• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cobalt catalysts for Fischer–Tropsch synthesis:The effect of support,precipitant and pH value☆

    2018-05-25 11:26:19ZhenhuaLiMengyaoSiLiXinRenjieLiuRunxueLiuJing

    Zhenhua Li,Mengyao Si,Li Xin,Renjie Liu,Runxue Liu,Jing Lü*

    Key Lab for Green Chemical Technology of Ministry of Education,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    Fischer–Tropsch synthesis(FTS)is a promising alternative route to convert hydrogen and carbon monoxide to liquid fuels and chemicals withoutsulfur,nitrogen and aromatic hydrocarbon,and itis polymerized to a myriad of hydrocarbon products with--CH2--being considered as the basic monomer[1–3].Compared to iron-based catalysts,cobaltbased catalysts for FTS are in focus of current interest on account of their high CO conversion,high selectivity to linear C5+,and low activity for water–gas shift reaction[4].With the purpose of gaining high metal dispersion and increasing the specific surface area of catalysts,various supports for cobalt catalysts have been used for FTS,including SiO2,Al2O3,TiO2,carbon nanotubes,zeolite,etc.[5–7].Because ofthe strong interactions between cobaltparticles and common oxide supports like SiO2and Al2O3,the cobaltspecies forms a spinelstructure such as Co2SiO4and CoAl2O4,which are hardly reducible under the reduction treatment[8].

    ZrO2,a transition metal oxide with the excellent ion exchange performance and surface enrichment of oxygen vacancies,has been receiving considerable attention as the support for Co-based catalysts in Fischer–Tropsch synthesis.Zhang etal.[9]investigated thatan appropriate amount of CeO2promoter added to Co/ZrO2catalyst could increase the active sites of the catalysts due to the increase of reducibility and dispersion.Notably,some research efforts have been devoted to the preparation of Co/ZrO2catalysts by co-precipitation method.Chen and Sun[10]compared the various molar ratios of Co/ZrO2catalysts and found that the CO conversion increased monotonously with the increment of Co content.Subsequently,the effect of reduction atmosphere on the reaction performance of Co-ZrO2co-precipitation catalysts was investigated by Jia et al.[11].

    It is well-known that the support plays a crucial role on the key performance indicators,including activity,selectivity and stability[12].Nevertheless,for cobalt-based catalysts prepared by co-precipitation,the comparison between the effect of typical oxides and ZrO2as supports on the FTS performance has not been found in the literature.Here,we choose three different metal oxides,ZnO,Al2O3and ZrO2,as the supports for Co-based catalysts to study the effect of different supports on their supported Co catalysts for FTS performance.

    As reported,different precipitating agents often play crucial role on the final catalytic performance.Liu et al.[13]found that the Ni-Mg/Al2O3catalysts prepared by co-precipitation by using NH4OH,NaOH or Na2CO3as the precipitant have varied interaction between NiO and oxide support.Their syngas methanation performance decreased in the order NaOH>NH4OH>Na2CO3.Thus,the effects ofdifferentprecipitants including NH4OH,Na2CO3and NaOHwere investigated on the Cobased catalystfor FTS performance.In addition,the catalysts with different pH values were also prepared and evaluated in a fixed-bed reactor.

    2.Experimental

    2.1.Preparation of catalysts

    All chemicals with analytical grade including cobalt(II)nitrate hexahydrate(Co(NO3)2·6H2O),zirconium(IV)nitrate pentahydrate(Zr(NO3)4·5H2O),aluminum(III)nitrate nonahydrate(Al(NO3)3·9H2O),zinc(II)nitrate hexahydrate(Zn(NO3)2·6H2O),sodium hydroxide(NaOH),sodium carbonate anhydrous(Na2CO3)and 25 wt%–28 wt%ammonia solution(NH4OH)were purchased from Tianjin Kermel Co.,LTD of China and used without any further puri fication.

    Catalysts atdifferentsupports:the catalysts containing about20 wt%cobalt on differentsupports were prepared by co-precipitation method.The corresponding precusor of ZrO2,Al2O3or ZnO was precipitated by precipitant Na2CO3to prepare 20 wt%Co/ZrO2,Co/Al2O3or Co/ZnO,respectively.Here Na2CO3instead of NaOH was used as the precipitant since the Al(OH)3produced by the reaction ofNaOHand Al(NO3)3is soluble in NaOH solution.Take the preparation of 20 wt%Co/ZrO2catalyst as an example,a certain amountofCo(NO3)2·6H2Oand Zr(NO3)4·5H2O were dissolved in 50-ml deionized water to form solution A,wherein the concentration of Zr4+was 0.5 mol·L-1.Another solution B was obtained by dissolving some amounts of Na2CO3in 50-ml deionized water to form 1.47 mol?L-1solution.The above two solutions of A and B were simultaneously added dropwise into a three mouths roundbottomed flask containing 200-ml deionized water at 60°C under vigorous stirring.Then,the pH value was adjusted to 9.0,being aged for 12 h at room temperature.The obtained products were filtered and washed thoroughly with deionized water until pH value of 7,dried overnight at 110 °C in an oven and calcined at 400 °C for 4 h at a heating ramp of 3 °C·min-1.

    Catalysts at different precipitants:The 20-wt%Co/ZrO2catalysts were prepared using NH4OH,Na2CO3or NaOH as the precipitant at pH value 9 during aging process by adding some amount of 2.0 mol·L-1nitric acid.

    Catalysts at different pH values:The 20-wt%Co/ZrO2catalysts were prepared using NaOH as the precipitant at different pH values(9,11 or 13)during aging process by adding some amount of 2.0 mol·L-1nitric acid.

    The sample was denoted as Co/x-y-z,in which “x”represents the support;“y”stands for the precipitant used,and “z”represents pH value.

    2.2.Catalyst characterization

    2.2.1.N2 adsorption–desorption

    N2adsorption–desorption experiments were conducted at-196 °C using a Micromeritics Tristar-3000 analyzer.Prior to an experiment,each catalyst was degassed at 90 °C for 1 h and 300 °C for 3 h to remove the moisture adsorbed at surface and internal pore.The specific surface areas of the samples were calculated by the BET method.The pore size distributions were evaluated from the desorption branches of the isotherms using the Barrett–Joyner–Halenda(BJH)method.

    2.2.2.X-ray powder diffraction(XRD)

    X-ray powder diffraction spectra for the calcined catalysts were recorded on a RigakuD/max-2500 diffractometer using Cu Kα radiation(40 kV,200 mA).The scan range was from 2θ=5°to 80°with scanning rate 8(°)·min-1.Crystallite phases were determined by comparing the diffraction patterns with those in the standard powder XRD files(JCPDS)published by the International Center for Diffraction Data.The average Co3O4size was calculated using the Scherrer equation.

    2.2.3.X-ray fluorescence(XRF)

    XRF measurements were performed on S4 Pioneer X-ray fluorescence spectrometer.The obtained data were used to determine the amount of Co in the catalyst.

    2.2.4.Transmission electron microscopy(TEM)

    The TEM analysis was performed on a JEM-2100F transmission electron microscope at 200 kV.The catalysts were dispersed in ethanol in a sonicator and then loaded onto a carbon-coated copper grid.

    2.2.5.H2 temperature programmed reduction(H2-TPR)

    The TPR experimentwas carried outwith a Micromeritics AutoChem 2910 equipped with a TCD detector to investigate the reduction behavior of the catalyst.The catalyst(0.1 g)was placed in a U-type quartz tubular reactor, fitted with a thermocouple for continuous temperature measurement.Before the TPR measurement,the calcined catalysts were purged with Ar( flow rate=30 ml·min-1)at 200 °C for 2 h to remove waterorimpurities,and then cooled down to 50°C.Then,10%H2/Ar was switched on,and the temperature was raised at a rate of 10 °C·min-1from 50 to 780 °C using a flow rate of 30 ml·min-1.

    2.2.6.H2 temperature programmed desorption(H2-TPD)

    The H2-TPD was used for estimating the Co dispersion ofthe catalyst using a Micromeritics AutoChem 2910 system.The sample weight used was 0.05 g.The catalyst was first reduced at 400°C for 5 h under a flow of high-purity hydrogen( flow rate=30 ml·min-1),then the sample was cooled to 50°C and saturated with H2.After removing the physically adsorbed H2by flush with Ar,the catalyst was heated to 780°C at 10 °C·min-1in an Ar flow(30 ml·min-1).The number of surface Co sites per unit mass of catalyst was determined by means of H2-TPD assuming the adsorption stoichiometry of H/Co=1:1.The dispersion of Co was calculated based on the volume of chemisorbed H2using the following simpli fied equation:

    2.3.Catalytic evaluation

    The Fischer–Tropsch synthesis was evaluated in a fixed-bed microreactor.One gram of catalyst sample(20–40 mesh)diluted with 2.6 g of quartz sands(40–60 mesh)was uploaded in a stainless steel reaction tube with an inner diameter of 8 mm.The addition of quartz sands was to avoid the generation of hotspot in the catalyst bed.Prior to the reaction,the catalyst was reduced at 400 °C in pure H2(100 ml·min-1)for 5 h and then the reactor temperature was decreased to 180°C under flowing hydrogen.Subsequently,A gaseous mixture of H2and CO,as well as Ar(as an internal standard)at a molar ratio of H2/CO/Ar=6/3/1was introduced to supply the reactant gas stream to the catalyst with a weight hourly space velocity(WHSV)of 5400 ml·(h·g)-1,and the pressure was increased gradually to 2.0 MPa.The average temperature of the catalyst bed was controlled at 230°C.

    The products were continuously removed from the reactor and passed through two traps,one maintained at170°C(hot trap)to collect wax,and the other at-4°C(cold trap)to collectthe oil and water mixture.The uncondensed vapor stream was reduced to atmospheric pressure using a pressure reducing valve,and then analyzed online using an Agilent 6820 GC equipped with a thermal conductivity detector(TCD)and a flame ionization detector(FID).The composition of the liquid oil and solid wax was analyzed by a SP-3420 GC equipped with an FID.The catalytic activity was characterized by determining the CO conversion and the selectivity of C5+,which was measured at the steady state and calculated based on the carbon basis[14].

    3.Results and Discussion

    3.1.Characterization of catalysts

    3.1.1.XRF analysis

    To determine the amount of Co loading on catalysts prepared by the co-precipitation process,the samples were subjected to XRF analysis and the results are listed in Table 1.It is clear that the actual content of Co over allcatalysts is close to the intended value in allcatalysts,implying thatthere is almostno cobaltspecies lost during co-precipitation process.

    Table 1 XRF measurement results of different catalysts

    3.1.2.Nitrogen adsorption analysis

    The N2adsorption–desorption isothermals and the pore size distributions of the samples are displayed in Fig.1.As shown in Fig.1a,all catalysts show the type IV adsorption isothermals,which is the signi ficant feature of the mesoporous materials.For Co/ZnO-Na2CO3-9 and Co/Al2O3-Na2CO3-9,the isothermals belong to type IV with H1-type hysteresis loop.However,for the series ofCo/ZrO2catalysts,the isothermals attribute to type IV with H2-type hysteresis loop.This indicates that the mesoporous structure of ZrO2is different from other supports.And as shown in Fig.1b,the series ofCo/ZrO2catalysts have very narrow pore size distribution(PSD)curves around 3.0–4.0 nm,while the PSD curves of Co/ZnO-Na2CO3-9 and Co/Al2O3-Na2CO3-9 are broad.Table 2 lists the surface area,pore volume,and average pore diameterofthe calcined samples.As can be seen in Table 2,the Co/ZnO-Na2CO3-9 catalyst has a lower specific surface area,than both Co/Al2O3-Na2CO3-9 and Co/ZrO2-Na2CO3-9.It is noteworthy that the specific surface area of Co/Al2O3-Na2CO3-9 is 278.9 m2·g-1,which is higher than those of the Co/ZrO2catalysts.When it comes to the series of Co/ZrO2catalysts prepared by different precipitants and different pH values,the order of the specific surface area is Co/ZrO2-NaOH-11>Co/ZrO2-NaOH-13>Co/ZrO2-NaOH-9>Co/ZrO2-Na2CO3-9>Co/ZrO2-NH4OH-9.

    Fig.1.N2 adsorption isothermals(a)and pore size distribution profiles(b)ofthe catalysts.

    Table 2 Textural properties of various catalysts

    3.1.3.XRD analysis

    The crystal structure of the Co/ZnO-Na2CO3-9,Co/Al2O3-Na2CO3-9 and a series ofCo/ZrO2catalystswere conducted by XRD,and the results are displayed in Fig.2.For Co/ZnO-Na2CO3-9,the strong diffraction peaks at positions of 31.8°,34.4°,36.3°,47.5°,56.6°,62.7°,67.9°,69.0°and 76.8°of ZnO crystals were detected according to the JCPDS card no.05-0664[15].However,the XRD peak of Al2O3at 36.8°[16]is less apparent on Co/Al2O3-Na2CO3-9 due to the strong intensity of Co3O4peaks,which disturbs the observation of the Al2O3peak.Clearly,no XRD pattern for ZrO2was observed in a series of Co/ZrO2catalysts.Therefore,it is believed that the crystallinity of the ZnO and Al2O3carriers obtained by this preparation method is better,butthe ZrO2support is relatively poor and present in an amorphous state.In addition,Co/ZrO2-NaOH-13 catalyst displays diffraction peaks at 31.3°,36.8°,38.5°,44.7°,59.4°and 65.2°,assigned to different crystal panes of the Co3O4phase[17].However,there is no diffraction peak for Co3O4on Co/ZrO2-Na2CO3-9 catalyst,and this is probably because of a high dispersion of Co3O4over the Co/ZrO2-Na2CO3-9 catalyst.

    Fig.2.XRD patterns of calcined catalysts.

    According to the XRD half-width of the diffraction peak,the average Co3O4crystalline sizes for all the fresh catalysts except Co/ZrO2-Na2CO3-9 estimated from the Scherrer equation were listed in Table 3.Depending on the results,it can be inferred that the Co dispersion in the samples supported by Al2O3is higher than that of by ZnO,which is also applicable to the series of Co/ZrO2samples with different precipitants and differentpHvalues.Furthermore,the expected cobaltparticle size determined by the molar volume correction of corresponding Co3O4size of unreduced catalysts using the equation d(Co)=0.75d(Co3O4)[8]was also obtained and shown in Table 3.

    Table 3 Cobalt particle size and H2-TPD results of catalysts

    To determine the valence state of cobalt species and whether ZrO2has a crystal transition during the reduction and reaction processes,the XRD analysis of reduced samples(reduction in H2)and the spent catalysts are also performed and shown in Fig.3.Interestingly,the slightly strong peak at 30.3°,50.5°and 60.4°corresponding to t-ZrO2can be detected over Co/ZrO2-NH4OH-9,Co/ZrO2-NaOH-11 and Co/ZrO2-NH4OH-13[18],indicating that the reduction process further crystallizes and then transforms the zirconia crystal from amorphous to tetragonal.For the reduced and used catalysts,the peaks at 44.3°and 75.8°attribute to the metallic Co(JCPDS card no.01-1255)[11],moreover,the degree of crystallization of the supports and metallic Co is further improved for all catalysts except Co/ZrO2-Na2CO3-9 after reaction(Fig.3b).For the Co/ZrO2-Na2CO3-9,no apparent ZrO2and Co species diffraction peaks can be found.

    Fig.3.XRD patterns of reduced catalysts(a)and used catalysts(b).

    3.1.4.H2-TPR analysis

    The reduction behavior of catalysts was monitored by H2-TPR in Fig.4.Obviously,all the catalysts except Co/ZrO2-NH4OH-9 have three reduction peaks,which means that there are several forms of cobalt species in the catalyst.For Co/ZrO2-NH4OH-9,the peak at temperature of 334°C is attributed to the reduction of Co3O4to Co0[19],and as to other catalysts,the TPR peaks at around 200-450°C are assigned to the two-step reduction of Co3O4to Co0via CoO as the intermediate species[20].While the reduction peak located higher than 500°C is due to the strong interaction between cobalt particles and the support[15,21,22].Compared with Co/ZnO-Na2CO3-9 and Co/ZrO2-Na2CO3-9 catalysts,the third peak of Co/Al2O3-Na2CO3-9 is significantly shifted to a higher temperature,indicating that the Co–ZnO and Co–ZrO2interactions are pretty mild and a more hardly reducible cobalt species exists in Co/Al2O3-Na2CO3-9.Similarly,the third reduction peak temperature of Co/ZrO2-NaOH-9 is lower than that of Co/ZrO2-Na2CO3-9 and Co/ZrO2-NH4OH-9,which suggests that the cobalt species in Co/ZrO2-NaOH-9 has a weak interaction with the ZrO2support.In addition,as displayed in Fig.4,the reduction peaks at 200-450°C of Co/ZrO2-NaOH-11 and Co/ZrO2-NaOH-13 shift to lower temperatures when compared to Co/ZrO2-NaOH-9,suggesting that the Co/ZrO2-NaOH-11 and Co/ZrO2-NaOH-13 has a slightly higher reducibility.

    Fig.4.H2-TPR profiles of fresh catalysts.

    3.1.5.H2-TPD analysis

    H2-TPD experiments can provide valuable quantitative information about amount of active sites and cobalt dispersion.Fig.5 shows the H2-TPD profiles of the catalysts.For all catalysts,there are two main H2desorption peaks at around 200-300 and 350-500°C.The first peak(peak m)at low temperature is attributed to the chemisorbed hydrogen on the metal Co with a high density of defects,which often serves as capture traps for hydrogen that are able to reduce the activation energy of hydrogen dissociation[23].The second peak located at 350-500°C is due to the adsorption of H2from the metal Co formed by the interaction between cobalt and the support[23].It is reported[24]that the hydrogen adsorption sites located at before 300°C had an important impact on the Fischer–Tropsch synthesis reaction,while the high temperature adsorption of H2is without Fischer–Tropsch synthesis reactivity.In consequence,the main research on the low temperature adsorption peak(peak m)is carried out.

    Fig.5.H2-TPDprofiles ofcalcined catalysts:(1)Co/ZnO-Na2CO3-9;(2)Co/Al2O3-Na2CO3-9;(3)Co/ZrO2-Na2CO3-9;(4)Co/ZrO2-NH4OH-9;(5)Co/ZrO2-NaOH-9;(6)Co/ZrO2-NaOH-11;(7)Co/ZrO2-NaOH-13.

    Table 3 lists the calculated relative m-peak area,the temperature of peak m and the Co dispersions of catalysts based on the H2-TPD results.To have a better understanding of the amount of adsorption sites on catalysts,the m peak area of Co/ZnO-Na2CO3–9 is de fined as 1.Then the relative m peak area of other catalysts can also be obtained.As seen in Table 3,Co/ZrO2-NaOH-11 has the most low-temperature active adsorption sites,followed by Co/ZrO2-NaOH-13,Co/ZrO2-NaOH-9,Co/ZrO2-Na2CO3-9,Co/Al2O3-Na2CO3-9,Co/ZrO2-NH4OH-9,and Co/ZnONa2CO3-9 has the lowest.The interaction between Co and the adsorbed H2could also be investigated on the basis ofH2desorption peak positions.From the Fig.5 and Table 3,it can be observed that the Tmof the first H2desorption peaks follow an order of Co/ZnO-Na2CO3-9>Co/Al2O3-Na2CO3-9>Co/ZrO2-Na2CO3-9>Co/ZrO2-NH4OH-9>Co/ZrO2-NaOH-13>Co/ZrO2-NaOH-9>Co/ZrO2-NaOH-11.This suggests that when the temperature ofthe first H2desorption peak is higher,the interaction between active Co and adsorbed H2is stronger,which may strengthen the chain growth and thus increase the C5+selectivity.

    Table 3 shows that among all the catalysts,Co/ZrO2-Na2CO3-9 has the highest Co dispersion of 39.1%,which is consistent with the conclusion from XRD analysis(Fig.3a).In addition,the Co dispersion of Co/ZnO-Na2CO3-9 is almost one-third of the Co/Al2O3-Na2CO3-9 catalyst,and the reason may be related to the weak metal-support interaction and small surface area of the catalyst.And as for the rest of catalysts,the cobalt dispersion of Co/ZrO2-NaOH-11 is larger than Co/ZrO2-NH4OH-9,Co/ZrO2-NaOH-9 and Co/ZrO2-NaOH-13,due to its larger numbers of H2adsorption sites.

    3.1.6.TEM observations

    The TEMimages and the corresponding energy dispersive X-ray spectroscopy(EDX)spectra of the reduced catalysts are shown in Fig.6.It is observed that the ZnO planes are obvious with the lattice fringes of 0.26 nm in Fig.6a′,which is in good agreement with the results of XRD analysis.Besides,the EDX spectra of the specified region in Co/ZrO2-NH4OH-9 and Co/ZrO2-NaOH-9 show clear peaks of Co,Zr and Cu,and the results show that the darker and larger particles mainly contain the cobalt element,while the smaller particles of light-colored material are assigned to ZrO2ignoring the Cu[25].So it can be judged that in Fig.6,the dark black particles are identified as metal Co,whereas the graycolored particles are recognized as supports.However,for Co/ZrO2-Na2CO3-9,it can't be observed the significant structure of ZrO2and cobalt particles from Fig.6c,which speculates that Co particles are homogeneously dispersed across the whole catalyst.In addition,the TEM images of Co/ZnO-Na2CO3-9,Co/ZrO2-NH4OH-9,Co/ZrO2-NaOH-9,Co/ZrO2-NaOH-11 and Co/ZrO2-NaOH-13(Fig.6a,d,e,f,g)exhibitan apparentagglomeration of Co species and can't be determined the dispersion of cobalt particles,but the Co particles in Co/Al2O3-Na2CO3-9 are uniformly dispersed on supports and because of the strong Co-Al2O3interaction,the average Co particle size is small,which exhibits the smaller Co particle size,the higher Co dispersion.

    Fig.6.TEM images and the corresponding EDX spectra of the reduced catalysts:(a),(a′)Co/ZnO-Na2CO3-9;(b)Co/Al2O3-Na2CO3-9;(c)Co/ZrO2-Na2CO3-9;(d)Co/ZrO2-NH4OH-9;(e)Co/ZrO2-NaOH-9;(f)Co/ZrO2-NaOH-11;(g)Co/ZrO2-NaOH-13.

    3.2.FTS performance of the catalysts

    The variations ofCOconversion with the time on stream(TOS)for the catalysts are shown in Fig.7.Allcatalysts exhibita good stability over22-h test.Table 4 summarizes the FTS catalytic activities and product distributions by averaging the values after the reaction reaching a steady-state.

    Fig.7.CO conversion of the catalysts with time on stream.

    Table 4 The FTS performance on different catalysts

    As seen in Table 4,the CO conversion of Co/ZrO2-Na2CO3-9 is higher than Co/ZnO-Na2CO3-9 and Co/Al2O3-Na2CO3-9 catalysts.Thus,in order to further optimize the Co/ZrO2catalyst,different Co/ZrO2catalysts were prepared by co-precipitation method using differentprecipitants atdifferentpHvalues.Itwasfound thatdifferentcatalysts exhibitdifferentFTSactivity,following an order of Co/ZrO2-NaOH-13>Co/ZrO2-NaOH-11>Co/ZrO2-NaOH-9>Co/ZrO2-Na2CO3-9>Co/ZrO2-NH4OH-9.Clearly,the catalyst prepared by NaOH as the precipitant is more active than that prepared by using NH4OH or Na2CO3and the best pH value is 13.

    Combined with the TPD results as listed in Table 3,it can be deduced that CO conversion on the catalysts increases with the increase of the amounts ofthe weak adsorption sites,illuminating thatthe main factor affecting the COconversion ofcatalysts is the quantity oflow-temperature active adsorption sites.In addition,C5+selectivity is closely related to the peak temperature of the weak hydrogen adsorption sites,and higher peak temperature willlead to higher C5+selectivity due to the enhanced interaction between the active Co and the adsorbed H2.Moreover,no CO2is detected for Co/ZnO-Na2CO3-9,Co/ZrO2-NH4OH-9 and Co/ZrO2-NaOH-9,which implies a negligible WGS activity over these three catalysts.

    4.Conclusions

    The cobalt catalysts supported on ZnO,Al2O3and ZrO2with Na2CO3as precipitant were prepared by co-precipitation method and their FTS activity increased in the order of ZnO<Al2O3<ZrO2.Then a series of Co/ZrO2catalysts using different precipitants(NH4OH,Na2CO3and NaOH)and different aging pH values(pH=9,11,13)were investigated.It was clari fied that the amounts of low-temperature active adsorption sites played important roles in the CO conversion of all catalysts,and a positive relationship was observed between the weak adsorption sites and FTS performance.For this series ofcobaltcatalysts,C5+selectivity is increased with the increase of peak temperature of the weak hydrogen adsorption sites.

    References

    [1]Y.Chen,C.C.Liu,Y.H.Zhang,Y.X.Zhao,L.Wei,X.Wen,X.Zhao,J.L.Li,The in fluence of Fe,Ti,Ga and Zn on the Fischer-Tropsch synthesis catalytic performance of Cobased hierarchically porous ZSM-5 zeolite catalysts,Catal.Lett.147(2)(2017)502–508.

    [2]J.Aluha,Y.F.Hu,N.Abatzoglou,Effect of CO concentration on the α-value of plasmasynthesized Co/C catalystin Fischer-Tropsch synthesis,Catalysts 7(3)(2017)502–508.

    [3]V.R.R.Pendyala,W.D.Shafer,G.Jacobs,M.Martinelli,D.E.Sparks,B.H.Davis,Fischer-Tropsch synthesis:effect of ammonia on product selectivities for a Pt promoted Co/alumina catalyst,RSC Adv.7(13)(2017)7793–7800.

    [4]A.P.Savost'yanov,R.E.Yakovenko,S.I.Sulima,V.G.Bakun,G.B.Narochnyi,V.M.Chernyshev,S.A.Mitchenko,The impact of Al2O3promoter on an efficiency of C5+hydrocarbons formation over Co/SiO2catalysts via Fischer-Tropsch synthesis,Catal.Today 279(2017)107–114.

    [5]W.Chu,J.Q.Xu,J.P.Hong,T.Lin,A.Khodakov,Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement:reducibility and performance(review),Catal.Today 256(2015)41–48.

    [6]S.A.Chernyak,G.E.Selyaev,E.V.Suslova,A.V.Egorov,K.I.Maslakov,A.N.Kharlanov,S.V.Savilov,V.V.Lunin,Effect of cobalt weight content on the structure and catalytic properties of Co/CNT catalysts in the Fischer-Tropsch synthesis,Kinet.Catal.57(5)(2016)640–646.

    [7]L.V.Sineva,E.V.Kulchakovskaya,E.Y.Asalieva,V.Z.Mordkovich,Effect of water on the secondary transformations of hydrocarbons in the Fischer-Tropsch synthesis on Co-zeolite catalysts,Mendeleev Commun.27(1)(2017)75–77.

    [8]T.J.Fu,Y.H.Jiang,J.Lv,Z.H.Li,Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts,Fuel Process.Technol.110(2013)141–149.

    [9]X.H.Zhang,H.Q.Su,Y.L.Zhang,X.J.Gu,Effect of CeO2promotion on the catalytic performance ofCo/ZrO2catalysts for Fischer-Tropsch synthesis,Fuel184(2016)162–168.

    [10]J.G.Chen,Y.H.Sun,The structure and reactivity of coprecipitated CO-ZrO2catalysts for Fischer-Tropsch synthesis,Stud.Surf.Sci.Catal.147(2004)277–282.

    [11]L.T.Jia,K.G.Fang,J.G.Chen,Y.H.Sun,Effects of reduction atmosphere on structure and catalytic activity of Co-ZrO2catalyst for Fischer-Tropsch synthesis,Chin.J.Catal.28(7)(2007)596–600.

    [12]A.T.Najafabadi,A.A.Khodadadi,M.J.Parnian,Y.Mortazavi,Atomic layer deposited Co/γ-Al2O3catalyst with enhanced cobalt dispersion and Fischer-Tropsch synthesis activity and selectivity,Appl.Catal.A 511(2016)31–46.

    [13]J.Liu,J.Yu,F.B.Su,G.W.Xu,Intercorrelation of structure and performance of Ni-Mg/Al2O3catalysts prepared with different methods for syngas methanation,Catal.Sci.Technol.4(2)(2014)472–481.

    [14]T.J.Fu,J.Lv,Z.H.Li,Effect of carbon porosity and cobalt particle size on the catalytic performance of carbon supported cobalt Fischer-Tropsch catalysts,Ind.Eng.Chem.Res.53(4)(2014)1342–1350.

    [15]X.Q.Wang,W.S.Ning,L.H.Hu,Y.L.Li,In fluences of Al2O3on the structure and reactive performance of Co/ZnO catalyst,Catal.Commun.24(2012)61–64.

    [16]Z.D.Pan,M.Parvari,D.B.Bukur,Fischer-Tropsch synthesis on Co/Al2O3catalyst:effect of pretreatment procedure,Top.Catal.57(6–9)(2014)470–478.

    [17]Z.Li,J.H.Wu,J.Q.Yu,D.Z.Han,L.Y.Wu,J.Q.Li,Effect of incorporation manner of Zr on the Co/SBA-15 catalyst for the Fischer-Tropsch synthesis,J.Mol.Catal.A Chem.424(2016)384–392.

    [18]K.C.Zhao,W.H.Wang,Z.H.Li,Highly efficient Ni/ZrO2catalysts prepared via combustion method for CO2methanation,J.CO2Util.16(2016)236–244.

    [19]Y.C.Liu,H.T.Wu,L.T.Jia,Z.H.Fu,J.G.Chen,D.B.Li,D.L.Yin,Y.H.Sun,Effect of the calcination temperature on the catalyst performance of ZrO2-supported cobalt for Fischer-Tropsch synthesis,Adv.Mater.Res.347-353(2011)3788–3793.

    [20]T.J.Fu,R.J.Liu,J.Lv,Z.H.Li,In fluence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer-Tropsch performance on cobalt catalyst,Fuel Process.Technol.122(2014)49–57.

    [21]M.N.Lu,N.Fatah,A.Y.Khodakov,Solvent-free synthesis of alumina supported cobalt catalysts for Fischer-Tropsch synthesis,J.Energy Chem.25(6)(2016)1001–1007.

    [22]Y.C.Liu,K.G.Fang,J.G.Chen,Y.H.Sun,Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts,Green Chem.9(6)(2007)611–615.

    [23]Q.Liu,J.J.Gao,F.N.Gu,X.P.Lu,Y.J.Liu,H.F.Li,Z.Y.Zhong,B.Liu,G.W.Xu,F.B.Su,One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation,J.Catal.326(2015)127–138.

    [24]L.T.Jia,D.B.Li,B.Hou,Z.Q.Sun,B.Liu,J.G.Guo,R.H.Ren,Y.H.Sun,In fluence ofreductionoxidation-reduction treatment on the structure and catalytic performance of Co-ZrO2for Fischer-Tropsch synthesis,J.Fuel Chem.Technol.38(6)(2010)710–715.

    [25]P.Dumrongbunditkul,T.Witoon,M.Chareonpanich,T.Mungcharoen,Preparation and characterization of Co-Cu-ZrO2nanomaterials and their catalytic activity in CO2methanation,Ceram.Int.42(8)(2016)10444–10451.

    一区福利在线观看| 欧美日本中文国产一区发布| 欧美日韩成人在线一区二区| 一级毛片电影观看| 日韩 亚洲 欧美在线| 日本五十路高清| 亚洲中文av在线| 最新的欧美精品一区二区| 人妻久久中文字幕网| 精品少妇内射三级| 十八禁高潮呻吟视频| av有码第一页| 午夜老司机福利片| 一区二区三区四区激情视频| 天天躁夜夜躁狠狠躁躁| 19禁男女啪啪无遮挡网站| 国产精品偷伦视频观看了| www.熟女人妻精品国产| 亚洲一区中文字幕在线| 美女午夜性视频免费| 成人亚洲精品一区在线观看| 国产精品秋霞免费鲁丝片| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 亚洲精品一二三| 男女边摸边吃奶| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 午夜视频精品福利| 午夜福利,免费看| 日韩大码丰满熟妇| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 国产精品久久久人人做人人爽| 国产成人精品无人区| 久久久久视频综合| 老司机在亚洲福利影院| 免费在线观看完整版高清| 这个男人来自地球电影免费观看| 久久影院123| 国产精品免费视频内射| 国产不卡av网站在线观看| 1024视频免费在线观看| 淫妇啪啪啪对白视频 | 91av网站免费观看| 国产激情久久老熟女| 国产老妇伦熟女老妇高清| 搡老岳熟女国产| 久久人妻熟女aⅴ| 日韩中文字幕视频在线看片| 狂野欧美激情性bbbbbb| 国产精品二区激情视频| 亚洲天堂av无毛| 久久久久久久精品精品| 老熟女久久久| 满18在线观看网站| 久久午夜综合久久蜜桃| 亚洲国产成人一精品久久久| 亚洲九九香蕉| 2018国产大陆天天弄谢| 国产日韩欧美视频二区| 日韩三级视频一区二区三区| 两人在一起打扑克的视频| 一区二区三区乱码不卡18| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 欧美精品av麻豆av| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 国产极品粉嫩免费观看在线| 在线观看舔阴道视频| 国产野战对白在线观看| 亚洲精华国产精华精| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| 高清视频免费观看一区二区| 日韩制服骚丝袜av| 一边摸一边抽搐一进一出视频| 日韩电影二区| 亚洲精品日韩在线中文字幕| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 精品免费久久久久久久清纯 | 日韩制服骚丝袜av| 手机成人av网站| 国产主播在线观看一区二区| 91av网站免费观看| 欧美另类一区| 黄网站色视频无遮挡免费观看| 久久av网站| 男人操女人黄网站| 午夜福利影视在线免费观看| 欧美av亚洲av综合av国产av| 免费高清在线观看视频在线观看| 午夜福利视频精品| 精品一品国产午夜福利视频| 欧美成狂野欧美在线观看| 看免费av毛片| 91字幕亚洲| 久久国产精品大桥未久av| 国产精品亚洲av一区麻豆| 久久精品亚洲熟妇少妇任你| 亚洲国产精品999| 麻豆国产av国片精品| 91精品国产国语对白视频| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 日日爽夜夜爽网站| 日韩视频在线欧美| 中文欧美无线码| 亚洲色图综合在线观看| 国产成人系列免费观看| 久久精品亚洲av国产电影网| 亚洲国产欧美网| 日本91视频免费播放| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 亚洲少妇的诱惑av| 美女大奶头黄色视频| 久久午夜综合久久蜜桃| 日本五十路高清| 国产成人精品无人区| 国产高清国产精品国产三级| 午夜免费成人在线视频| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 国产成人系列免费观看| 这个男人来自地球电影免费观看| 国产免费视频播放在线视频| 美女午夜性视频免费| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 国产野战对白在线观看| 免费观看av网站的网址| 最新在线观看一区二区三区| 丁香六月欧美| 女人被躁到高潮嗷嗷叫费观| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影 | 久久国产精品人妻蜜桃| 在线观看人妻少妇| 欧美精品一区二区免费开放| 又黄又粗又硬又大视频| www.999成人在线观看| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 免费在线观看完整版高清| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 深夜精品福利| 18禁裸乳无遮挡动漫免费视频| 九色亚洲精品在线播放| videosex国产| 男女国产视频网站| 在线亚洲精品国产二区图片欧美| 日韩欧美免费精品| 两个人看的免费小视频| tube8黄色片| 日韩人妻精品一区2区三区| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 在线亚洲精品国产二区图片欧美| av有码第一页| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 久久九九热精品免费| 精品高清国产在线一区| 精品人妻在线不人妻| 如日韩欧美国产精品一区二区三区| 久久精品国产综合久久久| 亚洲精品久久成人aⅴ小说| a在线观看视频网站| 91精品伊人久久大香线蕉| 国产xxxxx性猛交| 免费看十八禁软件| 一本综合久久免费| www.999成人在线观看| 十分钟在线观看高清视频www| 国产精品1区2区在线观看. | 日本91视频免费播放| 亚洲av国产av综合av卡| 美国免费a级毛片| 国产欧美日韩一区二区三 | 欧美日韩黄片免| 亚洲性夜色夜夜综合| 亚洲欧洲日产国产| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 国产欧美日韩一区二区三 | 欧美亚洲日本最大视频资源| 肉色欧美久久久久久久蜜桃| 日日夜夜操网爽| 亚洲国产看品久久| 色婷婷av一区二区三区视频| 婷婷色av中文字幕| 欧美在线一区亚洲| 9191精品国产免费久久| 亚洲久久久国产精品| 在线av久久热| 久久久久久久国产电影| 亚洲精品久久久久久婷婷小说| 亚洲av片天天在线观看| 日本精品一区二区三区蜜桃| svipshipincom国产片| 久久久久久久国产电影| 亚洲五月婷婷丁香| 欧美国产精品va在线观看不卡| 日本精品一区二区三区蜜桃| 免费av中文字幕在线| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 亚洲成人国产一区在线观看| 亚洲avbb在线观看| 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 欧美激情 高清一区二区三区| av片东京热男人的天堂| 黄色 视频免费看| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 日韩欧美一区二区三区在线观看 | 国产亚洲精品久久久久5区| 国产一区二区 视频在线| 男女午夜视频在线观看| 亚洲熟女精品中文字幕| 欧美成人午夜精品| 满18在线观看网站| 午夜福利影视在线免费观看| 久久精品人人爽人人爽视色| 亚洲欧美日韩高清在线视频 | av又黄又爽大尺度在线免费看| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 一本久久精品| 国产精品.久久久| 精品一区在线观看国产| 久久精品熟女亚洲av麻豆精品| 国产色视频综合| 亚洲中文日韩欧美视频| 日本91视频免费播放| 亚洲精品日韩在线中文字幕| 男女国产视频网站| 精品人妻1区二区| 精品免费久久久久久久清纯 | 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 岛国在线观看网站| 国产一区有黄有色的免费视频| 国产亚洲欧美在线一区二区| 久久久精品国产亚洲av高清涩受| 99九九在线精品视频| 乱人伦中国视频| 黄色视频不卡| 国产国语露脸激情在线看| 我的亚洲天堂| 不卡一级毛片| 99精品欧美一区二区三区四区| av网站免费在线观看视频| 91麻豆av在线| 咕卡用的链子| 免费少妇av软件| 亚洲美女黄色视频免费看| 岛国在线观看网站| 亚洲九九香蕉| 午夜91福利影院| 精品人妻熟女毛片av久久网站| 欧美国产精品一级二级三级| avwww免费| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 又大又爽又粗| 国产精品1区2区在线观看. | avwww免费| 亚洲免费av在线视频| 免费在线观看影片大全网站| 国产黄频视频在线观看| 麻豆乱淫一区二区| 1024视频免费在线观看| 日韩 亚洲 欧美在线| 狠狠婷婷综合久久久久久88av| 亚洲精品av麻豆狂野| 亚洲成人国产一区在线观看| 正在播放国产对白刺激| 欧美在线黄色| 成人国产av品久久久| 在线永久观看黄色视频| www.精华液| av在线老鸭窝| 十分钟在线观看高清视频www| 午夜视频精品福利| 欧美人与性动交α欧美精品济南到| 国产精品99久久99久久久不卡| 香蕉丝袜av| 久久 成人 亚洲| 精品乱码久久久久久99久播| 搡老乐熟女国产| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 三上悠亚av全集在线观看| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 久久99一区二区三区| 午夜福利视频精品| 久久精品人人爽人人爽视色| 伊人亚洲综合成人网| 欧美黄色淫秽网站| 亚洲欧洲日产国产| 日韩电影二区| 免费久久久久久久精品成人欧美视频| 欧美97在线视频| 欧美黄色淫秽网站| 丝袜喷水一区| 热99re8久久精品国产| 国产一级毛片在线| 久9热在线精品视频| 亚洲三区欧美一区| 一区二区三区精品91| 日韩 亚洲 欧美在线| 狠狠狠狠99中文字幕| 丰满少妇做爰视频| 亚洲性夜色夜夜综合| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 国产高清videossex| 在线观看免费视频网站a站| 老司机午夜福利在线观看视频 | 国产日韩欧美亚洲二区| 国产区一区二久久| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 国产视频一区二区在线看| 母亲3免费完整高清在线观看| 一本大道久久a久久精品| 免费高清在线观看日韩| 一区二区三区乱码不卡18| 精品久久久久久久毛片微露脸 | 亚洲男人天堂网一区| 久久ye,这里只有精品| 人妻 亚洲 视频| 国产成人啪精品午夜网站| 男人添女人高潮全过程视频| 亚洲国产中文字幕在线视频| 两个人免费观看高清视频| av网站在线播放免费| 欧美精品高潮呻吟av久久| 国产精品亚洲av一区麻豆| 国产野战对白在线观看| 日韩中文字幕视频在线看片| 精品一区二区三卡| 国产亚洲欧美精品永久| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 精品视频人人做人人爽| svipshipincom国产片| 国产在线观看jvid| 91麻豆av在线| 精品人妻在线不人妻| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久 | 亚洲第一欧美日韩一区二区三区 | 黄片小视频在线播放| 搡老乐熟女国产| 亚洲精品一二三| 国产日韩一区二区三区精品不卡| 精品少妇黑人巨大在线播放| av在线播放精品| 国产三级黄色录像| 9191精品国产免费久久| 免费观看av网站的网址| 手机成人av网站| 亚洲av欧美aⅴ国产| 精品福利观看| 十八禁人妻一区二区| 亚洲中文字幕日韩| 69精品国产乱码久久久| 嫩草影视91久久| 国产一区二区在线观看av| 乱人伦中国视频| 亚洲av男天堂| 精品一区二区三卡| 国产高清videossex| 亚洲第一青青草原| 脱女人内裤的视频| 午夜福利免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美免费精品| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 一级黄色大片毛片| 成人手机av| 超碰97精品在线观看| 国产欧美日韩一区二区精品| 999久久久国产精品视频| 日本一区二区免费在线视频| 国产野战对白在线观看| 2018国产大陆天天弄谢| 亚洲成人国产一区在线观看| 精品国内亚洲2022精品成人 | 日本五十路高清| 国产成人欧美在线观看 | 男女午夜视频在线观看| 人妻久久中文字幕网| 久久久精品免费免费高清| 国产人伦9x9x在线观看| 国产在线视频一区二区| 午夜91福利影院| 国产亚洲精品久久久久5区| 岛国在线观看网站| 国产成人影院久久av| 精品国产超薄肉色丝袜足j| 别揉我奶头~嗯~啊~动态视频 | 美女扒开内裤让男人捅视频| 久久亚洲国产成人精品v| 50天的宝宝边吃奶边哭怎么回事| 色94色欧美一区二区| 美国免费a级毛片| 欧美xxⅹ黑人| 777久久人妻少妇嫩草av网站| 久久精品成人免费网站| 欧美亚洲日本最大视频资源| 国产一区二区在线观看av| 欧美精品高潮呻吟av久久| 国产精品免费大片| 日本精品一区二区三区蜜桃| 色播在线永久视频| 狠狠狠狠99中文字幕| 日韩 亚洲 欧美在线| 大香蕉久久成人网| 国产深夜福利视频在线观看| 777米奇影视久久| 久久精品国产亚洲av香蕉五月 | 午夜久久久在线观看| kizo精华| 丁香六月欧美| 亚洲欧美精品自产自拍| 亚洲欧美激情在线| 操出白浆在线播放| 在线观看一区二区三区激情| 精品一区在线观看国产| 国产三级黄色录像| 欧美国产精品va在线观看不卡| 久久狼人影院| 午夜激情久久久久久久| 久久亚洲国产成人精品v| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 国产精品99久久99久久久不卡| 国产精品成人在线| 亚洲精品一区蜜桃| 国产精品 欧美亚洲| 欧美黑人欧美精品刺激| 精品卡一卡二卡四卡免费| 亚洲av日韩在线播放| 久久人人爽人人片av| 欧美日韩一级在线毛片| 少妇精品久久久久久久| 久久午夜综合久久蜜桃| 91成年电影在线观看| 欧美精品啪啪一区二区三区 | 亚洲va日本ⅴa欧美va伊人久久 | 97人妻天天添夜夜摸| 香蕉国产在线看| av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 美女高潮喷水抽搐中文字幕| 精品卡一卡二卡四卡免费| 永久免费av网站大全| 亚洲中文字幕日韩| 亚洲伊人久久精品综合| 考比视频在线观看| 真人做人爱边吃奶动态| 99国产精品一区二区蜜桃av | 人成视频在线观看免费观看| 蜜桃国产av成人99| 一本色道久久久久久精品综合| 日韩欧美一区二区三区在线观看 | 一区二区av电影网| 日韩 欧美 亚洲 中文字幕| 青春草亚洲视频在线观看| 国产在线免费精品| 美女国产高潮福利片在线看| 国产av又大| 精品亚洲乱码少妇综合久久| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区综合在线观看| av不卡在线播放| 欧美日韩成人在线一区二区| 亚洲少妇的诱惑av| 国产人伦9x9x在线观看| 精品久久久久久久毛片微露脸 | 黄频高清免费视频| 动漫黄色视频在线观看| 成人国语在线视频| 久久av网站| 欧美乱码精品一区二区三区| 18在线观看网站| 伊人久久大香线蕉亚洲五| 亚洲精品国产一区二区精华液| 久久中文看片网| 精品卡一卡二卡四卡免费| 国产精品 国内视频| 悠悠久久av| 大码成人一级视频| 日本精品一区二区三区蜜桃| 老司机深夜福利视频在线观看 | 国产亚洲精品第一综合不卡| 国产精品一区二区在线不卡| 最近中文字幕2019免费版| 又紧又爽又黄一区二区| 热99re8久久精品国产| 欧美黑人精品巨大| 亚洲色图综合在线观看| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| 日本猛色少妇xxxxx猛交久久| 日韩三级视频一区二区三区| 亚洲国产精品成人久久小说| 国产欧美日韩综合在线一区二区| 在线观看免费视频网站a站| 亚洲精品av麻豆狂野| cao死你这个sao货| 三上悠亚av全集在线观看| 国产亚洲欧美精品永久| 国产精品九九99| 美女国产高潮福利片在线看| 国产极品粉嫩免费观看在线| 两个人免费观看高清视频| 在线观看免费高清a一片| 精品福利永久在线观看| 成人国产一区最新在线观看| 高清在线国产一区| 俄罗斯特黄特色一大片| 一区二区三区激情视频| 一本—道久久a久久精品蜜桃钙片| 欧美黄色片欧美黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 成年av动漫网址| 国产亚洲欧美精品永久| 国产精品九九99| 9热在线视频观看99| 亚洲欧美成人综合另类久久久| 国产av一区二区精品久久| 丝袜美足系列| 亚洲精品久久久久久婷婷小说| videos熟女内射| 青青草视频在线视频观看| 亚洲精品中文字幕一二三四区 | videosex国产| 99热全是精品| 爱豆传媒免费全集在线观看| 精品人妻熟女毛片av久久网站| 欧美激情久久久久久爽电影 | 国精品久久久久久国模美| 美女大奶头黄色视频| 老熟女久久久| 丰满迷人的少妇在线观看| 成年美女黄网站色视频大全免费| 美女视频免费永久观看网站| 2018国产大陆天天弄谢| 色94色欧美一区二区| 日韩一区二区三区影片| 欧美黄色淫秽网站| 国产一区二区三区综合在线观看| 黄色视频在线播放观看不卡| 性少妇av在线| 在线精品无人区一区二区三| 成年人午夜在线观看视频| 如日韩欧美国产精品一区二区三区| 嫩草影视91久久| 精品欧美一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 欧美国产精品va在线观看不卡| 一区二区三区精品91| 成人国产一区最新在线观看| 91麻豆av在线| www.av在线官网国产| 亚洲精品第二区| 狂野欧美激情性xxxx| av有码第一页| 亚洲熟女毛片儿| 中文精品一卡2卡3卡4更新| www.av在线官网国产| 亚洲欧美日韩另类电影网站| 狂野欧美激情性xxxx| 国产亚洲欧美在线一区二区| 久久人人爽人人片av| 久久久久视频综合| 五月开心婷婷网| 亚洲三区欧美一区| 一级片'在线观看视频| 亚洲av电影在线进入| 欧美日韩黄片免| 国产精品欧美亚洲77777| 亚洲九九香蕉| 亚洲国产成人一精品久久久| 伦理电影免费视频| 久久精品国产亚洲av高清一级| 嫩草影视91久久| 淫妇啪啪啪对白视频 | 欧美 亚洲 国产 日韩一| 日韩有码中文字幕| 欧美激情 高清一区二区三区| 亚洲一区中文字幕在线| 亚洲伊人久久精品综合|