频内射| 精品国产一区二区久久| 国产欧美日韩一区二区三| 9191精品国产免费久久| 久久久久九九精品影院| 国产野战对白在线观看| 欧美成人免费av一区二区三区| 亚洲精品久久成人aⅴ小说| 成人18禁高潮啪啪吃奶动态图| 1024香蕉在线观看| 国产精品一区二区免费欧美| 99精品欧美一区二区三区四区| 日日爽夜夜爽网站| 大型av网站在线播放| 久久婷婷成人综合色麻豆| 精品午夜福利视频在线观看一区| 亚洲精品美女久久av网站| 欧美激情久久久久久爽电影 | 国产xxxxx性猛交| 欧美最黄视频在线播放免费| 国产成人精品无人区| 日韩免费av在线播放| 日本在线视频免费播放| 国产精品自产拍在线观看55亚洲| 亚洲国产高清在线一区二区三 | xxx96com| 久久精品国产亚洲av高清一级| 悠悠久久av| 精品午夜福利视频在线观看一区| 欧美激情极品国产一区二区三区| 九色亚洲精品在线播放| 国产麻豆69| 国产精品免费一区二区三区在线| 香蕉久久夜色| 制服诱惑二区| 国产真人三级小视频在线观看| 免费在线观看日本一区| 老鸭窝网址在线观看| 亚洲伊人色综图| 精品第一国产精品| 国产伦人伦偷精品视频| 老熟妇仑乱视频hdxx| www.精华液| 天天添夜夜摸| 国产一区二区三区视频了| 午夜福利成人在线免费观看| 色综合站精品国产| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 大型黄色视频在线免费观看| 香蕉国产在线看| 国产97色在线日韩免费| 亚洲成人精品中文字幕电影| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 日本精品一区二区三区蜜桃| 免费一级毛片在线播放高清视频 | 在线av久久热| 午夜福利18| 精品欧美一区二区三区在线| 久久天堂一区二区三区四区| 免费在线观看日本一区| 99国产综合亚洲精品| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 好男人电影高清在线观看| 老司机午夜福利在线观看视频| 久久天堂一区二区三区四区| 日日摸夜夜添夜夜添小说| 国产伦人伦偷精品视频| 侵犯人妻中文字幕一二三四区| 久久久国产成人免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲第一电影网av| 男女床上黄色一级片免费看| 久久精品亚洲精品国产色婷小说| 久久香蕉激情| 午夜福利一区二区在线看| 又黄又粗又硬又大视频| 一进一出抽搐动态| 美女高潮喷水抽搐中文字幕| 老司机在亚洲福利影院|