• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurementand correlation ofsolid–liquid phase equilibria forbinary and ternary systems consisting of N-vinylpyrrolidone,2-pyrrolidone and water

    2018-05-25 11:26:31AoSuSifangLi

    Ao Su,Sifang Li*

    Department of Chemical and Biochemical Engineering,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China

    1.Introduction

    N-vinylpyrrolidone(NVP,CAS No.88-12-0)is an important monomer for the manufacture of polyvinylpyrrolidone which has extensive applications in the fields of pharmaceuticals,food additives,personal care products,etc.[1].NVP is industrially synthesized by vinylation of 2-pyrrolidone(2-P,CAS No.616-45-5)with acetylene under pressure in the presence of basic catalysts,such as hydroxides and alkoxides[2].The product obtained after fractional distillation usually comprises NVP in an amount of from 99.0%to 99.8%,unreacted 2-P,butane,butadiene,butyne,and amine derivatives,thereinto,the main impurity is 2-P.However,this purity level is unsuitable for the above purposes[3].Moreover,the energy consumption of fractional distillation increases rapidly with the increase ofproductpurity.Then crystallization is gradually used to upgrade industrial grade NVP to pharmaceutical grade NVP,which is more than 99.9%pure,and often more than 99.99%pure[4].The process would be improved by adding a small proportion of water to NVP to be puri fied.The optimum water content is within the range of 1wt%to 2 wt%based on the amount of NVP[5].Although some NVP puri fication technologies based on crystallization have been developed,there are still no solid–liquid equilibria(SLE)data of binary and ternary systems consisting of NVP,2-P and water available on literature,which play a crucial role in the puri fication of NVP by crystallization.

    In this work,the SLE of binary NVP+2-P,NVP+water and 2-P+water systems and ternary NVP+2-P+1wt%or 2 wt%water(based on the total mass of NVP and 2-P,the same below)systems were determined.The ideal solubility and the UNIFAC models were applied to predict the SLE,while the Wilson and NRTL models were employed in correlating the experimental data.

    2.Experimental

    2.1.Materials

    Commercial NVP and 2-P were kindly provided by Zhangzhou Hua Fu Chemical Industry Co.,Ltd.(China)with purities of mass fraction higher than 0.999 and 0.995,respectively.All reagents were used as received without any further puri fication.Their purities were tested by gas chromatography(Agilent 7890A)equipped with a flame ionization detector(FID).Deionized water was used in all experiments.The major information about the materials used in this work is listed in Table 1.The experimental melting points were measured using the method in this work(detail in the following ‘Apparatus and procedures’).

    2.2.Apparatus and procedures

    A method[9–12]for the SLE measurements was used in this work.Fig.1 shows the schematic diagram of the SLE experimental system.It consisted of a triple-jacketed glass still,a cryostat,a magnetic stirrer and a temperature measuring system.A mixture of known composition was contained in the equilibrium cell which maintained atdesired temperature by circulating cryogenic fluid,and a nitrogen atmosphere in the cell was used to avoid humidi fication.The exterior vacuum jacketofthe outside ofthe stillwas used for insulation purposes and visualobservation.A magnetic stirrer bar was placed in the center of the cell achieving continuous stirring by a magnetic stirrer(IKA,model HS7).The samples were prepared gravimetrically using an analytical precision electronic balance(Mettler Toledo,model AL204)with an uncertainty of 0.0001 g.The temperatures of the systems were controlled by a cryostat circulator(Voshin,model DC-2010)which circulated a cryogenic fluid consisting of ethylene glycol and water.A platinum resistance thermometer was immersed into the equilibrium cell and the temperatures were recorded by a digital temperature readout box(ASL,model F250)with a precision of±0.05 K.

    Table 1 Sample description①

    Fig.1.Schematic diagram of the SLE determination system.

    The sample was cooled atthe rate of4 K·h-1untilcompletely solidi fication.An estimate ofthe equilibriumtemperature was obtained fromthe plateau of the cooling curve(temperature versus time).In this study,a degree of supercooling was observed for all samples.The final temperature was maintained constantfor1 h to eliminate the difference oftemperature between sample and bath.Then the sample was heated with a very slow rate(1 K·h-1),the accurate equilibrium temperature was determined by monitoring the gradient of the rate of temperature change in the heating curve[11].Allmeasurements were repeated three times to ensure reproducibility in the determination of the equilibrium temperatures.

    3.Models

    The thermodynamic relationship for the SLE of a eutectic system with an ideal solid phase can be expressed as follows[13]:

    where xiisthe mole fraction ofcomponent i;γiis the activity coefficient;R is the universal gas constant;ΔfusHiis the molar enthalpy of fusion;ΔCpis the difference between the molar heat capacity in the liquid and solid state.Eq.(1)is usually simpli fied as follows[13]:

    The value of γican be calculated by the Wilson,NRTL and UNIFAC models.

    3.1.The ideal solubility model

    Assume that the solution is ideal,then γi=1[14,15],and the ideal solubility xiis obtained from Eq.(2):

    3.2.The Wilson model

    The Wilson model is expressed as follows[16,17]:

    where V1and V2are the liquid molar volumes of pure component1 and 2,λijis energy parameter,Λijis binary parameter.The Wilson modelhas two adjustable parameters:Δλ12(=λ12-λ11)and Δλ21(=λ21-λ22).

    3.3.The NRTL model

    The NRTL equations are presented as follows[18,19]:

    where g12and g21are energy parameters,α12is a parameter related to nonrandomness in the mixture.In this work,α12was set to be 0.3 according to Renon's rules.If α12is assigned,the NRTL model will have two adjustable parameters:Δg12(=g12-g22)and Δg21(=g21-g11),which are independent of temperature and composition.

    The adjustable parameters for each binary mixture are calculated by using Marquardt's maximum neighbor method of minimization of the objective function,Fobj,between the calculated and experimentally determined activity coefficients[20]:

    3.4.The UNIFAC model

    The activity coefficientofcomponent i,γi,in a multicomponentmixture is formulated using the sum ofthe combinatorialpart,lnγiC,and the residual part,lnγiR,as follows[21,22]:

    where

    where θiis the area fraction,?iis the segment fraction,riand qiare,respectively,measures of molecular van der Waals volumes and molecular surface areas,calculated as the sum of the group volume and area parameters,Rkand Qk,as follows:

    In Eq.(18),denotes the number of groups oftype k in molecule i.

    where Γkis the group residual activity coefficient;is the residual activity coefficient of group k in a reference solution containing only molecules of type i;θmis the group area fraction;Xmis the group mole fraction;Ψnmis the group-interaction parameter;and anmis the group interaction parameter.

    In this study,NVP is composed by 1 molecule of subgroup CH2,1 molecule of subgroup CH2=CH2,1 molecule of subgroup CH2CO and 1 molecule ofsubgroup CH2N;2-P iscomposed by 1 molecule ofsubgroup CH2,1 molecule of subgroup CH2CO and 1 molecule of subgroup CH2NH;water is composed by 1 molecule of subgroup H2O.The values of the group volume and area parameters Rkand Qkare given in Table 2,and the group interaction parameters anmare shown in Table 3[23].Moreover,in order to evaluate the ideal solubility,Wilson,NRTL and UNIFAC models,the mean absolute deviations(Δ)and the relative deviations(σr)on equilibrium temperature are used and expressed as follows[24]:

    Table 2 The group volume and area parameters Rk and Qk of the UNIFAC model

    Table 3 Group interaction parameters anm of the UNIFAC model

    4.Results and Discussion

    The measured liquidus temperatures(TL)of all combinations(mole fractions)of binary systems of NVP+2-P,NVP+water,2-P+water and ternary systems of NVP+2-P+1 wt%of water,NVP+2-P+2 wt%of water are reported in Table 4.The uncertainties of the measurements for experimentally determined compositions and temperatures are estimated as±0.0005 mol fraction and±0.2 K,respectively.Figs.2 to 6 are the corresponding phase diagrams(temperature T versus mole fraction x1).

    For binary systems,it can be concluded that the phase diagrams for NVP+2-P(Fig.2)and NVP+water(Fig.3)correspond to simple eutectic type.The corresponding eutectic mole compositions(x1E)were 0.5427 and 0.3722,and the eutectic temperatures(TE)were 263.75 K and 251.65 K,respectively.However,the SLE phase diagram is complicated for 2-P+water system(Fig.4).There are two minima(x1E=0.1236,TE=259.15 K;x1E=0.7831,TE=286.15 K)and one maximum(x1C=0.4997,TC=303.55 K)on the liquidus curve of 2-P+water system,thatisto say,the SLE diagramofthis system has two eutectic points and one congruent melting point,inferring that a congruently melting addition compound is formed.The similar situations are also exhibited in the binary systems of 2,4-dinitrophenol+naphthalene[25],t-butanol+p-chlorophenol[26],benzene+hexa fluorobenzene[27]and tbutanol+phenol[28].The molecular representation of this congruently melting addition compound can be calculated as follows[28]:

    so the congruently melting addition compound is 2-P·H2O.Thus,there is a formation of two eutectics,one is between water and 2-P·H2O and the other is between 2-P·H2O and 2-P.

    Table 4 Experimental SLE data(liquidus temperatures T L)for three binary systems and two ternary systems at mole fraction x1①

    Fig.2.SLE phase diagram for binary system of NVP(1)+2-P(2):points,experimental data;solid line,the ideal solubility model;dash line,the Wilson model;dot line,the NRTL model;dash dot line,the UNIFAC model.

    Fig.3.SLE phase diagram for binary system of NVP(1)+water(2).

    For ternary system NVP(1)+2-P(2)+water(3),two isopleth cuts(verticalsections)were performed:=1%and=2%,in other words,mass fractions of water ω3=0.0099 and 0.0196.The phase diagrams for NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)were also the simple eutectic type,the mass eutectic composition(×1)and eutectic temperature(TE)was 0.5031 and 260.25 K at=1%,0.4684 and 256.55 K at=2%.

    The parameters in the Wilson and the NRTL models for the binary system of NVP+2-P were obtained from fitting the experimental data using MATLAB software and summarized in Table 5.Activity coefficients of NVP and 2-P obtained from the Wilson,NRTL and UNIFAC modelas wellas experiments were listed in Table 6.Although allthe activity coefficients are close to 1,the calculated activity coefficients by the Wilson model are closest to the experimental activity coefficients.The calculated SLE phase diagrams of the binary system of NVP+2-P from the ideal solubility,the Wilson,the NRTL and the UNIFAC models are plotted in Fig.2.Table 5 also presents the mean absolute deviations(Δ)and the relative deviations(σr)between the experimental and the calculated equilibrium temperatures.For the binary system of NVP+2-P,the best description of SLE was given by the Wilson model with a relative deviation of 0.15%.The results of correlation or predictions using other models showed the relative deviations of 0.16%,0.45%and 0.53%for the NRTL,the UNIFAC and the ideal solubility models,respectively.

    Fig.4.SLE phase diagram for binary system of 2-P(1)+water(2).

    Fig.5.SLE phase diagram forternary system ofNVP(1)+2-P(2)+1 wt%water(3):points,experimental data;solid line,the UNIFAC model;dash line,the ideal solubility model.

    Fig.6.SLE phase diagram forternary system ofNVP(1)+2-P(2)+2 wt%water(3):points,experimental data;solid line,the UNIFAC model;dash line,the ideal solubility model.

    Table 5 Optimally fitted binary parameters and the mean absolute deviations(Δ)and the relative deviations(σr)of the ideal solubility,Wilson,NRTL and UNIFAC models for NVP(1)+2-P(2)binary system

    The ideal solubility and the UNIFAC models were employed in predicting SLE of the ternary system NVP+2-P+water.Table 7 presents the calculated and experimental activity coefficients of NVP and 2-P.The calculated activity coefficients are consistent with the experimental activity coefficients.The calculated SLE phase diagrams of the systems NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)from the ideal solubility and the UNIFAC modelsare plotted in Figs.5 and 6.The UNIFAC model gives better predictions of SLE with the relative deviations of 0.39%and 0.38%for the systems NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3),respectively(Table 8).

    Table 6 Activity coefficients for the binary system NVP(1)+2-P(2)at mole fraction of NVP x1: and,the experimental activity coefficients of NVP and 2-P,respectively;andthe calculated activity coefficients of NVP and 2-P by the Wilson,NRTL and UNIFAC model

    Table 6 Activity coefficients for the binary system NVP(1)+2-P(2)at mole fraction of NVP x1: and,the experimental activity coefficients of NVP and 2-P,respectively;andthe calculated activity coefficients of NVP and 2-P by the Wilson,NRTL and UNIFAC model

    x1 EXP Wilson NRTL UNIFAC γ1exp γ2exp γ1 cal γ2cal γ1 cal γ2 cal γ1 cal γ2cal 0.0000 1.0000 1.0000 1.0000 1.0000 0.0784 1.0111 1.0010 1.0012 1.0002 0.1613 1.0171 1.0046 1.0050 1.0008 0.2475 1.0284 1.0112 1.0122 1.0019 0.3377 1.0386 1.0217 1.0234 1.0037 0.4071 1.0448 1.0329 1.0351 1.0054 0.4939 1.0508 1.0511 1.0539 1.0079 0.5349 1.0551 1.0618 1.0646 1.0092 0.5427 1.0552 1.0640 1.0668 1.0094 0.5640 1.0507 1.0567 1.0453 1.0089 0.6413 1.0403 1.0394 1.0302 1.0065 0.7236 1.0312 1.0240 1.0177 1.0041 0.8069 1.0209 1.0121 1.0085 1.0021 0.8735 1.0144 1.0053 1.0036 1.0010 0.9519 1.0042 1.0008 1.0005 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000

    Table 7 Activity coefficients for the ternary systems NVP(1)+2-P(2)+water(3)at mole fraction ofNVP x1: and,the experimentalactivity coefficients ofNVP and 2-P,respectively;and,the calculated activity coefficients ofNVPand 2-Pby the UNIFACmodel

    Table 7 Activity coefficients for the ternary systems NVP(1)+2-P(2)+water(3)at mole fraction ofNVP x1: and,the experimentalactivity coefficients ofNVP and 2-P,respectively;and,the calculated activity coefficients ofNVPand 2-Pby the UNIFACmodel

    ?

    5.Conclusions

    Known in this study,the phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)belong to simple eutectic type with the eutectic points at 263.75 K(x1E=0.5427),251.65 K(x1E=0.3722),260.25 K(x1E=0.5031)and 256.55 K(x1E=0.4684),respectively.The binary system of 2-P(1)+water(2)forms a congruently melting addition compound:2-P·H2O,resulting in two eutectic points at 259.15 K(x1E=0.1236)and 286.15 K(x1E=0.7831),and one congruent melting point at 303.55 K(x1C=0.4997).The Wilson model gives the best description of SLE for binary system of NVP+2-P,and the UNIFAC model shows more satisfactory predictions than the ideal solubility model.

    Table 8 The mean absolute deviations(Δ)and the relative deviations(σr)of the ideal solubility and UNIFAC models for NVP(1)+2-P(2)+water(3)ternary systems

    Nomenclature

    anmthe group interaction parameter,K

    ΔCpdifference between molar heat capacity in liquid and solid state,J·K-1·mol-1

    Fobjobjective function

    G adjustable temperature-dependent parameter

    g energy parameter of the NRTL model,J·mol-1

    ΔfusHmmolar enthalpy of fusion,kJ?mol-1

    M molar mass,g?mol-1

    m mass fraction

    n number of data points

    Q group area parameter

    q pure component area parameter

    R universal gas constant,J?mol-1?K-1

    Rkgroup volume parameter

    r pure component volume parameter

    T temperature,K

    u standard uncertainty

    V liquid molar volume,cm3·mol-1

    number of groups of kind k in a molecule of component i

    X liquid phase group fraction

    x mole fraction

    Z lattice coordination number(=10)

    α nonrandomness constant(=0.3)

    Γ activity coefficient

    γ activity coefficient

    Δ the mean absolute deviation,K

    θ area fraction

    Λ binary parameter of the Wilson model

    λ energy parameter of the Wilson model,J·mol-1

    σ the relative deviation

    τ binary parameter of the NRTL model

    Ψnmgroup-interaction parameter

    ψ segment fraction

    Superscripts

    C combinatorial

    cal calculation

    exp. experiment

    i component i

    R residual

    Subscripts

    C congruent melting point;combinatorial

    E eutectic point

    i,j component i,j

    ij pair interaction

    k,m,n group k,m,n

    L liquidus

    m melting point

    t triple point

    References

    [1]F.Haaf,A.Sanner,F.Straub,Polymers of N-vinylpyrrolidone:Synthesis,characterization and uses,Polym.J.17(1)(1985)143–152.

    [2]S.F.Li,Manufacture of fine chemicals from acetylene,Xiamen University Press,Xiamen,2016 65.

    [3]V.P.Torchilin,T.S.Levchenko,K.R.Whiteman,A.A.Yaroslavov,A.M.Tsatsakis,A.K.Rizos,E.V.Michailova,M.I.Shtilman,Amphiphilic poly-N-vinylpyrrolidones:synthesis,properties and liposome surface modi fication,Biomaterials 22(22)(2001)3035–3044.

    [4]Cohen,J.M.,Biss,R.B.,“Process for the production of pure vinyl pyrrolidone”.United States Pat.,5329021(1994).

    [5]Sugiura,H.,Inaoka,T.,Nozaki,S.,Oka,Y.,“Production method of N-vinyl-2-pyrrolidone”.United States Pat.,0218344(2011).

    [6]T.G.Kulagina,B.V.Lebedev,Heat capacity and thermodynamic functions of N-vinylpyrrolidone at 0-330 K,Russ.J.Phys.Chem.71(5)(1997)709–713.

    [7]E.S.Domalski,E.D.Hearing,Heat capacities and entropies of organic compounds in the condensed phase,J.Phys.Chem.Ref.Data 25(1)(1996)1–525.

    [8]J.A.Dean,Lange's handbook of chemistry,15th edition McGraw-Hill,New York,1999 1583.

    [9]S.J.Park,R.H.Kwon,Y.Y.Choi,Solid–liquid equilibrium and mixture properties for the binary systems of Alamine 336 with decane,dodecane,and 1-dodecanol,Fluid Phase Equilib.361(3)(2014)130–134.

    [10]R.H.Kwon,J.I.Kim,S.J.Park,Y.Y.Choi,Solid–liquid equilibrium,excess molar volume,and deviations in the molar refractivity for the binary and ternary mixtures of Alamine 304-1 with 1-octanol,2-octanol,and 1-decanol,Fluid Phase Equilib.324(7)(2012)44–49.

    [11]M.Tadie,I.Bahadur,P.Reddy,P.T.Ngema,P.Naidoo,N.Deenadayalu,D.Ramjugernath,Solid–liquid equilibria measurements for binary systems comprising(butyric acid+propionic or pentanoic acid)and(heptanoic acid+propionic or butyric or pentanoic or hexanoic acid),J.Chem.Thermodyn.57(2013)485–492.

    [12]P.S.Ma,M.M.Chen,Solid–liquid equilibrium of terephthalic acid in several solvents,Chin.J.Chem.Eng.11(3)(2003)334–337.

    [13]A.Jakob,R.Joh,C.Rose,J.Gmehling,Solid–liquid equilibria in binary mixtures of organic compounds,Fluid Phase Equilib.113(1)(1995)117–126.

    [14]T.Li,R.L.Deng,G.Wu,P.F.Gu,Y.H.Hu,W.G.Yang,Y.M.Yu,Y.H.Zhang,C.Yang,Thermodynamic models for determination of solid–liquid equilibrium of the 6-benzyladenine in pure and binary organic solvents,J.Chem.Thermodyn.106(2017)206–215.

    [15]C.Y.Wu,Y.W.Cheng,L.J.Wang,X.Li,Solid-liquid equilibrium of dimethyl terephthalate(DMT),dimethyl isophthalate(DMI)and dimethyl phthalate(DMP)in melt crystallization process,Chin.J.Chem.Eng.25(12)(2017)1735–1739.

    [16]G.M.Wilson,Vapor–liquid equilibrium.XI.a new expression for the excess free energy of mixing,J.Am.Chem.Soc.86(2)(1964)127–130.

    [17]L.Guo,L.Y.Wu,W.T.Zhang,C.Liang,Y.D.Hu,Experimental measurement and thermodynamic modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by L-arabinose,D-xylose and water,Chin.J.Chem.Eng.25(10)(2017)1467–1472.

    [18]H.Renon,J.M.Prausnitz,Local compositions in thermodynamic excess functions for liquid mixtures,AIChE J.14(1)(1968)135–144.

    [19]D.W.Wei,Y.H.Pei,C.Zhang,F.Yan,Measurement and correlation of solid-liquid equilibria of phenyl salicylate with C4alcohols,Chin.J.Chem.Eng.17(1)(2009)140–144.

    [20]D.W.Marquardt,An algorithm for least-squares estimation of nonlinear parameters,J.Soc.Ind.Appl.Math.11(2)(1963)431–441.

    [21]A.Fredenslund,R.L.Jones,J.M.Prausnitz,Group-contribution estimation of activity coefficients in nonideal liquid mixtures,AIChE J.21(6)(1975)1086–1099.

    [22]C.R.Zhou,X.H.Shi,H.F.Wang,Y.G.Gao,D.G.Jiang,Solid-liquid equilibria of trans-l,2-cyclohexanediol+butyl acetate+water ternary system,Chin.J.Chem.Eng.15(3)(2007)449–452.

    [23]B.E.Poling,J.M.Prausnitz,J.P.O'Connell,The properties of gases and liquids,5th edition McGraw-Hill,New York,2001 78.

    [24]I.Boudouh,J.A.González,I.Djemai,D.Barkat,Solid-liquid equilibria of eicosane,tetracosane or biphenyl+1-octadecanol,or+1-eicosanol mixtures,Fluid Phase Equilib.442(2017)28–37.

    [25]N.B.Singh,M.A.Srivastava,N.P.Singh,Solid-liquid equilibrium for 2,4-dinitrophenol+naphthalene,J.Chem.Eng.Data 46(2001)47–50.

    [26]T.M.Her,L.S.Lee,S.C.Hsu,Solid–liquid equilibria of mixtures containing tert-butanol,m-chlorophenol,and p-chlorophenol and development of adductive crystallization processes,Fluid Phase Equilib.237(2005)152–161.

    [27]D.Ruivo,A.B.Pereiro,J.M.S.S.Esperanca,J.N.C.Lopes,L.P.N.Rebelo,Rationalizing the diverse solid–liquid equilibria of binary mixtures of benzene and its fluorinated derivatives,J.Phys.Chem.B 114(2010)12589–12596.

    [28]X.H.Xu,X.G.Wang,M.F.Wu,Binary solid–liquid phase diagram of phenol and t-butanol:an undergraduate physical chemistry experiment,J.Chem.Educ.91(6)(2014)929–933.

    精品少妇黑人巨大在线播放| 春色校园在线视频观看| 亚洲激情五月婷婷啪啪| 欧美激情极品国产一区二区三区 | 成年人免费黄色播放视频| 老熟女久久久| 国产精品国产三级国产专区5o| 成人18禁高潮啪啪吃奶动态图| 亚洲一级一片aⅴ在线观看| 22中文网久久字幕| 伦理电影大哥的女人| 国产色婷婷99| 一级爰片在线观看| 亚洲精品中文字幕在线视频| 国产精品嫩草影院av在线观看| 亚洲精品av麻豆狂野| 黑人猛操日本美女一级片| 国产精品国产三级国产av玫瑰| 18在线观看网站| 国产精品不卡视频一区二区| 丰满少妇做爰视频| 日韩伦理黄色片| 永久免费av网站大全| 国产探花极品一区二区| 午夜福利乱码中文字幕| 久久精品国产a三级三级三级| 性色av一级| 一边摸一边做爽爽视频免费| 欧美日韩av久久| 午夜老司机福利剧场| 丰满迷人的少妇在线观看| 在线观看三级黄色| 一区二区三区精品91| 免费大片黄手机在线观看| 蜜桃在线观看..| 老女人水多毛片| 另类精品久久| 丝袜脚勾引网站| 国产精品久久久久成人av| 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频| a级毛色黄片| 国产黄色视频一区二区在线观看| 熟女人妻精品中文字幕| 90打野战视频偷拍视频| 老熟女久久久| 在线免费观看不下载黄p国产| xxxhd国产人妻xxx| 日韩大片免费观看网站| 最近最新中文字幕大全免费视频 | 国产片特级美女逼逼视频| 久久热在线av| 国产国拍精品亚洲av在线观看| 免费高清在线观看视频在线观看| 国产精品久久久久久久电影| 精品视频人人做人人爽| 欧美丝袜亚洲另类| 午夜福利影视在线免费观看| 丰满乱子伦码专区| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 男女高潮啪啪啪动态图| 亚洲av国产av综合av卡| 国产又色又爽无遮挡免| av在线老鸭窝| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜爱| 中国三级夫妇交换| 亚洲色图 男人天堂 中文字幕 | 亚洲av欧美aⅴ国产| 亚洲中文av在线| 中文字幕另类日韩欧美亚洲嫩草| a级片在线免费高清观看视频| 久久久精品免费免费高清| 午夜影院在线不卡| 亚洲伊人色综图| 久久人人97超碰香蕉20202| 又黄又爽又刺激的免费视频.| 18禁观看日本| 丝袜在线中文字幕| 国产成人欧美| 99热这里只有是精品在线观看| av女优亚洲男人天堂| 亚洲高清免费不卡视频| 两个人看的免费小视频| 精品久久国产蜜桃| 日日爽夜夜爽网站| 成人18禁高潮啪啪吃奶动态图| 极品人妻少妇av视频| av免费观看日本| av播播在线观看一区| 母亲3免费完整高清在线观看 | 国产精品久久久久成人av| 久久97久久精品| 丰满迷人的少妇在线观看| 大片电影免费在线观看免费| 精品一区二区三区四区五区乱码 | 青春草视频在线免费观看| 新久久久久国产一级毛片| h视频一区二区三区| 久久精品国产亚洲av天美| 一边摸一边做爽爽视频免费| 国产日韩欧美视频二区| 久久99热6这里只有精品| 少妇 在线观看| 国产精品久久久久久精品电影小说| 午夜老司机福利剧场| 人人妻人人添人人爽欧美一区卜| 日韩三级伦理在线观看| av免费在线看不卡| 日本wwww免费看| 桃花免费在线播放| 最新中文字幕久久久久| 一区在线观看完整版| 国产av码专区亚洲av| 国产精品久久久久久久电影| 亚洲成人av在线免费| 亚洲成人av在线免费| 久久国产精品大桥未久av| 欧美最新免费一区二区三区| 看十八女毛片水多多多| 成人亚洲欧美一区二区av| 免费av不卡在线播放| 99国产精品免费福利视频| 国产不卡av网站在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品999| 男人添女人高潮全过程视频| 新久久久久国产一级毛片| 国产日韩欧美视频二区| a级毛片黄视频| 在线 av 中文字幕| 国产在视频线精品| 久久综合国产亚洲精品| 久久久久久久精品精品| 精品卡一卡二卡四卡免费| 大香蕉97超碰在线| a 毛片基地| 精品亚洲成国产av| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区国产| 水蜜桃什么品种好| 最近2019中文字幕mv第一页| 婷婷色综合www| www日本在线高清视频| 97精品久久久久久久久久精品| 免费日韩欧美在线观看| 女性被躁到高潮视频| 中文乱码字字幕精品一区二区三区| 飞空精品影院首页| 自线自在国产av| 乱人伦中国视频| 国产不卡av网站在线观看| 大香蕉久久网| 久久久久国产网址| 香蕉丝袜av| 尾随美女入室| 成人二区视频| 精品熟女少妇av免费看| 99re6热这里在线精品视频| 最近中文字幕2019免费版| 亚洲欧美一区二区三区黑人 | 午夜精品国产一区二区电影| 女的被弄到高潮叫床怎么办| 亚洲av在线观看美女高潮| 国产精品人妻久久久久久| 黄色配什么色好看| 日本黄大片高清| 男女下面插进去视频免费观看 | 亚洲欧洲精品一区二区精品久久久 | av在线老鸭窝| 伊人久久国产一区二区| 蜜桃在线观看..| 色5月婷婷丁香| 美女脱内裤让男人舔精品视频| 精品人妻偷拍中文字幕| 一级毛片黄色毛片免费观看视频| 久久久久精品人妻al黑| 色5月婷婷丁香| 99精国产麻豆久久婷婷| 国产免费现黄频在线看| 伊人亚洲综合成人网| 国产一区二区在线观看日韩| 极品人妻少妇av视频| 欧美国产精品一级二级三级| 亚洲色图综合在线观看| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| tube8黄色片| 欧美变态另类bdsm刘玥| 高清视频免费观看一区二区| 精品人妻熟女毛片av久久网站| 欧美激情极品国产一区二区三区 | 在线观看美女被高潮喷水网站| 久久 成人 亚洲| 高清欧美精品videossex| 色婷婷久久久亚洲欧美| 婷婷色麻豆天堂久久| 欧美+日韩+精品| 欧美最新免费一区二区三区| 欧美精品人与动牲交sv欧美| 午夜福利视频在线观看免费| 亚洲五月色婷婷综合| 99热这里只有是精品在线观看| 蜜桃国产av成人99| 久久人人97超碰香蕉20202| 免费黄频网站在线观看国产| 一区二区日韩欧美中文字幕 | 九草在线视频观看| 制服丝袜香蕉在线| 亚洲精品视频女| 最黄视频免费看| 99久久中文字幕三级久久日本| 男女高潮啪啪啪动态图| 久久热在线av| 亚洲精品日本国产第一区| 天天躁夜夜躁狠狠躁躁| 伦精品一区二区三区| 国产av精品麻豆| 日本av免费视频播放| 黑人猛操日本美女一级片| 卡戴珊不雅视频在线播放| 精品久久久精品久久久| 美女国产高潮福利片在线看| 成人二区视频| 极品少妇高潮喷水抽搐| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女福利国产在线| 国产亚洲精品久久久com| 51国产日韩欧美| 亚洲国产成人一精品久久久| 另类亚洲欧美激情| 精品酒店卫生间| 国产免费一级a男人的天堂| av播播在线观看一区| 99久久中文字幕三级久久日本| 免费大片18禁| 我要看黄色一级片免费的| 成人二区视频| 亚洲国产毛片av蜜桃av| 日韩熟女老妇一区二区性免费视频| 久久女婷五月综合色啪小说| 中文天堂在线官网| 欧美bdsm另类| 国产欧美另类精品又又久久亚洲欧美| 成人漫画全彩无遮挡| 午夜福利影视在线免费观看| 人妻系列 视频| 高清在线视频一区二区三区| 国产免费又黄又爽又色| 宅男免费午夜| 久久久久精品人妻al黑| 天天躁夜夜躁狠狠久久av| av福利片在线| 97在线视频观看| av电影中文网址| 香蕉精品网在线| 日本欧美视频一区| 十八禁网站网址无遮挡| 免费高清在线观看日韩| 视频区图区小说| 伦理电影免费视频| 精品国产国语对白av| 久热久热在线精品观看| 日韩在线高清观看一区二区三区| 亚洲第一区二区三区不卡| 久久久a久久爽久久v久久| 乱码一卡2卡4卡精品| 午夜福利,免费看| 熟女电影av网| 亚洲熟女精品中文字幕| 在线观看三级黄色| 男男h啪啪无遮挡| 最近的中文字幕免费完整| 自线自在国产av| 熟女av电影| 高清黄色对白视频在线免费看| av免费观看日本| 国产成人精品婷婷| 亚洲高清免费不卡视频| 免费黄色在线免费观看| 黑人巨大精品欧美一区二区蜜桃 | 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 熟妇人妻不卡中文字幕| 97超碰精品成人国产| 最近中文字幕2019免费版| 久久99精品国语久久久| 精品久久蜜臀av无| 亚洲成人手机| 99热全是精品| 日韩视频在线欧美| 黄色配什么色好看| 丝袜人妻中文字幕| 啦啦啦在线观看免费高清www| 亚洲,一卡二卡三卡| 一边摸一边做爽爽视频免费| 新久久久久国产一级毛片| 欧美+日韩+精品| 大话2 男鬼变身卡| 菩萨蛮人人尽说江南好唐韦庄| 在线观看国产h片| 在线 av 中文字幕| 极品少妇高潮喷水抽搐| 18禁国产床啪视频网站| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 亚洲综合精品二区| 成年av动漫网址| 久久久欧美国产精品| 久久人妻熟女aⅴ| 中文字幕人妻熟女乱码| 久久午夜综合久久蜜桃| 欧美xxxx性猛交bbbb| 在线观看一区二区三区激情| 亚洲av电影在线进入| 日本午夜av视频| 亚洲精品国产色婷婷电影| 亚洲av免费高清在线观看| 伊人久久国产一区二区| 成年人免费黄色播放视频| 只有这里有精品99| 国产视频首页在线观看| 久久久久国产精品人妻一区二区| 国产成人精品一,二区| 你懂的网址亚洲精品在线观看| 国产 一区精品| 伦理电影免费视频| 国产成人aa在线观看| 国产色婷婷99| 精品熟女少妇av免费看| 日韩制服骚丝袜av| 久久99热这里只频精品6学生| 97精品久久久久久久久久精品| 亚洲第一av免费看| 成人亚洲欧美一区二区av| 人人妻人人澡人人看| 看免费av毛片| 妹子高潮喷水视频| 国产av一区二区精品久久| 在线看a的网站| 日韩三级伦理在线观看| 亚洲国产精品成人久久小说| 少妇的逼水好多| 成年美女黄网站色视频大全免费| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久久久免| 欧美老熟妇乱子伦牲交| 国产黄频视频在线观看| 久久午夜综合久久蜜桃| 黄网站色视频无遮挡免费观看| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 亚洲精品乱码久久久久久按摩| 丰满乱子伦码专区| 国产精品99久久99久久久不卡 | 色吧在线观看| av不卡在线播放| 国产淫语在线视频| 午夜日本视频在线| 久久人人爽av亚洲精品天堂| 99热全是精品| 熟女av电影| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 欧美日韩亚洲高清精品| 久久久久国产网址| 久久久久精品久久久久真实原创| xxxhd国产人妻xxx| 国产爽快片一区二区三区| 国产白丝娇喘喷水9色精品| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 日韩视频在线欧美| 日韩一本色道免费dvd| 两个人看的免费小视频| 国产精品久久久久久精品古装| 国产毛片在线视频| 亚洲熟女精品中文字幕| 久久97久久精品| 成年av动漫网址| 九九在线视频观看精品| 国产精品三级大全| 国产日韩欧美视频二区| 成年人免费黄色播放视频| av福利片在线| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 天天躁夜夜躁狠狠久久av| 欧美精品av麻豆av| 另类精品久久| 夫妻性生交免费视频一级片| 色婷婷av一区二区三区视频| 色婷婷久久久亚洲欧美| 午夜视频国产福利| 2022亚洲国产成人精品| 看免费av毛片| av在线老鸭窝| 国产免费一级a男人的天堂| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| 亚洲第一区二区三区不卡| 男女边吃奶边做爰视频| 激情视频va一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 国产老妇伦熟女老妇高清| 久久久久久久久久成人| 26uuu在线亚洲综合色| 老司机影院成人| 亚洲精华国产精华液的使用体验| 香蕉国产在线看| 午夜91福利影院| 赤兔流量卡办理| 欧美人与性动交α欧美精品济南到 | 久久久国产欧美日韩av| 交换朋友夫妻互换小说| 男女国产视频网站| 纯流量卡能插随身wifi吗| 成人亚洲欧美一区二区av| 在线观看三级黄色| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| 亚洲国产欧美在线一区| 9热在线视频观看99| 欧美人与善性xxx| 久久久久久伊人网av| 午夜激情av网站| 捣出白浆h1v1| 又粗又硬又长又爽又黄的视频| 热re99久久精品国产66热6| 免费av不卡在线播放| 亚洲综合色网址| 婷婷成人精品国产| 久久人妻熟女aⅴ| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 久久国产精品大桥未久av| 男女高潮啪啪啪动态图| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 免费黄网站久久成人精品| 亚洲一码二码三码区别大吗| 两个人看的免费小视频| 97在线人人人人妻| 欧美亚洲 丝袜 人妻 在线| 久久韩国三级中文字幕| 精品视频人人做人人爽| 国产一区二区三区av在线| 午夜福利影视在线免费观看| 成人午夜精彩视频在线观看| 如日韩欧美国产精品一区二区三区| 91精品伊人久久大香线蕉| 日韩一区二区视频免费看| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频 | 欧美 日韩 精品 国产| 九九在线视频观看精品| 精品少妇久久久久久888优播| 成人综合一区亚洲| 欧美人与性动交α欧美精品济南到 | 亚洲丝袜综合中文字幕| 少妇人妻 视频| 侵犯人妻中文字幕一二三四区| 五月开心婷婷网| 国产精品欧美亚洲77777| 久久久久久人人人人人| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 国产色爽女视频免费观看| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 少妇被粗大的猛进出69影院 | 久久综合国产亚洲精品| 丝袜喷水一区| 哪个播放器可以免费观看大片| www日本在线高清视频| 欧美激情极品国产一区二区三区 | 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 久久这里只有精品19| a级毛色黄片| 天堂中文最新版在线下载| 精品少妇久久久久久888优播| 日韩电影二区| 精品国产一区二区久久| 建设人人有责人人尽责人人享有的| 全区人妻精品视频| 国产av国产精品国产| 久久久欧美国产精品| 成人国语在线视频| 久热久热在线精品观看| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| 中国三级夫妇交换| 女的被弄到高潮叫床怎么办| 一级,二级,三级黄色视频| 国产精品嫩草影院av在线观看| 久久女婷五月综合色啪小说| 9色porny在线观看| av视频免费观看在线观看| 一本色道久久久久久精品综合| 韩国精品一区二区三区 | 久久国内精品自在自线图片| 色网站视频免费| 午夜福利视频精品| 国产在线视频一区二区| 丰满乱子伦码专区| 精品一品国产午夜福利视频| 99热网站在线观看| 国产乱来视频区| 美女大奶头黄色视频| 免费日韩欧美在线观看| 精品少妇黑人巨大在线播放| 欧美性感艳星| 热99久久久久精品小说推荐| 欧美少妇被猛烈插入视频| 日本欧美视频一区| 欧美精品国产亚洲| 新久久久久国产一级毛片| 精品国产一区二区久久| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 国产av码专区亚洲av| 美女内射精品一级片tv| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 午夜免费观看性视频| 免费久久久久久久精品成人欧美视频 | 一级黄片播放器| 国产福利在线免费观看视频| 国产亚洲精品久久久com| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 新久久久久国产一级毛片| 国产国语露脸激情在线看| 婷婷成人精品国产| 欧美日韩视频精品一区| 亚洲成人一二三区av| 欧美日韩成人在线一区二区| 欧美日韩av久久| 成人毛片a级毛片在线播放| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 国产综合精华液| 少妇被粗大的猛进出69影院 | 亚洲,一卡二卡三卡| 一区二区日韩欧美中文字幕 | 成年人午夜在线观看视频| 中文天堂在线官网| www日本在线高清视频| 国产av码专区亚洲av| 久久精品国产综合久久久 | 男女高潮啪啪啪动态图| 免费人成在线观看视频色| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 美女国产视频在线观看| 新久久久久国产一级毛片| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 成人黄色视频免费在线看| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 两个人看的免费小视频| 日韩在线高清观看一区二区三区| 精品一区在线观看国产| 久久精品aⅴ一区二区三区四区 | 亚洲国产日韩一区二区| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 青春草亚洲视频在线观看| 在线精品无人区一区二区三| av在线播放精品| 精品酒店卫生间| 国产1区2区3区精品| 性高湖久久久久久久久免费观看| 午夜福利视频精品| 大陆偷拍与自拍| 欧美 亚洲 国产 日韩一| 大话2 男鬼变身卡| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 香蕉国产在线看| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| 乱码一卡2卡4卡精品| 国产精品国产三级国产av玫瑰| 少妇精品久久久久久久| 亚洲综合色网址| a级片在线免费高清观看视频| 国产精品成人在线| 国产精品99久久99久久久不卡 | 高清欧美精品videossex|