• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Larvicidal activity of Xenorhabdus and Photorhabdus bacteria against Aedes aegypti and Aedes albopictus

    2018-06-30 02:37:52ApichatVittaPunnawatThimpooWipaneeMeesilThatchaYimthinChamaipornFukruksaRaxsinaPolseelaBandidMangkitSarunpornTandhavanantAunchaleeThanwisai

    Apichat Vitta, Punnawat Thimpoo, Wipanee Meesil, Thatcha Yimthin, Chamaiporn Fukruksa, Raxsina Polseela,2, Bandid Mangkit, Sarunporn Tandhavanant, Aunchalee Thanwisai,2

    1Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand

    2Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand

    3Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

    4Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand

    1. Introduction

    Aedesmosquitoes are the main vectors of West Nile, chikungunya,and dengue viruses[1,2]. Recently the zika virus, with devastating effects, particularly for pregnant women, was proven to be transmitted to humans byAedes[3].Aedes aegypti(Ae. aegypti) andAedes albopictus(Ae. albopictus) are the main vectors of the dengue virus, causing dengue fever which has affected over 390 million people living in more than 100 countries[1,4]. At present, there are no specific treatments or vaccines for these viruses, and the best approach to prevent infection is avoidance of mosquito bites[3].Therefore, control adult and larvalAedesis an important measure to prevent the viral infection to human. Control methods for adult and larvalAedesspp. have been categorized as environmental,mechanical, chemical, genetic and biological controls[5]. Elimination of breeding sites ofAedesis a simple method and low cost to reduce the number of mosquitoes. Chemical controls (organochlorides,DDT; organophosphates, OP; pyrethroids) are the first method using in mosquito control. However, repeated use of these insecticides leads to development of insecticidal resistant mosquitoes and toxic to human.Aedeshave been reported to be resistant to DDT in worldwide. In addition, mosquitoes in several countries in Asia have been developed to resist pyrethroid[6]. Genetic control ofAedes(the sterile insect technique; rearing of insects carrying a dominant lethal allele) is a species specific method and most are in the laboratory conditions[7,8]. The genetic control methods need more consideration in cost, natural condition and environmental risk assessment[5].Control of larval mosquitoes is of low cost and can scope the certain source. Therefore, biological control of larval stage ofAedesis considered to be a potential measure to reduce number of mosquitoes leading to prevention and control of viral infection.

    Biological control forAedesspp. using protozoa[9], copepods[10-12], plant extracts[13-15], fungi[16], bacteria and their toxins[17-20] are promoted as being ecologically friendly, which is important for human life.Bacillus thuringiensis(B. thuringiensis),entomopathogenic bacteria have potential for biological control ofAedesspp.[20,21]. This bacterium shows rapid killing of the mosquito larvae and has no cross-resistant with chemical insecticides[22].However,Aedesspp. can develop moderate resistant toBacillus thuringiensissubsp.israelensis(B. thuringiensissubsp.israelensis)[23]. Other bacteria commonly used for control of insects areXenorhabdusandPhotorhabduswhich are symbiotically associated with entomopathogenic nematodes. These bacteria have also been reported to have oral lethality toAe. aegyptilarvae[17,24].

    XenorhabdusandPhotorhabdusare symbiotically associated with entomopathogenic nematodes which are Gram negative bacteria with the rod shape and peritichous flagella of the family Enterobacteriaceae. These bacteria produce several bioactive compounds with cytotoxic, antifungal, antibacterial, antiparasitic and insecticidal activities[25-31]. Isopropylstilbene and ethylstilbene produced byPhotorhabdus, and xenorhabdin and xenematide produced byXenorhabdus, have also shown insecticidal activity[32].Cell suspensions ofXenorhabdusandPhotorhabdusand their toxins were lethal toAedeslarvae, and a previous study showed thatPhotorhabdusinsect-related protein fromPhotorhabdus asymbioticahad strong toxicity toAe. aegyptiandAe. albopictus[33]. More recently, suspensions ofPhotorhabdus luminescens(P. luminescens)andXenorhabdus nematophila(X. nematophila) were shown to kill between 42% and 83% ofAe. aegyptilarvae in laboratory conditions[24]. In addition,P. luminescensandX. nematophilasuspension mixed with Cry4Ba protein fromB. thuringiensissubsp.israelensisproduced a mortality rate up to 87% and 95% ofAe.aegypti[17]. These results suggest thatXenorhabdusandPhotorhabdusspp. may be effective alternative agents for the biological control of mosquitoes. Some 30 species of these bacteria have been reported worldwide[34-37], but few species of these symbiotic bacteria have been tested to determine their efficacy in killing mosquito larvae.Xenorhabdus stockiae(X. stockiae) andPhotorhabdus luminescenssubsp.akhurstii(P. luminescenssubsp.akhurstii), the majority species found in Thailand, andXenorhabdus indica(X. indica), andPhotorhabdus luminescenssubsp.hainanensis(P. luminescenssubsp.hainanensis), also found in Thailand[38] suggested that these may be biological agents for controlling mosquito larvae, but the insecticidal or larvicidal activity of these symbiotic bacteria have never been tested againstAedeslarvae. During the survey of entomopathogenic nematodes and symbiotic bacteria in northeast of Thailand, we identified several isolates of these symbiotic bacteria includingX.stockiae,X. indica,P. luminescenssubsp.akhurstiiandP. luminescenssubsp.hainanensis. Therefore, the objective of this study was to evaluate the effect ofX. stockiae,X. indica,P. luminescenssubsp.akhurstiiandP. luminescenssubsp.hainanensisisolated from entomopathogenic nematodes in Thailand againstAe. aegyptiandAe.albopictuslarvae.

    2. Materials and methods

    2.1. Bacterial isolates

    XenorhabdusandPhotorhabduswere isolated from entomopathogenic nematodes collected from soil samples from northeast of Thailand. These bacteria were previously identified by the sequencing of a partial region of therecAgene. To identifyXenorhabdusandPhotorhabdusinto species level, BLASTN analysis of the 588 bprecAgene was performed with cut-off at 97% identity. Two species ofXenorhabduswere identified asX.stockiaeisolate bNBP22.2_TH (Accession No. KY809323) andX. indicaisolate bKK26.2_TH (Accession No. KY809302). Two subspecies ofPhotorhabduswere identified asP. luminescenssubsp.akhurstiiisolate bMSK25.5_TH (Accession No. KY809375) andP.luminescenssubsp.hainanensisisolate bKK17.1_TH (Accession No.KY809363). These four entomopathogenic bacteria were used in bioassays.

    2.2. Preparation of bacterial cell suspension

    XenorhabdusandPhotorhabdusin LB broth with 20% glycerol were kept at -80 ℃ in our laboratory. Each bacterial isolate was grown on NBTA agar for 4 d and incubated at room temperature. To prepare a starter, a single colony was sub-cultured into 5 mL of 5YS medium containing 5% yeast extract (w/v), 0.5% NaCl (w/v), 0.05%K2HPO4(w/v), 0.05% NH2H2PO4(w/v), and 0.02% MgSO4·7H2O(w/v). The tube was then incubated in the dark for 24 h with shaking at 160 rpm. One mL of the starter was transferred into a 50 mL tube containing 39 mL of 5YS medium. The tubes were then incubated in the dark for 24 h with shaking at 160 rpm.

    Escherichia coli(E. coli) ATCC?25922 that is used as the negative control was cultured on tryptone soy agar. The culturing process for theE. coliATCC?25922 was performed similarly to the preparation of theXenorhabdusandPhotorhabdusbacteria.

    To prepare bacterial cell suspension, the overnight cultures ofXenorhabdus,PhotorhabdusandE. coliATCC?25922 were then centrifuged at 10 000 rpm at room temperature for 20 min. The supernatants were discharged. The bacterial pellets were resuspended with sterile distilled water. The turbidity of bacterial suspension was adjusted to 1.0 with sterile distilled water at OD600nm by spectrophotometer. These bacterial suspensions were ready for using in bioassays.

    2.3. Mosquito strains

    Ae. aegyptiandAe. albopictuseggs were purchased from the Taxonomy and Reference Museum of the Department of Medical Sciences at the National Institute of Health of Thailand, Ministry of Public Health, Thailand. The filter papers containing the dried eggs of eachAedesspecies were placed in separate plastic containers containing dechlorinated water to allow theAedeslarvae to hatch.Larvae at the late third and early fourth instar were then selected out and feed with minced pet food.

    2.4. Bioassay

    Four different isolates of symbiotic bacteria (X. stockiaebNBP22.2_TH,X. indicabKK26.2_TH,P. luminescenssubsp.akhurstiibMSK25.5_TH andP. luminescenssubsp.hainanensisbKK17.1_TH)were tested as a larvicide againstAe. aegyptiandAe. albopictus. The efficacy ofXenorhabdusandPhotorhabdussuspensions against late third to fourth early instar larvae of bothAe. aegyptiandAe. albopictuswas evaluated under laboratory conditions. In each bioassay, ten larvae were placed in 100 μL of water in a well in a 24-well plate(COSTAR?, USA). Two mL of each bacterial suspension (107-108CFU/mL) was added to the well. Distilled water and suspension ofE. coliATCC?25922 were used as the negative control. The bioassay was designed to test two groups, the ‘fed group’ which wasAedeslarvae fed with minced pet food during exposure to bacterial suspension and the ‘unfed group’ which was not fed during the experiment. All bioassays were conducted in triplicate on different dates. The mortality of theAedeslarvae was monitored at 24, 48, 72 and 96 h exposure to the bacterial suspensions. The dead larvae were determined when no movement was detected when teasing with fine sterile toothpick.

    2.5. Data analysis

    Mortality ofAedeslarvae after exposure to the bacteria suspension with the comparison with the control groups was analyzed by Kruskal-Wallis test using SPSS version 17.0.P-value < 0.05 was considered as significant differences. The mortality of theAedeslarvae from both the fed and unfed groups was statistically analyzed by Mann-Whitney test.

    3. Result

    BothAe. aegyptiandAe. albopictus(late 3rd to early 4th instars larvae) were susceptible to all isolates ofXenorhabdusandPhotorhabdusbacteria. The mortality of the larvae began to die at 24 h after exposure to the bacterial suspension. In the fed group, a cell suspension ofX. stockiae(bNBP22.2_TH) demonstrated the highest toxicity toAe. aegyptilarvae (99% mortality) at 72 h after exposure.In the unfed group,X. stockiae(bNBP22.2_TH) showed the highest pathogenic effect onAe. aegyptilarvae, with 87% mortality at 96 h after exposure. Significant mortality among all bacterial isolates and negative controls (distilled water andE. coliATCC?25922) was observed at each time in the unfed group, although at a low rate of mortality (Table 1). However, the mortality rate of both the fed and unfed groups byAe. aegyptiwas not significantly different among the four bacterial isolates.

    Table 2 shows the mortality rate ofAe. albopictuslarvae after exposure to cell suspension ofXenorhabdusandPhotorhabdus.X.indica(bKK26.2_TH) was highest toxic toAe. albopictusat 96 h in both fed (82%) and unfed (96%) condition. This bacterial isolate seemed to be fast pathogens toAe. albopictushaving kill 84% of 24 h. Mortality rate at each time among bacterial isolates and controls was significantly different in both fed and unfed conditions.

    Mortality rate ofAe. aegyptiat each time between fed and unfed groups was not significant different. Significant mortality between fed and unfed groups ofAe. albopictuslarvae after exposure toX. indica(bKK26.2_TH) andP. luminescenssubsp.hainanensis(bKK17.1_TH) was observed at 24 h.

    4. Discussion

    In the present study, we demonstrate the alternative bacterial agent for controlAedesspp., a main vector for important virus infection in man. BothAedesspp. are susceptible toX. stockiae(bNBP22.2_TH)X. indica(bKK26.2_TH)P. luminescenssubsp.akhurstii(bMSK25.5_TH) andP. luminescenssubsp.hainanensis(bKK17.1_TH). It seems that the symbiotic bacteria of genusXenorhabdusandPhotorhabduscause superior mortality ofAedes.X. stockiae, asymbiotic bacterium that is found to be associated withSteinernema websteri, have been used for acaricidal and antibacterial activity[39,40].X. indicaproduces several bioactive compounds including taxlllaids A-G which has weakly effect onPlasmodium falciparum[41]. In addition, metalloprotease purified fromX. indicashowed insecticidal activity againstHelicoverpa armigera[42].P. luminescenssubsp.akhurstiiandP. luminescenssubsp.hainanensisshowed less effective againstAedes aegypti[43]. To our knowledge, it is reported for the first time that four symbiotic bacteria [P. luminescenssubsp.akhurstii(bMSK25.5_TH),P. luminescenssubsp.hainanensis(bKK17.1_TH),X. stockiae(bNBP22.2_TH) andX. indica(bKK26.2_TH) in the present study are symbiotic bacteria for oral pathogenicity againstAe. albopictus.

    Table 1 Mortality rate of Ae. aegypti larvae after exposure to cell suspension of Xenorhabdus and Photorhabdus in fed and unfed conditions in laboratory.

    Table 2 Mortality rate of Ae. albopictus larvae after exposure to cell suspension of Xenorhabdus and Photorhabdus in fed and unfed conditions in laboratory.

    Ae. aegyptiandAe. albopictus, both serious transmitting vectors of West Nile, chikungunya, dengue and zika viruses to humans, are globally distributed[1,4]. Although several control methods against these vectors have been attempted to stop the transmission of viral infections, the numbers of human case has not declined, especially dengue infection[44]. Biological controls of the vectors are an alternative measure to reduce human-mosquito contact. Our study demonstrated larvicidal activity ofX. stockiae(bNBP22.2_TH),X.indica(bKK26.2_TH),P. luminescenssubsp.akhurstii(bMSK25.5_TH) andP. luminescenssubsp.hainanensis(bKK17.1_TH) againstAe. aegyptiandAe. albopictus. Both vectors were susceptible toXenorhabdusandPhotorhabdusbacteria by oral ingestion. This may be due to the bacteria producing insecticidal compounds including isopropylstilbene, ethylstilbene, xenorhabdin and xenematide[32].To support this scenario,Photorhabdusinsect-related protein fromPhotorhabdus asymbioticashowed strong toxicity toAe. aegyptiandAe. albopictus[33]. In addition, a suspension ofPhotorhabdus luminescenssubsp.laumondiiTT01 DSM15139 andX. nematophilaATCC?19061 showed orally lethality toAe. aegyptilarvae in laboratory conditions[24].P. luminescensandX. nematophilasuspension mixed with Cry4Ba protein fromB. thuringiensissubsp.israelensisenhanced the mortality rate ofAe. aegyptiup to 87%and 95%, respectively[17]. Recently,X. nematophilamixed withB. thuringiensissubsp.israelensiswas observed to enhance the toxicity toAe. albopictusandCulex pipiens pallens[18]. In addition,Xenorhabdus ehlersiiisolated fromSteinernema scarabaeishowed good potential efficacy in killingAe. aegyptiwith 100% mortality[43].In our study, we confirmed the oral toxicity ofXenorhabdusandPhotorhabdusagainstAe. aegyptiandAe. albopictus. However, it remains unknown as to the mechanism of killing effect of these bacteria onAedesspp.

    XenorhabdusandPhotorhabdushave orally toxicity toAedesspp.,but mortality rates vary. It is possible that the different pathogenicity from each bacterial species or isolates produces different amounts and kinds of bioactive compounds. Phurealipid derivatives, the inhibitor of juvenile hormone epoxide hydrolase in insects, were produced by different isolates ofP. luminescenssubsp.akhurstii[45,46].In addition, the virulence ofXenorhabdusandPhotorhabdusvaried among insect species is related to foraging behavior[47]. This suggests that the virulent factors ofXenorhabdusandPhotorhabdusrequire further study for more deeply understanding.

    We demonstrate the potential of entomopathogenic bacteria,X.stockiae,X. indica,P. luminescenssubsp.akhurstiiandP. luminescenssubsp.hainanensis, for the control of arbovirus vectors,Ae. aegyptiandAe. albopictus, by oral ingestion. This study confirms thatXenorhabdusandPhotorhabdushave orally toxicity againstAedeslarvae and provides further information relevant to the biological control of mosquito larvae. Further studies on identification and isolation of purified useful bioactive compounds to control both larval and adult mosquitoes, and their mechanisms of killing mosquitoes, are suggested.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    This study was supported by Higher Education Research Promotion, The Commission on Higher Education, Thailand (Grant No. R2558A008) and Naresuan University (Grant No. R2557B013).We would like to thank Miss Chutima Sarai and Miss Ponsuwan Aeiwong for their assistance with the laboratory technique. Many thanks were extended to Mr. Roy Morien of the Naresuan University Language Centre for his editing assistance and advice on English expression in this document.

    [1] Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.Parasitol Res2016; 115(5):1747-1754.

    [2] Gebre Y, Forbes N, Gebre T. Zika virus infection, transmission, associated neurological disorders and birth abnormalities: A review of progress in research, priorities and knowledge gaps.Asian Pac J Trop Biomed2016;6(10): 815-824.

    [3] World Health Organization.Zika virus.Fact sheet2016a. [Online]Available from: http://www. who.int/mediacentre/factsheets/zika/en/.[Accessed on 27th December, 2016].

    [4] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue.Nature2013; 496(7446):504-507.

    [5] Baldacchino F, Caputo B, Chandre F, Drago A, della Torre A, Montarsi F, et al. Control methods against invasiveAedesmosquitoes in Europe: a review.Pest Manag Sci2015; 71(11): 1471-1485.

    [6] Naqqash MN, Gokce A, Bakhsh A, Salim M. Insecticide resistance and its molecular basis in urban insect pests.Parasitol Res2016; 115(4): 1363-1373.

    [7] Bellini R, Medici A, Puggioli A, Balestrino F, Carrieri M. Pilot field trials withAedes albopictusirradiated sterile males in Italian urban areas.J Med Entomol2013; 50(2): 317-325.

    [8] Winskill P, Harris AF, Morgan SA, Stevenson J, Raduan N, Alphey L, et al. Genetic control ofAedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression.Parasit Vectors2014; 7: 68.

    [9] Otta DA, Rott MB, Carlesso AM, da Silva OS. Prevalence ofAcanthamoebaspp. (Sarcomastigophora: Acanthamoebidae) in wild populations ofAedes aegypti(Diptera: Culicidae).Parasitol Res2012;111(5): 2017-2022.

    [10] Russell BM, Muir LE, Weinstein P, Kay BH. Surveillance of the mosquitoAedes aegyptiand its biocontrol with the copepodMesocyclops aspericornisin Australian wells and gold mines.Med Vet Entomol1996;10(2): 155-160.

    [11] Mahesh Kumar P, Murugan K, Kovendan K, Panneerselvam C, Prasanna Kumar K, Amerasan D, et al. Mosquitocidal activity ofSolanum xanthocarpumfruit extract andcopepodMesocyclops thermocyclopoidesfor the control of dengue vectorAedes aegypti.Parasitol Res2012; 111(2):609-618.

    [12] Veronesi R, Carrieri M, Maccagnani B, Maini S, Bellini R.Macrocyclops albidus(Copepoda: cyclopidae) for the biocontrol ofAedes albopictusandCulex pipiensin Italy.J Am Mosq Control Assoc2015; 31(1): 32-43.

    [13] Zuharah WF, Ahbirami R, Dieng H, Thiagaletchumi M, Fadzly N.Evaluation of sublethal effects ofIpomoea cairicaLinn. extract on life history traits of dengue vectors.Rev Inst Med Trop Sao Paulo2016; 58:44.

    [14] Zuharah WF, Yousaf A. Assessment ofGluta renghasL. andMangifera indicaL. (Sapindales: Anacardiaceae) extracts on the sublethal effects of dengue vector.J Asia Pac Entomol2016; 19(4): 1043-1051.

    [15] Francine TN, Cabral BNP, Anatole PC, Bruno MM, Pauline N,Jeanne NY. Larvicidal activities of hydro-ethanolic extracts of three Cameroonian medicinal plants againstAedes albopictus.Asian Pac J Trop Biomed2016; 6(11): 931-936.

    [16] Carolino AT, Paula AR, Silva CP, Butt TM, Samuels RI. Monitoring persistence of the entomopathogenic fungusMetarhizium anisopliaeunder simulated field conditions with the aim of controlling adultAedes aegypti(Diptera: Culicidae).Parasit Vectors2014; 7: 198.

    [17] Park Y. Entomopathogenic bacterium,Xenorhabdus nematophilaandPhotorhabdus luminescens, enhancesBacillus thuringiensisCry4Ba toxicity against yellow fever mosquito,Aedes aegypti(Diptera: Culicidae).J Asia Pac Entomol2015; 18(3): 459-463.

    [18] Park Y, Kyo Jung J, Kim Y. A mixture ofBacillus thuringiensissubsp.israelensiswithXenorhabdus nematophila-cultured broth enhances toxicity against mosquitoesAedes albopictusandCulex pipiens pallens(Diptera:Culicidae).J Econ Entomol2016; 109(3): 1086-1093.

    [19] Setha T, Chantha N, Benjamin S, Socheat D. Bacterial larvicide,Bacillus thuringiensisisraelensisstrain AM 65-52 water dispersible granule formulation impacts both dengue vector,Aedes aegypti(L.) population density and disease transmission in Cambodia.PLoS Negl Trop Dis2016;10(9): e0004973. doi:10.1371/ journal.pntd. 0004973.

    [20] Mohiddin A, Lasim AM, Zuharah WF. Susceptibility ofAedes albopictusfrom dengue outbreak areas to temephos andBacillus thuringiensissubsp.israelensis.Asian Pac J Trop Biomed2016; 6: 295-300.

    [21] Gama ZP, Nakagoshi N, Suharjono, Setyowati F. Toxicity studies for indigenousBacillus thuringiensisisolates from Malang city, East Java onAedes aegyptilarvae.Asian Pac J Trop Biomed2013; 3(2): 111-117.

    [22] Marcombe S, Darriet F, Agnew P, Etienne M, Yp-Tcha MM, Yébakima A, et al. Field efficacy of new larvicide products for control of multiresistantAedes aegyptipopulations in Martinique (French West Indies).Am J Trop Med Hyg2011; 84(1): 118-126.

    [23] Tetreau G, Stalinski R, David JP, Després L. Monitoring resistance toBacillus thuringiensissubsp.israelensisin the field by performing bioassays with each Cry toxin separately.Mem Inst Oswaldo Cruz2013;108(7): 894-900.

    [24] da Silva OS, Prado GR, da Silva JL, Silva CE, da Costa M, Heermann R.Oral toxicity ofPhotorhabdus luminescensandXenorhabdus nematophila(Enterobacteriaceae) againstAedes aegypti(Diptera: Culicidae).Parasitol Res2013; 112(8): 2891-2896.

    [25] Fang XL, Li ZZ, Wang YH, Zhang X.In vitroandin vivoantimicrobial activity ofXenorhabdus bovieniiYL002 againstPhytophthora capsiciandBotrytis cinerea.J Appl Microbiol2011; 111(1): 145-154.

    [26] Hu X, Liu Z, Li Y, Ding X, Xia L, Hu S. PirB-Cry2Aa hybrid protein exhibits enhanced insecticidal activity againstSpodoptera exigualarvae.J Invertebr Pathol2014; 120: 40-42.

    [27] Li Y, Hu X, Zhang X, Liu Z, Ding X, Xia L, et al.Photorhabdus luminescensPirAB-fusion protein exhibits both cytotoxicity and insecticidal activity.FEMS Microbiol Lett2014; 356(1): 23-31.

    [28] Grundmann F, Kaiser M, Schiell M, Batzer A, Kurz M, Thanwisai A, et al. Antiparasitic chaiyaphumines from entomopathogenicXenorhabdussp. PB61.4.J Nat Prod2014; 77(4): 779-783.

    [29] Bock CH, Shapiro-Ilan DI, Wedge DE, Cantrell CL. Identification of the antifungal compound, trans-cinnamic acid, produced byPhotorhabdus luminescens, a potential biopesticide against pecan scab.J Pest Sci2014;87(1): 155-162.

    [30] Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Hussain J, et al.Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced byPhotorhabdus temperataM1021.J Microbiol2015; 53(2): 127-133.

    [31] Shi D, An R, Zhang W, Zhang G, Yu Z. Stilbene derivatives fromPhotorhabdus temperataSN259 and their antifungal activities against phytopathogenic fungi.J Agric Food Chem2017; 65(1): 60-65.

    [32] Bode HB. Entomopathogenic bacteria as a source of secondary metabolites.Curr Opin Chem Biol2009; 13(2): 224-230.

    [33] Ahantarig A, Chantawat N, Waterfield NR, Ffrench-Constant R,Kittayapong P. PirAB toxin fromPhotorhabdus asymbioticaas a larvicide against dengue vectors.Appl Environ Microbiol2009; 75(1): 4627-4629.

    [34] Ferreira T, van Reenen CA, Endo A, Spr?er C, Malan AP, Dicks LM.Description ofXenorhabdus khoisanaesp. nov., the symbiont of the entomopathogenic nematodeSteinernema khoisanae.Int J Syst Evol Microbiol2013; 63(9): 3220-3224.

    [35] Ferreira T, van Reenen CA, Pages S, Tailliez P, Malan AP, Dicks LM.Photorhabdus luminescenssubsp.noenieputensissubsp. nov., a symbiotic bacterium associated with a novelHeterorhabditisspecies related toHeterorhabditis indica.Int J Syst Evol Microbiol2013; 63(5): 1853-1858.

    [36] Ferreira T, van Reenen CA, Endo A, Tailliez P, Pagès S, Spr?er C, et al.Photorhabdus heterorhabditissp. nov., a symbiont of the entomopathogenic nematodeHeterorhabditis zealandica.Int J Syst EvolMicrobiol2014; 64(5): 1540-1545.

    [37] Tailliez P, Laroui C, Ginibre N, Paule A, Pages S, Boemare N. Phylogeny ofPhotorhabdusandXenorhabdusbased on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa:X. vietnamensissp. nov.,P. luminescenssubsp.caribbeanensissubsp. nov.,P. luminescenssubsp.hainanensissubsp. nov.,P. temperatasubsp.khaniisubsp. nov.,P. temperatasubsp.tasmaniensissubsp. nov., and the reclassification ofP. luminescenssubsp.thracensisasP. temperatasubsp.thracensiscomb. nov.Int J Syst Evol Microbiol2010; 60(8): 1921-1937.

    [38] Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Ke Long P,Bode HB, et al. Diversity ofXenorhabdusandPhotorhabdusspp. and their symbiotic entomopathogenic nematodes from Thailand.PLoS One2012; 7(9): e43835. doi: 10.1371/journal. pone. 0043835.

    [39] Bussaman P, Sa-Uth C, Rattanasena P, Chandrapatya A. Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract ofXenorhabdus stockiaeagainst mushroom mite (Luciaphorussp.).J Zhejiang Univ Sci B2012; 13(4): 261-266.

    [40] Bussaman P, Rattanasena P. Additional property ofXenorhabdus stockiaefor inhibiting cow mastitis-causing bacteria.Biosci Biotech Res Asia2016;13(4): 1871-1878.

    [41] Kronenwerth M, Bozhüyük KA, Kahnt AS, Steinhilber D, Gaudriault S,Kaiser M, et al. Characterisation of taxlllaids A-G; natural products fromXenorhabdus indica.Chemistry2014; 20(52): 17478-17487.

    [42] Pranaw K, Singh S, Dutta D, Singh N, Sharma G, Ganguly S, et al.Extracellular novel metalloprotease fromXenorhabdus indicaand its potential as an insecticidal agent.J Microbiol Biotechnol2013; 23(11):1536-1543.

    [43] Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, et al. Isolation and identification ofXenorhabdusandPhotorhabdusbacteria associated with entomopathogenic nematodes and their larvicidal activity againstAedes aegypti.Parasit Vect2017; 10(1):440.

    [44] World Health Organization.Dengue and severe dengue.Fact sheet2016b.[Online]Available from: http://www.who.int/mediacentre/factsheets/fs117/en/. [Accessed on 28th December, 2016].

    [45] Nollmann FI, Heinrich AK, Brachmann AO, Morisseau C, Mukherjee K, Casanova-Torres áM., et al. APhotorhabdusnatural product inhibits insect juvenile hormone epoxide hydrolase.Chembiochem2015; 16(5):766-771.

    [46] Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T,Sitthisak S, et al. Screening of the antimicrobial activity against drug resistant bacteria ofPhotorhabdusandXenorhabdusassociated with entomopathogenic nematodes from Mae Wong National Park, Thailand.Front Microbiol2017; 8: 1142.

    [47] Owuama CI. Entomopathogenic symbiotic bacteria,XenorhabdusandPhotorhabdusof nematodes.World J Microbiol Biotechnol2001; 17(5):505-515.

    99精国产麻豆久久婷婷| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 免费观看人在逋| 一区二区三区精品91| 在线观看免费午夜福利视频| 精品久久久久久久久久免费视频 | 精品欧美一区二区三区在线| 亚洲综合色网址| 亚洲欧洲精品一区二区精品久久久| xxx96com| 不卡av一区二区三区| 欧美日韩亚洲高清精品| 日韩欧美一区视频在线观看| 日韩中文字幕欧美一区二区| 嫩草影视91久久| 黄网站色视频无遮挡免费观看| 久久人人97超碰香蕉20202| 在线观看66精品国产| 欧美性长视频在线观看| 久久午夜综合久久蜜桃| 精品第一国产精品| 久久 成人 亚洲| 香蕉久久夜色| 97人妻天天添夜夜摸| 一边摸一边做爽爽视频免费| 飞空精品影院首页| 亚洲国产毛片av蜜桃av| 他把我摸到了高潮在线观看| 国产三级黄色录像| 香蕉丝袜av| 午夜福利在线观看吧| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黄色淫秽网站| 丰满迷人的少妇在线观看| 无限看片的www在线观看| 亚洲欧美激情在线| 涩涩av久久男人的天堂| 亚洲av片天天在线观看| 熟女少妇亚洲综合色aaa.| 91老司机精品| 精品久久久精品久久久| av不卡在线播放| 欧美不卡视频在线免费观看 | 一级黄色大片毛片| 日韩欧美三级三区| 69精品国产乱码久久久| 免费在线观看日本一区| 乱人伦中国视频| 91成年电影在线观看| 香蕉国产在线看| 精品第一国产精品| 精品电影一区二区在线| 成人亚洲精品一区在线观看| 成人国语在线视频| 午夜激情av网站| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| 欧美日韩亚洲国产一区二区在线观看 | av天堂在线播放| 国产一区二区三区在线臀色熟女 | 日韩免费高清中文字幕av| 男女午夜视频在线观看| 久久人妻熟女aⅴ| 18禁裸乳无遮挡动漫免费视频| 国产免费男女视频| 久热这里只有精品99| 一级片免费观看大全| www.精华液| 九色亚洲精品在线播放| 中文字幕人妻丝袜一区二区| 免费在线观看亚洲国产| 欧美人与性动交α欧美软件| 午夜福利一区二区在线看| 国产精品 国内视频| 欧美国产精品一级二级三级| 亚洲精品国产区一区二| 国产精品一区二区在线观看99| 日韩一卡2卡3卡4卡2021年| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 中文欧美无线码| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 久久中文字幕一级| 欧洲精品卡2卡3卡4卡5卡区| 美女视频免费永久观看网站| 大陆偷拍与自拍| 亚洲一区高清亚洲精品| 又紧又爽又黄一区二区| 亚洲熟妇熟女久久| 热99re8久久精品国产| 成人免费观看视频高清| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 欧美日韩乱码在线| 正在播放国产对白刺激| 三上悠亚av全集在线观看| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区四区五区乱码| 国产在视频线精品| 国产精品香港三级国产av潘金莲| 香蕉国产在线看| 国产1区2区3区精品| 免费看a级黄色片| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 精品国产超薄肉色丝袜足j| 欧美日本中文国产一区发布| 在线av久久热| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点 | 十八禁高潮呻吟视频| 免费观看人在逋| 美女扒开内裤让男人捅视频| 亚洲精品在线美女| 欧美激情高清一区二区三区| 久久人妻av系列| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 狂野欧美激情性xxxx| 午夜激情av网站| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| www日本在线高清视频| 国产高清激情床上av| 一区二区三区精品91| 免费一级毛片在线播放高清视频 | 纯流量卡能插随身wifi吗| 精品久久久久久久毛片微露脸| 欧美黄色淫秽网站| 精品国产亚洲在线| 欧美激情高清一区二区三区| 国产精品 欧美亚洲| 精品一区二区三区视频在线观看免费 | 国产淫语在线视频| 亚洲黑人精品在线| 很黄的视频免费| 91老司机精品| 少妇猛男粗大的猛烈进出视频| 黑人操中国人逼视频| 久久国产精品影院| 99久久人妻综合| 国产91精品成人一区二区三区| 欧美激情高清一区二区三区| 国产欧美日韩一区二区精品| 亚洲国产中文字幕在线视频| 丁香六月欧美| 黄色成人免费大全| 久久国产精品男人的天堂亚洲| 日韩熟女老妇一区二区性免费视频| 高清黄色对白视频在线免费看| 色婷婷av一区二区三区视频| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 免费观看精品视频网站| 一a级毛片在线观看| 成人手机av| 在线国产一区二区在线| 国产av一区二区精品久久| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 99久久综合精品五月天人人| 12—13女人毛片做爰片一| 黑丝袜美女国产一区| 国产男女内射视频| 国产精品影院久久| 桃红色精品国产亚洲av| 不卡av一区二区三区| 欧美激情 高清一区二区三区| 美女 人体艺术 gogo| 9热在线视频观看99| 天堂√8在线中文| 亚洲成a人片在线一区二区| 精品福利观看| 亚洲精品美女久久av网站| 国产单亲对白刺激| 欧美 日韩 精品 国产| 黄频高清免费视频| 我的亚洲天堂| 日韩精品免费视频一区二区三区| 老司机午夜十八禁免费视频| 一级黄色大片毛片| 天堂中文最新版在线下载| 丰满迷人的少妇在线观看| 亚洲少妇的诱惑av| 亚洲熟女精品中文字幕| 欧美日韩av久久| 岛国毛片在线播放| 在线播放国产精品三级| 999久久久国产精品视频| 交换朋友夫妻互换小说| 色播在线永久视频| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 极品少妇高潮喷水抽搐| 麻豆国产av国片精品| 欧美人与性动交α欧美软件| 久久久久久久午夜电影 | 国产精品国产高清国产av | 一本综合久久免费| 国产精品九九99| av网站在线播放免费| 婷婷成人精品国产| 亚洲中文日韩欧美视频| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 国产成人免费观看mmmm| 丝袜在线中文字幕| 亚洲五月天丁香| 在线观看免费高清a一片| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 久久精品91无色码中文字幕| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 成人影院久久| av在线播放免费不卡| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 香蕉丝袜av| 我的亚洲天堂| 一进一出好大好爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 波多野结衣av一区二区av| 久久精品91无色码中文字幕| 757午夜福利合集在线观看| 亚洲精品粉嫩美女一区| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 精品欧美一区二区三区在线| av中文乱码字幕在线| 黄片大片在线免费观看| 色婷婷久久久亚洲欧美| 久久久国产精品麻豆| 成人影院久久| 久久亚洲精品不卡| 91麻豆av在线| 91成人精品电影| 欧美精品一区二区免费开放| av免费在线观看网站| 亚洲人成77777在线视频| 国产高清国产精品国产三级| 日韩成人在线观看一区二区三区| 亚洲熟女精品中文字幕| 日本黄色视频三级网站网址 | 久久久久久免费高清国产稀缺| 亚洲精品中文字幕一二三四区| 窝窝影院91人妻| 久久久精品免费免费高清| 国产熟女午夜一区二区三区| 国产视频一区二区在线看| 欧美激情高清一区二区三区| 99久久99久久久精品蜜桃| 人人妻人人爽人人添夜夜欢视频| 成人影院久久| 成年动漫av网址| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 9热在线视频观看99| 黄色视频,在线免费观看| 亚洲情色 制服丝袜| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站| 成人手机av| 国产精品一区二区精品视频观看| 亚洲av日韩在线播放| 成人精品一区二区免费| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 国产色视频综合| 曰老女人黄片| 天堂中文最新版在线下载| 精品高清国产在线一区| 精品乱码久久久久久99久播| 亚洲精品国产色婷婷电影| 免费少妇av软件| 亚洲欧美激情综合另类| 亚洲专区中文字幕在线| a在线观看视频网站| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 一夜夜www| 可以免费在线观看a视频的电影网站| 91在线观看av| av天堂在线播放| 国产男女超爽视频在线观看| 日本撒尿小便嘘嘘汇集6| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 999精品在线视频| 日韩视频一区二区在线观看| av网站在线播放免费| 建设人人有责人人尽责人人享有的| 99热只有精品国产| 一进一出抽搐动态| 曰老女人黄片| 亚洲熟妇熟女久久| 大码成人一级视频| 国产精品久久久久久精品古装| 午夜福利在线免费观看网站| 精品国内亚洲2022精品成人 | 婷婷丁香在线五月| 亚洲国产看品久久| aaaaa片日本免费| 国产在视频线精品| 久久久久精品人妻al黑| 十分钟在线观看高清视频www| 18禁观看日本| 99热国产这里只有精品6| 久久久久久免费高清国产稀缺| 亚洲欧美一区二区三区黑人| 国产激情久久老熟女| 久9热在线精品视频| 丰满迷人的少妇在线观看| 久久久久久人人人人人| 亚洲熟妇熟女久久| 高清av免费在线| 成人av一区二区三区在线看| 日韩欧美免费精品| www.熟女人妻精品国产| 好男人电影高清在线观看| 高清黄色对白视频在线免费看| 99精品在免费线老司机午夜| 丁香欧美五月| 国产欧美日韩一区二区精品| 一边摸一边抽搐一进一出视频| 国产免费现黄频在线看| 色尼玛亚洲综合影院| av线在线观看网站| 亚洲人成77777在线视频| 欧美丝袜亚洲另类 | 久久影院123| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 国产高清国产精品国产三级| 免费黄频网站在线观看国产| 国产欧美日韩一区二区精品| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 成人18禁在线播放| av线在线观看网站| 久久亚洲真实| 亚洲 欧美一区二区三区| 在线视频色国产色| 亚洲国产精品一区二区三区在线| 在线国产一区二区在线| 一进一出好大好爽视频| 国产极品粉嫩免费观看在线| 亚洲欧美精品综合一区二区三区| 亚洲熟妇熟女久久| 免费av中文字幕在线| av线在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 免费观看人在逋| 中文字幕最新亚洲高清| 亚洲第一av免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 美女国产高潮福利片在线看| 岛国毛片在线播放| 久久影院123| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 久久香蕉精品热| 久久中文字幕人妻熟女| 国产日韩一区二区三区精品不卡| 啦啦啦视频在线资源免费观看| 久久亚洲精品不卡| 操美女的视频在线观看| 91字幕亚洲| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 精品人妻熟女毛片av久久网站| 国产成人av教育| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 黑人巨大精品欧美一区二区mp4| 日韩欧美一区二区三区在线观看 | 欧美乱码精品一区二区三区| 天堂动漫精品| 很黄的视频免费| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 丁香六月欧美| 丰满的人妻完整版| 久久久国产成人免费| 欧美国产精品va在线观看不卡| 久久香蕉国产精品| 成人18禁在线播放| 啦啦啦免费观看视频1| 国产国语露脸激情在线看| 午夜91福利影院| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| 男人的好看免费观看在线视频 | 精品无人区乱码1区二区| 久久国产精品影院| 大陆偷拍与自拍| 中文字幕最新亚洲高清| 精品国产一区二区三区四区第35| 欧美日韩一级在线毛片| 手机成人av网站| 亚洲第一青青草原| 首页视频小说图片口味搜索| 日韩中文字幕欧美一区二区| av网站免费在线观看视频| 美女福利国产在线| 国产免费av片在线观看野外av| 久久久久视频综合| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 国产亚洲精品一区二区www | 国产精品一区二区在线不卡| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 亚洲色图综合在线观看| 少妇被粗大的猛进出69影院| 精品无人区乱码1区二区| 纯流量卡能插随身wifi吗| 亚洲av片天天在线观看| 另类亚洲欧美激情| 中文字幕色久视频| 一级黄色大片毛片| 中文字幕另类日韩欧美亚洲嫩草| 黄色a级毛片大全视频| av视频免费观看在线观看| 女人精品久久久久毛片| 国产成人欧美| 久久久久国内视频| 亚洲一区二区三区不卡视频| 一二三四社区在线视频社区8| 丰满迷人的少妇在线观看| 午夜免费观看网址| 丰满人妻熟妇乱又伦精品不卡| 久久久国产欧美日韩av| 无人区码免费观看不卡| 亚洲精品在线美女| 69av精品久久久久久| 一本大道久久a久久精品| 日韩熟女老妇一区二区性免费视频| 欧美色视频一区免费| 久久精品亚洲熟妇少妇任你| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩高清在线视频| 亚洲片人在线观看| 99热网站在线观看| 91成人精品电影| 性少妇av在线| 91字幕亚洲| 久99久视频精品免费| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 少妇 在线观看| 日韩视频一区二区在线观看| av国产精品久久久久影院| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 1024视频免费在线观看| 香蕉久久夜色| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩高清在线视频| 热99久久久久精品小说推荐| 伦理电影免费视频| 国产真人三级小视频在线观看| 精品久久久久久电影网| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 国产99白浆流出| 国产欧美日韩一区二区精品| 亚洲欧美激情在线| 嫁个100分男人电影在线观看| 在线观看免费视频日本深夜| 精品福利永久在线观看| 欧美日韩精品网址| 亚洲精品自拍成人| 少妇 在线观看| 欧美成狂野欧美在线观看| 亚洲成人免费电影在线观看| 国产成人影院久久av| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区| 国产成人精品久久二区二区免费| 亚洲人成77777在线视频| 黑人操中国人逼视频| 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区| 欧美性长视频在线观看| 国产精品久久久久久人妻精品电影| 美国免费a级毛片| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 成在线人永久免费视频| 久久国产亚洲av麻豆专区| 大香蕉久久网| 成人精品一区二区免费| 99国产精品免费福利视频| 最近最新中文字幕大全电影3 | 久久香蕉国产精品| 精品国产国语对白av| 国内毛片毛片毛片毛片毛片| 热re99久久国产66热| 国产一区二区激情短视频| 看片在线看免费视频| 亚洲成av片中文字幕在线观看| 久久国产精品人妻蜜桃| 午夜福利影视在线免费观看| 精品久久久久久久毛片微露脸| 搡老熟女国产l中国老女人| 亚洲av电影在线进入| 精品久久久精品久久久| 欧美日韩亚洲综合一区二区三区_| av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放 | 777米奇影视久久| 国产不卡一卡二| 多毛熟女@视频| 他把我摸到了高潮在线观看| 91大片在线观看| 精品国产美女av久久久久小说| 国产日韩一区二区三区精品不卡| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 淫妇啪啪啪对白视频| 亚洲熟妇熟女久久| 少妇猛男粗大的猛烈进出视频| 老司机影院毛片| 王馨瑶露胸无遮挡在线观看| 极品教师在线免费播放| 老司机在亚洲福利影院| 国产精品成人在线| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 正在播放国产对白刺激| 极品教师在线免费播放| 妹子高潮喷水视频| 99久久综合精品五月天人人| 欧美激情极品国产一区二区三区| 一边摸一边抽搐一进一出视频| 日本一区二区免费在线视频| 日韩欧美一区二区三区在线观看 | 在线天堂中文资源库| 下体分泌物呈黄色| 精品无人区乱码1区二区| 久久精品国产清高在天天线| 又黄又粗又硬又大视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黑人精品巨大| 精品卡一卡二卡四卡免费| 超色免费av| 亚洲欧美色中文字幕在线| 一级毛片女人18水好多| 国产精品久久久久久人妻精品电影| 欧美+亚洲+日韩+国产| 国产高清国产精品国产三级| 午夜亚洲福利在线播放| 欧美日韩亚洲高清精品| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 国产成人欧美| 国产精品 欧美亚洲| 精品国产一区二区三区久久久樱花| 国产99白浆流出| 亚洲精品国产一区二区精华液| 成人亚洲精品一区在线观看| 中文亚洲av片在线观看爽 | 欧美激情 高清一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 国产淫语在线视频| 亚洲av成人一区二区三| 国产色视频综合| 精品视频人人做人人爽| 精品国产国语对白av| 如日韩欧美国产精品一区二区三区| 久久狼人影院| 99久久99久久久精品蜜桃| 欧美乱妇无乱码| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 黄片大片在线免费观看| 午夜福利欧美成人| netflix在线观看网站| 国产成人精品久久二区二区91| 亚洲熟女毛片儿| 91成年电影在线观看| 黄色片一级片一级黄色片| 精品人妻1区二区| 在线av久久热| 国产主播在线观看一区二区| 黄片播放在线免费| 久久中文字幕人妻熟女| 中文字幕制服av| 国产日韩一区二区三区精品不卡|