• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Larvicidal efficacy of crude and fractionated extracts of Dracaena loureiri Gagnep against Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus mosquito vectors

    2018-06-29 07:43:44DamrongpanThongwatRatchanapornChokchaisiriLucksagoonGanranooNophawanBunchu

    Damrongpan Thongwat, Ratchanaporn Chokchaisiri, Lucksagoon Ganranoo, Nophawan Bunchu

    1Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand

    2Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand

    3Department of Chemistry, School of Science, University of Phayao, Phayao, Thailand

    1. Introduction

    Mosquito-borne diseases remain the biggest health problem for humans worldwide. In Thailand, Aedes aegypti (Ae. aegypti)and Aedes albopictus (Ae. albopictus) are the primary vectors for transmitting dengue and dengue hemorrhagic fever[1], Anopheles minimus (An. minimus) is one of the primary vector for the seasonal outbreaks of malaria[2], and Culex quinquefasciatus (Cx.quinquefasciatus) transmits Japanese encephalitis[3]. In 2017, the Bureau of Epidemiology, Department of Disease Control Ministry of Public Health in Thailand reported that more than 30000 Thai were infected by those mosquitoes-borne diseases.

    Insecticides have traditionally been the first option for controlling outbreaks of vector-borne diseases, owing to their outstanding efficacy[4]. Temephos, the most well-known larvicide, is widely used for controlling the mosquito larvae population[5]. However,continuous use of temephos has led to negative effects on humans.Moreover, reports of temephos-resistant mosquitoes are continuously being published[6-8]. Therefore, plant biosubstances have been the focus of replacement insecticides.

    Plant extracts have been a challenging subject with regard to vector control because of the abundance of plant species and human safety issues. One potentially safer alternative is Dracaena loureiri Gagnep(D. loureiri), commonly known as “Chan Pha”, “Chan Daeng”,and “Lukka Chan”. D. loureiri is a folkloric medical plant with antipyretic and analgesic properties that is used in Thailand for the treatment of colds, fever, cough, in flammation, and gastrointestinal disturbances[9,10]. We previously reported on the larvicidal efficacy of crude extract from the endocarp of D. loureiri against thirdstage larvae of Ae. aegypti, in which the 24-h and 48-h lethal concentration 50 (LC50) values were 84.00 mg/L and < 50.00 mg/L,respectively[11]. Thus, we aimed to assess the larvicidal efficacy of crude and fractionated extracts of D. loureiri against Ae. aegypti and other mosquito species (i.e., Ae. albopictus, Cx. quinquefasciatus, and An. minimus).

    2. Materials and methods

    2.1. Crude extracts

    Crude extracts of D. loureiri (voucher number: DTNU008) endocarp were prepared according to the method outlined in the previous study[11]. Brie fly, the fruits were collected from naturally growing trees and cleaned with tap water. Their endocarps (2.36 kg) were completely dried in a hot air oven at 45 ℃. The dried endocarps(586.33 g) were ground with an electric blender at 22000 r/min,and the resulting dried powder was macerated with absolute ethanol at a ratio of 1:10 (powder:solvent, w/v) with 24 h of continuous shaking (180 r/min) on a rotary shaker. The suspension was then filtered through a WhatmanTM No.1 filter paper (GE Healthcare UK Limited, UK) via a Büchner funnel. Afterward, the extracts were evaporated to dryness under reduced pressure to yield crude extract(26.29 g), which was stored in a desiccator.

    2.2. Column chromatographic fractionation

    The crude extract was fractionated by column chromatography(Merck silica gel 60 PF254, 250 g) using a gradient solvent system of CH2Cl2, CH2Cl2–MeOH, and MeOH, with increasing amounts of the more polar solvent (mobile phase: 10% MeOH in dichloromethane).After heating at 90–110 ℃ for 4 min, the developing reagent(anisaldehyde reagent, consisting of 3 mL p-methoxybenzaldehyde,2 mL concentrated sulfuric acid, 2 mL water, and 90 mL absolute ethanol) caused organic compounds to emit specific colors, which were examined by thin-layer chromatography. From there, six groups of fractionated extracts were obtained: RC-DT 009 (1.23 g),RC-DT 010 (0.59 g), RC-DT 011 (0.75 g), RC-DT 012 (0.70 g),RC-DT 013 (3.80 g) and RC-DT 014 (1.31 g).

    2.3. Mosquito colonization

    Ae. aegypti and Ae. albopictus colonies were obtained from laboratory strains from the Department of Microbiology and Parasitology,Faculty of Medical Science, Naresuan University, Thailand. Cx.quinquefasciatus and An. minimus were obtained from laboratory colonies from the Department of Parasitology, Faculty of Medicine,Chiang Mai University, Chiang Mai, Thailand. The larvae were reared in tap water under laboratory conditions: (25±2) ℃, 70%–80%relative humidity, and 10:14 (light:dark) photoperiod. Larval food consisted of powdery dog biscuits (for Aedes and Culex) and fish food (for Anopheles). After pupation, the larvae were transferred into plastic cups filled with tap water that were placed in mosquito cages (30 cm × 30 cm × 30 cm). After emergence, the adults were provided solutions of 5% sugar mixed with 5% multivitamin syrup.After 5 d, the females were provided blood meal through an artificial membrane feeding method. After blood-feeding, female Aedes and Culex were reared until gravid and permitted to lay eggs. Meanwhile,blood-fed female Anopheles were mated though an artificial mating method[12], after which they were permitted to lay eggs. After the eggs hatched, the larvae were reared according to the above conditions until they were required for bioassays.

    2.4. Larvicidal bioassay

    The protocol for testing larvicidal activity followed that of our previous study[11]. Brie fly, a stock solution of crude and fractionated extracts (1%,w/v) were prepared with dimethyl sulfoxide as the diluent. From the stock solutions, a series of crude and fractionated extract concentrations were prepared (30–190 mg/L and 2–110 mg/L, respectively). Afterward,200 mL of each concentration of extract was placed into plastic bowls.Twenty-five of the late third-stage larvae were transferred into the extract solutions. Mortality rates were determined after 24 h and 48 h of exposure. Larvae confirmed dead when they were pricked by a needle and not moved. This experiment was performed in quadruplicate (total of 100 larvae for each concentration). Dimethyl sulfoxide in distilled water was used as the control.

    2.5. Data analysis

    Larval mortality data from the larvicidal bioassays were analyzed using a computerized probit analysis for determination of LC50and lethal concentration 90 (LC90)[13]. The chi-square values and 95%fiducial confidence intervals [lower confidence limit (LCL) and upper confidence limit (UCL)] were calculated. A commercial LdP Line?software (Plant Protection Research Institute, Egypt) was used.

    3. Results

    The larvicidal activities of D. loureiri crude endocarp extract against Ae. aegypti, Ae. albopictus, Cx. quinquefasciatus, and An. minimus mosquitoes were presented in Table 1. At 24 h, An. minimus larvae had the highest susceptibility to crude extract (LC5077.88 mg/L). Its 24-h LC50was significantly lower than that of Ae. aegypti (224.73 mg/L), Ae. albopictus (261.75 mg/L), and Cx. quinquefasciatus (282.86 mg/L). At 48 h, An. minimus was so highly susceptible to crude extract (> 90% mortality rate at 30 mg/L) that we did not calculate the 48-h LC50value, although it was estimated to be < 30 mg/L.

    Fractionated extraction by column chromatography produced 188 eluted fractions from the crude extract. The fractions were classified into six groups: RC-DT 009 to RC-DT 014 (Figure 1). All groups were preliminarily screened for larvicidal ability. One concentration(110 mg/L) from each group was tested against the third-stage Ae.aegypti larvae. After 24 h of exposure, the RC-DT 012 and RC-DT 013 fractions produced > 90% mortality rates, while the remaining fractions produced 0%–3% mortality rates. For that reason, RC-DT 012 and RC-DT 013 were selected for the bioassays.

    The results of larvicidal activity experiments on RC-DT 012 and RCDT 013 were presented in Tables 2 and 3, respectively. In contrast to results from crude extract, Cx. quinquefasciatus (as opposed to An.minimus) was extremely susceptible to both fractions. For RC-DT 012,the 24-h LC50and LC90values were 0.66 and 3.29 mg/L, respectively.For RC-DT 013, those values were 0.94 and 2.77 mg/L, respectively. An.minimus, Ae. aegypti, and Ae. albopictus larvae had minor susceptibility to the fractions. However, the mortality rates of all mosquito species were significantly higher for those exposed to fractionated extracts than for those exposed to crude extract.

    The LC50and LC90values of the crude and fractionated extracts for each mosquito species were compared and statistically analyzed.Results showed that the larvicidal activities of fractionated extracts were statistically greater than that of the crude extract for all mosquito species. In fact, the only values that were not statistically significant were the 48-h LC90values for Ae. albopictus (crudeextract: 279.89 mg/L; and RC-DT 012: 224.29 mg/L). According to the results in this study, fractionated extracts were more effective than crude extract against all tested mosquito species.

    Table 1 Larvicidal activities of crude ethanolic D. loureiri extracts against the third-stage larvae of 4 mosquito vectors.

    Table 2 Larvicidal activities of RC-DT 012 fractionated D. loureiri extract against the third-stage larvae of 4 mosquito vectors.

    Figure 1. Thin-layer chromatography spots of organic compounds from isolated fractions (RC-DT 009-014) of D. loureiri.

    4. Discussion

    Surprisingly, the crude ethanol endocarp extract of D. loureiri had lower activity against Ae. aegypti at 24 h (LC50224.73 mg/L) and 48 h (LC5093.37 mg/L) than in the previous study (24-h LC5084.00 mg/L and 48-h LC50< 50 mg/L)[11]. Both studies utilized the same protocol for producing crude extract, so the differences in larvicidal efficacy could be attributed to climate and seasonal difference. That is, the previous study used plants harvested in October 2013[11];this study used the same plants, but the plants were harvested in September 2016.

    Of all mosquito species tested, An. minimus showed the greatest susceptibility to D. loureiri crude extract. Other species (Ae. aegypti, Ae.albopictus, and Cx. quinquefasciatus) demonstrated a significant, threefold greater tolerance than that of An. minimus. Similarly, other studies have found that Anopheles larvae are more susceptible to plant extracts than other mosquitoes. For example, Govindarajan et al. discovered that Anopheles stephensi is more susceptible (LC5061.65 μg/mL) to Origanum scabrum essential oil than Ae. aegypti (LC5067.13 μg/mL),Cx. quinquefasciatus (LC5072.45 μg/mL), and Culex tritaeniorhynchus(LC5078.87 μg/mL)[14]. In addition, Anopheles stephensi is more susceptible to Terminalia chebula extract than Ae. aegypti and Cx.quinquefasciatus, with LC50values of 87.13, 93.24, and 111.98 ppm,respectively[15].

    Table 3 Larvicidal activities of RC-DT 013 fractionated D. loureiri extract against the third-stage larvae of 4 mosquito vectors.

    While An. minimus was the species most susceptible to crude extract,this did not hold true for fractionated extracts. On the contrary, the mosquitoes most susceptible to RC-DT 012 (LC500.66 mg/L) and RC-DT 013 (LC500.94 mg/L) were Cx. quinquefasciatus, which had the lowest LC50values. Furthermore, Cx. quinquefasciatus had the highest tolerance (LC50282.86 mg/L) to crude extract compared to other species: Ae. aegypti (LC50224.73 mg/L), Ae. albopictus (LC50261.75 mg/L), and An. minimus (LC5077.88 mg/L). This outcome could not be explained because of the data limitations of this study.However, we hypothesize that both fractions (RC-DT 012 and RCDT 013) must contain compounds that are highly toxic only to Culex larvae.

    The fractionated extracts of D. loureiri provided much better larvicidal efficacy against mosquito vectors than crude extract, which concurs with studies on Sphaeranthus indicus Linn. (Asteraceae)extracts. In those studies, steam-distilled crude extract of leaves were compared with the most effective fractionated ethyl acetate extract of the whole plant[16,17], revealing that fractionated extract is more effective than crude extract against Ae. aegypti (24-h LC5036.76 ppm vs 140 ppm, respectively) and Cx. quinquefasciatus (24-h LC5032.60 ppm vs 130 ppm, respectively).

    Our findings suggest that the larvicidal activity of crude extract was not a synergistic action of all compounds in the extract, echoing another recent study that reported the same[18]. In that study, only two of seven groups of fractionated extracts of Acacia pennata (L.)Willd. subsp. insuavis shoot tips contained compounds active against Ae. aegypti larvae. The LC50values of the Fr-G2 and Fr-G3 fractions were 50.75 and 39.45 mg/L, respectively, while the LC50values of the other fractions (Fr-G1 and Fr-G4–Fr-G7) were > 100 mg/L.Similarly, our study found that the active substances in D. loureiri extract were contained only in RC-DT 012 and RC-DT 013, which had the lowest LC50and LC90values for all tested mosquito species.Phytochemical studies have revealed several flavonoids isolated from stems of D. loureiri, including homoiso flavans[9], dihydrochalcone[19],and stilbene[20]. Of those, (2S)-pinocembrin, (3S)-7,4′-dihydroxy-3-(4-hydroxybenzyl)-chromane, and loureirin D have antibacterial activity against Staphylococcus aureus and Bacillus subtilis; and 7,4′-dihydroxyflavan is fungitoxic against Botrytis cinerea and Cladosporium herbarum[9]. Studies by Meksuriyen and Cordell and Ichikawa et al. have reported that retrodihydrochalcones and homoiso flavones isolated from stem wood are estrogen agonists[19,21].In addition, stilbenoids, isolated from stem wood are potent inhibitors of cyclooxygenase (COX)-1 and COX-2 enzymes[20]. Although some phytochemical constituents and their activities have been studied,the phytochemical compounds in the fruit endocarp of D. loureiri have never been investigated. Moreover, until our previous study of crude extract[11], the larvicidal activity of D. loureiri has never been elucidated. Thus, the results of this study could not be compared to the results of other studies. Further studies on the larvicidal activity of D. loureiri extract, phytochemical constituent analysis (e.g., gas chromatography-mass spectroscopy)[22], purification, and mosquito larvicide evaluation of substances purified from the RC-DT 012 and RC-DT 013 groups must be performed.

    Conflict of interest statement

    The authors declare that there is no conflict of interest.

    Acknowledgements

    The authors acknowledge the Naresuan University Research Fund (Reference Number: R2560B057) for the financial support and Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University for the laboratory facilities.We would like to thank Asst. Prof. Dr. Anuluck Junkum, the staff of Department of Parasitology, Faculty of Medicine, Chiang Mai University, Thailand, and Dr. Danita Champakaew for their laboratory assistance.

    [1] Sallam MF, Fizer C, Pilant AN, Whung PY. Systematic review: Land cover, meteorological, and socioeconomic determinants of Aedes mosquito habitat for risk mapping. Int J Environ Res Public Health 2017; 14(10):e1230.

    [2] Tainchum K, Kongmee M, Manguin S, Bangs MJ, Chareonviriyaphap T. Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol 2015; 31(3): 109-119.

    [3] Huang YS, Hettenbach SM, Park SL, Higgs S, Barrett AD, Hsu WW, et al. Differential infectivities among different Japanese encephalitis virus genotypes in Culex quinquefasciatus mosquitoes. PLOS Negl Trop Dis 2016; 10(10): e0005038.

    [4] Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V,Ngoen-Klan R. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 2013; 6(1): e280.

    [5] George L, Lenhart A, Toledo J, Lazaro A, Han WW, Velayudhan R, et al. Community-effectiveness of temephos for dengue vector control: A systematic literature review. PLos Negl Trop Dis 2015; 9(9): e0004006.

    [6] Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLos Negl Trop Dis 2013; 7(9): e2438.

    [7] ChediakM, Pimenta FG, Coelho GE, Braga IA, Lima JBP, Cavalcante KRLJ, et al. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Mem Inst Oswaldo Cruz Rio De Janeiro 2016; 111(5): 311-321.

    [8] Bellinato DF, Viana-Medeiros F, Araujo SC, Martins AJ, Lima JBP, Valle D. Resistance status to the insecticides temephos, deltamethrin, and diflubenzuron in Brazilian Aedes aegypti population. BioMed Res Int 2016;2016(4): 1-12.

    [9] Meksuriyen D, Cordell GA. Traditional medicinal plants of Thailand,IX. 10-hydroxy-11-methoxydracaenone and 7,10-dihydroxy-11-methoxydracaenone from Dracaena loureiri. J Nat Prod 1987; 50(6): 1118-1125.

    [10] Makchuchit S, Itharat A, Tewtrakul S. Anti-allergic activity of Thai medicinal plants. Planta Med 2009; 75(09). Doi: 10.1055/s-0029-1234527.

    [11] Thongwat D, Lamlertthon S, Pimolsri U, Bunchu N. Larvicidal activity of endocarp and seed crude extracts of Dracaena loureiri Gagnep against Aedes aegypti (L.) mosquito. Asian Pac J Trop Biomed 2017; 7: 222-226.

    [12] Ow Yang CK, Sta Maria FL, Wharton RH. Maintenance of a laboratory colony of Anopheles maculatus Theobald by artificial mating. Mosq News 1963; 23: 34-35.

    [13] Finney DJ. Probit analysis. 3rd edition. Cambridge: Cambridge University Press; 1971, p. 1-333.

    [14] Govindarajan M, Kadaikunnan S, Alharbi NA, Benelli G. Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr.(Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res Int 2016; 23(22): 23228-23238.

    [15] Veni T, Pushpanathan T, Mohanraj J. Larvicidal and ovicidal activity of Terminalia chebula Retz. (Family: Combretaceae) medicinal plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. J Parasit Dis 2017; 41(3): 693-702.

    [16] Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES,Ponsankar A, Selin-Rani S, et al. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ Sci Pollut Res 2017. Doi:10.1007/s11356-017-8952-2.

    [17] Arivoli S, Tennyson S, Raveen R, Jayakumar M, Senthikumar B,Govindarajan M, et al. Larvicidal activity of fractions of Sphaeranthus indicus Linnaeus (Asteraceae) ethyl acetate whole plant extract against Aedes aegypti Linnaeus 1762, Anopheles stephensi Liston 1901 and Culex quinquefasciatus Say 1823 (Diptera: Culicidae). Int J Mosq Res 2016; 3:18-30.

    [18] Thongwat D, Ganranoo L, Chokchaisiri R. Larvicidal and pupicidal activities of crude and fractionated extracts of Acacia pennata (L.) Willd.Subsp insuavis shoot tips against Aedes aegypti (L.) (Diptera: Culicidae).Southeast Asian J Trop Med Public Health 2017; 48: 27-36.

    [19] Ichikawa K, Kitaoka M, Taki M, Takaishi S, Yasuteru I, Boriboon M,et al. Retrodihydrochalcones and Homoisoflavones isolated from Thai medicinal plant Dracaena loureiri and their estrogen agonist activity.Planta Med 1997; 63(06): 540-543.

    [20] Likhitwitayawuid K, Sawasdee K, Kirtikara K. Flavoniods and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Planta Med 2002; 68(9): 841-843.

    [21] Meksuriyen D, Cordell GA. Retrodihydrochalcones from Dracaena loureiri. J Nat Prod 1998; 51(6): 1129-1135.

    [22] Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi IO.Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed 2014; 4: 30-34.

    在现免费观看毛片| 黑人高潮一二区| 免费看av在线观看网站| 国产精品人妻久久久久久| 秋霞在线观看毛片| 一级黄片播放器| 久久久久性生活片| 麻豆乱淫一区二区| 韩国av在线不卡| 久99久视频精品免费| 1024手机看黄色片| 丝袜美腿在线中文| 一级二级三级毛片免费看| 免费看美女性在线毛片视频| 美女xxoo啪啪120秒动态图| 18禁在线播放成人免费| 欧美性感艳星| 一夜夜www| 一级毛片久久久久久久久女| 丰满乱子伦码专区| 噜噜噜噜噜久久久久久91| 嫩草影院精品99| 久久久精品欧美日韩精品| 国产成人福利小说| 日韩欧美三级三区| 国产私拍福利视频在线观看| 99久久精品热视频| 精品一区二区免费观看| 日日撸夜夜添| 成人三级黄色视频| 身体一侧抽搐| 国产老妇女一区| 国产淫语在线视频| 久久久久久久亚洲中文字幕| 蜜桃久久精品国产亚洲av| 嘟嘟电影网在线观看| 婷婷色av中文字幕| 国产人妻一区二区三区在| 亚洲欧美中文字幕日韩二区| 成人av在线播放网站| 乱系列少妇在线播放| 久久精品夜色国产| 能在线免费观看的黄片| 成人av在线播放网站| 99久久精品国产国产毛片| 亚洲欧美日韩高清专用| 大香蕉97超碰在线| 老司机影院成人| 亚洲va在线va天堂va国产| 日韩高清综合在线| 午夜老司机福利剧场| 91精品伊人久久大香线蕉| 91精品伊人久久大香线蕉| 我要搜黄色片| 国产高清有码在线观看视频| 成人特级av手机在线观看| 丰满乱子伦码专区| 中国国产av一级| 免费观看人在逋| 狂野欧美激情性xxxx在线观看| 亚洲熟妇中文字幕五十中出| 久久久久久国产a免费观看| 亚洲国产精品专区欧美| 亚洲欧美成人综合另类久久久 | 一级毛片久久久久久久久女| 久久久精品94久久精品| 爱豆传媒免费全集在线观看| 日韩一本色道免费dvd| 色综合色国产| a级一级毛片免费在线观看| 日韩欧美在线乱码| 麻豆一二三区av精品| 欧美变态另类bdsm刘玥| 老女人水多毛片| 国产色爽女视频免费观看| 午夜精品一区二区三区免费看| 国产一区有黄有色的免费视频 | 乱系列少妇在线播放| 麻豆乱淫一区二区| 晚上一个人看的免费电影| 亚洲欧美中文字幕日韩二区| 国产精华一区二区三区| 女人十人毛片免费观看3o分钟| 女人十人毛片免费观看3o分钟| 丰满少妇做爰视频| 麻豆成人午夜福利视频| 国产美女午夜福利| 超碰97精品在线观看| 国产大屁股一区二区在线视频| 国产一区有黄有色的免费视频 | 韩国高清视频一区二区三区| 中文字幕亚洲精品专区| 中文字幕人妻熟人妻熟丝袜美| 成人美女网站在线观看视频| 国产色爽女视频免费观看| 男女那种视频在线观看| 免费人成在线观看视频色| 国产精品不卡视频一区二区| 欧美+日韩+精品| 看十八女毛片水多多多| 中文字幕av成人在线电影| 亚洲精品日韩在线中文字幕| 日产精品乱码卡一卡2卡三| 久久久久精品久久久久真实原创| 国产精品,欧美在线| 国产精品三级大全| 美女xxoo啪啪120秒动态图| 狠狠狠狠99中文字幕| 午夜免费激情av| 成年免费大片在线观看| 乱码一卡2卡4卡精品| 国产激情偷乱视频一区二区| 国产成人一区二区在线| 国内精品一区二区在线观看| 不卡视频在线观看欧美| 欧美日本视频| 成年版毛片免费区| 日本-黄色视频高清免费观看| 又粗又爽又猛毛片免费看| 91av网一区二区| 亚洲怡红院男人天堂| 国产男人的电影天堂91| or卡值多少钱| 亚洲av熟女| 最后的刺客免费高清国语| 亚洲av免费高清在线观看| 午夜激情欧美在线| 如何舔出高潮| 99久久成人亚洲精品观看| 十八禁国产超污无遮挡网站| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 国产精品国产高清国产av| 午夜福利在线观看免费完整高清在| 亚洲精品亚洲一区二区| 成人国产麻豆网| 99久久中文字幕三级久久日本| 嫩草影院精品99| 18禁在线无遮挡免费观看视频| 春色校园在线视频观看| 大香蕉97超碰在线| 麻豆乱淫一区二区| 99久久人妻综合| 欧美潮喷喷水| 国产精品乱码一区二三区的特点| 国产免费福利视频在线观看| 日本免费一区二区三区高清不卡| 欧美日本亚洲视频在线播放| 国产成人91sexporn| 天堂√8在线中文| 日韩强制内射视频| 国产高清国产精品国产三级 | 最近的中文字幕免费完整| a级毛色黄片| av线在线观看网站| 美女被艹到高潮喷水动态| 色综合色国产| 人妻夜夜爽99麻豆av| 欧美日韩精品成人综合77777| 国产国拍精品亚洲av在线观看| 综合色丁香网| 欧美xxxx黑人xx丫x性爽| 午夜激情欧美在线| 精品久久久久久久久久久久久| 国产一区有黄有色的免费视频 | 国产精品蜜桃在线观看| 十八禁国产超污无遮挡网站| 欧美日本视频| 伦理电影大哥的女人| 日韩一本色道免费dvd| 免费播放大片免费观看视频在线观看 | 国产午夜精品一二区理论片| 欧美人与善性xxx| 久久久久久九九精品二区国产| 国产精品国产三级国产av玫瑰| 一夜夜www| 国产亚洲精品久久久com| 久久精品国产99精品国产亚洲性色| 亚洲三级黄色毛片| 看免费成人av毛片| 国产精品一区二区性色av| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久com| 亚洲成人久久爱视频| 尤物成人国产欧美一区二区三区| 波多野结衣巨乳人妻| 最近中文字幕2019免费版| 亚洲激情五月婷婷啪啪| www.色视频.com| 最近视频中文字幕2019在线8| 久久午夜福利片| 少妇人妻精品综合一区二区| 国产真实乱freesex| 美女cb高潮喷水在线观看| 成人性生交大片免费视频hd| 欧美成人免费av一区二区三区| 精品国内亚洲2022精品成人| 亚洲国产精品合色在线| 2022亚洲国产成人精品| 国产黄a三级三级三级人| 国产成人a∨麻豆精品| 麻豆av噜噜一区二区三区| 欧美潮喷喷水| 身体一侧抽搐| 亚洲av男天堂| 日本免费a在线| 国产美女午夜福利| 夜夜爽夜夜爽视频| 少妇高潮的动态图| 纵有疾风起免费观看全集完整版 | 天天一区二区日本电影三级| 寂寞人妻少妇视频99o| 久久99精品国语久久久| 国产精品一区二区三区四区久久| 国产高清有码在线观看视频| 久久久国产成人免费| 亚洲av成人精品一区久久| av福利片在线观看| 2021天堂中文幕一二区在线观| 国产私拍福利视频在线观看| 一级二级三级毛片免费看| 99久国产av精品国产电影| 桃色一区二区三区在线观看| 精品久久久噜噜| 国产精品一区二区在线观看99 | 久久久久久久久久成人| 国产高清不卡午夜福利| 国产一区二区三区av在线| www.色视频.com| 岛国在线免费视频观看| 久久精品夜色国产| 日本一本二区三区精品| 亚洲,欧美,日韩| 日韩人妻高清精品专区| 七月丁香在线播放| 丝袜美腿在线中文| 超碰97精品在线观看| 99久久精品一区二区三区| 你懂的网址亚洲精品在线观看 | 美女高潮的动态| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 亚洲av成人av| 99久久精品国产国产毛片| 国产在线一区二区三区精 | 亚洲欧洲国产日韩| 岛国在线免费视频观看| 成人鲁丝片一二三区免费| 欧美高清成人免费视频www| 在线天堂最新版资源| 精品一区二区免费观看| 69人妻影院| 国产精品伦人一区二区| 欧美人与善性xxx| 少妇人妻一区二区三区视频| 亚洲av电影在线观看一区二区三区 | 国产大屁股一区二区在线视频| 一级黄色大片毛片| 99久久中文字幕三级久久日本| 亚洲国产最新在线播放| 欧美成人午夜免费资源| 欧美不卡视频在线免费观看| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 国产精品国产三级国产专区5o | 国产亚洲最大av| 精品人妻熟女av久视频| 国产色婷婷99| 永久免费av网站大全| 男女国产视频网站| 国产精品一区www在线观看| 一级毛片aaaaaa免费看小| 亚洲精品乱码久久久久久按摩| 国产av不卡久久| 人妻少妇偷人精品九色| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 观看美女的网站| 国产在视频线在精品| 99视频精品全部免费 在线| 看非洲黑人一级黄片| 国产视频首页在线观看| 男插女下体视频免费在线播放| 国产成人精品一,二区| 亚洲中文字幕一区二区三区有码在线看| 国产视频首页在线观看| 直男gayav资源| 成人毛片60女人毛片免费| 亚洲精品国产成人久久av| 久久草成人影院| 色网站视频免费| 国产私拍福利视频在线观看| 在现免费观看毛片| 国产又色又爽无遮挡免| 亚洲精品日韩av片在线观看| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| 欧美性猛交╳xxx乱大交人| 男人和女人高潮做爰伦理| 亚洲五月天丁香| 成人二区视频| 人体艺术视频欧美日本| 久久久成人免费电影| 国产淫片久久久久久久久| 国产欧美日韩精品一区二区| 亚洲乱码一区二区免费版| 国产成人a∨麻豆精品| 国产一区有黄有色的免费视频 | 欧美高清成人免费视频www| 26uuu在线亚洲综合色| 日韩,欧美,国产一区二区三区 | 99久久精品国产国产毛片| 精品久久久噜噜| 亚洲精品日韩在线中文字幕| 午夜亚洲福利在线播放| 亚洲精品乱码久久久v下载方式| av.在线天堂| 成人特级av手机在线观看| 欧美丝袜亚洲另类| 欧美日本视频| 久久精品夜夜夜夜夜久久蜜豆| 最后的刺客免费高清国语| 看黄色毛片网站| 日本色播在线视频| 97热精品久久久久久| 久久精品熟女亚洲av麻豆精品 | 岛国毛片在线播放| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 麻豆一二三区av精品| 中文欧美无线码| 免费观看的影片在线观看| av专区在线播放| 国产一区二区三区av在线| 亚洲成色77777| 黄色一级大片看看| 一本一本综合久久| 级片在线观看| 精品国产露脸久久av麻豆 | 日本欧美国产在线视频| 一级黄片播放器| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看| 日日干狠狠操夜夜爽| 亚洲精品456在线播放app| 一级黄色大片毛片| 亚洲怡红院男人天堂| 六月丁香七月| 免费一级毛片在线播放高清视频| 日本黄大片高清| 亚洲精品色激情综合| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 最近最新中文字幕免费大全7| 亚洲四区av| 久久久久免费精品人妻一区二区| 日韩av不卡免费在线播放| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 天堂中文最新版在线下载 | 国产乱来视频区| 国产亚洲一区二区精品| 亚洲国产精品国产精品| 精品99又大又爽又粗少妇毛片| 别揉我奶头 嗯啊视频| 日韩欧美 国产精品| 免费电影在线观看免费观看| 亚洲精品国产成人久久av| 最近的中文字幕免费完整| 成人综合一区亚洲| 韩国av在线不卡| 国产真实乱freesex| 国产精品永久免费网站| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 超碰av人人做人人爽久久| 99久久成人亚洲精品观看| 午夜福利成人在线免费观看| 久久人妻av系列| 亚洲最大成人中文| 久久99蜜桃精品久久| 九九热线精品视视频播放| 欧美成人免费av一区二区三区| 91精品一卡2卡3卡4卡| 91午夜精品亚洲一区二区三区| 91精品伊人久久大香线蕉| 青春草国产在线视频| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3| 男人舔奶头视频| 亚洲熟妇中文字幕五十中出| av视频在线观看入口| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 久久精品久久久久久噜噜老黄 | 搡老妇女老女人老熟妇| 久久久久久久国产电影| 夫妻性生交免费视频一级片| 日韩人妻高清精品专区| 亚洲av.av天堂| 美女内射精品一级片tv| 日韩视频在线欧美| 色网站视频免费| 亚洲自偷自拍三级| 久久久久网色| 一级黄片播放器| 久久草成人影院| 成年女人看的毛片在线观看| 亚洲av成人av| 精品人妻熟女av久视频| 国产成人a区在线观看| 最近中文字幕2019免费版| 精品久久久久久久久av| 91aial.com中文字幕在线观看| 美女黄网站色视频| 丝袜美腿在线中文| 人人妻人人看人人澡| 一区二区三区高清视频在线| 亚洲怡红院男人天堂| 免费观看的影片在线观看| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 欧美激情久久久久久爽电影| 久久99热这里只有精品18| 免费看av在线观看网站| 少妇高潮的动态图| 日本午夜av视频| 69av精品久久久久久| 又爽又黄a免费视频| av在线观看视频网站免费| 91久久精品国产一区二区三区| 水蜜桃什么品种好| 国产精品1区2区在线观看.| 97超视频在线观看视频| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 国产成人freesex在线| 久久这里只有精品中国| 最近的中文字幕免费完整| 久久久久国产网址| 久久久久久久久久久免费av| 国产精品人妻久久久影院| 日韩高清综合在线| 精品国内亚洲2022精品成人| 天天躁夜夜躁狠狠久久av| 国模一区二区三区四区视频| 国产91av在线免费观看| 插逼视频在线观看| 免费观看性生交大片5| 亚洲国产精品国产精品| 成年版毛片免费区| 久久久精品94久久精品| 国产精品久久久久久久久免| 黄色配什么色好看| 国产视频首页在线观看| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站 | 尤物成人国产欧美一区二区三区| 精品国产一区二区三区久久久樱花 | 久久久久性生活片| 内射极品少妇av片p| 噜噜噜噜噜久久久久久91| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜 | 亚洲色图av天堂| 国产精品一区二区三区四区久久| 在线免费十八禁| 你懂的网址亚洲精品在线观看 | 国产伦一二天堂av在线观看| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 亚洲自偷自拍三级| 丝袜喷水一区| 大话2 男鬼变身卡| 高清日韩中文字幕在线| 久久精品国产99精品国产亚洲性色| 日韩av不卡免费在线播放| 麻豆国产97在线/欧美| 成人欧美大片| 菩萨蛮人人尽说江南好唐韦庄 | 啦啦啦观看免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄 | 午夜免费男女啪啪视频观看| av在线观看视频网站免费| 美女黄网站色视频| 内地一区二区视频在线| 最新中文字幕久久久久| 免费观看的影片在线观看| 国产高清三级在线| 搡女人真爽免费视频火全软件| 如何舔出高潮| 一区二区三区高清视频在线| 亚洲综合精品二区| 国产日韩欧美在线精品| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 国产又色又爽无遮挡免| 一级毛片电影观看 | 美女被艹到高潮喷水动态| 天堂√8在线中文| 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 在线播放国产精品三级| 亚洲成人中文字幕在线播放| 麻豆av噜噜一区二区三区| 人体艺术视频欧美日本| 91久久精品国产一区二区成人| 一级av片app| 身体一侧抽搐| 国产高清有码在线观看视频| 欧美日韩国产亚洲二区| 亚洲精品乱久久久久久| 色尼玛亚洲综合影院| 欧美日韩一区二区视频在线观看视频在线 | 大又大粗又爽又黄少妇毛片口| 免费av毛片视频| 校园人妻丝袜中文字幕| 国产成人精品一,二区| 亚洲av成人精品一二三区| 国内精品宾馆在线| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av| 干丝袜人妻中文字幕| 国产亚洲5aaaaa淫片| 午夜精品在线福利| 一个人看视频在线观看www免费| 菩萨蛮人人尽说江南好唐韦庄 | 国产三级在线视频| 亚洲成人精品中文字幕电影| 一区二区三区乱码不卡18| 中文字幕久久专区| 久久久久久伊人网av| 乱人视频在线观看| 久久这里有精品视频免费| 国产精品1区2区在线观看.| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 日韩av在线大香蕉| 国产黄色视频一区二区在线观看 | 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 国产成人精品久久久久久| 国产午夜精品论理片| 别揉我奶头 嗯啊视频| av女优亚洲男人天堂| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 久久久久久大精品| 美女被艹到高潮喷水动态| 久久99蜜桃精品久久| 久久久久久国产a免费观看| videossex国产| 一卡2卡三卡四卡精品乱码亚洲| 高清视频免费观看一区二区 | 亚洲国产最新在线播放| 亚洲,欧美,日韩| av国产免费在线观看| 日本爱情动作片www.在线观看| 国产精品电影一区二区三区| 一区二区三区高清视频在线| 少妇人妻一区二区三区视频| 色视频www国产| 高清午夜精品一区二区三区| 日本爱情动作片www.在线观看| av线在线观看网站| 我的老师免费观看完整版| 亚洲国产最新在线播放| 成人综合一区亚洲| www.色视频.com| 久久久国产成人免费| 联通29元200g的流量卡| 免费av毛片视频| 国产精品嫩草影院av在线观看| 国语自产精品视频在线第100页| 在线免费观看的www视频| 国产黄色视频一区二区在线观看 | 日韩人妻高清精品专区| 18禁在线播放成人免费| 赤兔流量卡办理| 2021天堂中文幕一二区在线观| 日韩av在线大香蕉| 热99re8久久精品国产| 99热这里只有是精品50| 精华霜和精华液先用哪个| 久久6这里有精品| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 久久久久久久久大av| 欧美一区二区亚洲| 亚洲欧美中文字幕日韩二区| 亚洲成av人片在线播放无| 亚洲精品国产成人久久av| 亚洲久久久久久中文字幕| 日本免费一区二区三区高清不卡| 水蜜桃什么品种好| 亚洲第一区二区三区不卡| 最近的中文字幕免费完整| 欧美+日韩+精品| 欧美成人a在线观看| 亚洲成色77777| 国产亚洲av嫩草精品影院| 伦理电影大哥的女人| 一二三四中文在线观看免费高清| 国产免费男女视频| av国产久精品久网站免费入址|