• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions

    2018-05-25 11:26:18EbrahimSoroushShohrehShahsavariMohammadMesbahMashallahRezakazemiZhienZhang

    Ebrahim Soroush ,Shohreh Shahsavari,Mohammad Mesbah *,Mashallah Rezakazemi,Zhi'en Zhang

    1 Young Researchers and Elites Club,Ahvaz Branch,Islamic Azad University,Ahvaz,Iran

    2 Department of Chemical Engineering,Sahand University of Technology,Tabriz,Iran

    3 Young Researchers and Elites Club,Science and Research Branch,Islamic Azad University,Tehran,Iran

    4 Department of Chemical Engineering,Shahrood University of Technology,Shahrood,Iran

    5 School of Chemistry and Chemical Engineering,Chongqing University of Technology,Chongqing 400054,China

    6 Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education of China,Chongqing University,Chongqing 400044,China

    1.Introduction

    Annual emission of a large quantity of Greenhouse Gases(GHG)endangers the environment and is the main reason ofglobal warming and climate change.It is estimated that a considerable amount of global warming,approximately more than 55%,is related to the CO2,which is present in the atmosphere.Consequently,decreasing CO2emissions is a harsh necessity and requires immediate attention[1–4].

    Absorption by aqueous alkanol-amine solutions is the mostcommon method for processes dealing with CO2elimination from flue gas streams[5–7].The most preferred chemical solvents for absorption of CO2are the aqueous solution of amines(primary,secondary,tertiary,and sterically hindered)due to their amazing thermal degradation resistance,low hydrocarbons loading capacity,high rate of absorption,and reasonable cost[8].Nevertheless,high consumption of energy,equipment corrosion,fouling,and foaming are inevitable drawbacks of utilizing amine solutions[8].

    In recent decades,Ionic Liquids(ILs)have been suggested as new CO2absorbers.Due to their low vapor pressures,they have low vaporization rate.However,ILs face some problems as CO2solvent including high viscosity,high cost,and low CO2loading[9].In the past decade,as a potential substitute for alkanol-amines,amino acid salt solutions have been welcomed[10].Despite that,alkanolamines are cheaper;the amino acid salt solutions are superior in many ways.Due to their ionic essence,they have high chemical reactivity,low vapor pressures,and low viscosities,are stable to oxidative degradation,and capable of establishing proper binding energy with CO2[11].CO2absorption by amino acid salt solutions may produce some precipitation in the liquid phase,which shifts the reactions in the direction of forming more products and consequently an increase of CO2absorption[12,13].

    Some investigators have studied the absorption of CO2via amino acid salt solutions.Sodium glycinate solutions were investigated by Song et al.[14]for CO2absorption.They used solutions of 10 wt%,20 wt%,and 30 wt%for CO2absorption with the range ofpartialpressure from 0.1 to 200 kPa at the temperatures 303,313,and 323 K.The outcomes stated that the loading capacity reduces by increasing concentration ofthe amino acid salt.Mu?oz etal.[15]studied CO2absorption with 1-molar solution of the potassium salts of threonine,proline,serine,arginine,ornithine,histidine,glycine,and taurine at 293 K and 100 kPa.They concluded that these amino acid salt solutions have a CO2loading like monoethylamine(MEA).

    Portugal et al.[15]used potassium threonate and potassium glycinate for CO2absorption.They stated that despite no precipitation was observed during the experiments,the order of magnitude for CO2absorption using the amino acid is equal to the MEA.In addition,they found out that an increase in the potassium glycinate concentration decreases the CO2loading.Majchrowicz and Brilman[16]studied the potassium L-prolinate solution in absorbing CO2.They concluded the CO2loading decreases with increasing molar concentration of potassium L-prolinate.In addition,they observed some precipitation in the absorption process using 3-molar L-prolinate solution at 285 K.

    Wei et al.[17]examined the CO2loading capacity of potassium taurate aqueous solution along with density and viscosity.They indicated that the CO2loading increases when the concentration of potassium taurate increases.Mazinani etal.[32]investigated the CO2absorption at low partial pressures using potassium lysinate.Their results indicated that the CO2solubility decreases by increase in the concentration of potassium lysinate and operating temperature.

    Literature experimental data for equilibrium solubility of CO2into some amino acid salt solutions are collected and they are limited in the range of operating conditions and accuracy.Basically,the CO2loading for amino acid salt solutions depends on the solvent type,temperature,pressure,and concentration of solvent.There are several experimental data on CO2absorption with amino acid salt solutions in the literature[10,11,14,18,19].Nevertheless,they cover only a narrow range of temperature and concentration,which does not satisfy the requirements for applications.In addition,equilibrium data points are needed to assess the system reliability.However,the experimental measurements in all ranges for all types of solutions are impractical and rather expensive.Though developing methods for estimating CO2loading of amino acid salt solutions is of vital importance.

    Several thermodynamic models could be found in the literature that can predict the CO2loading.In some empirical base models such as Kent–Eisenberg[20]which is applicable to some CO2absorption systems[21],non-idealities are assumed lumped in equilibrium constants.Some models which are developed using the excess Gibbs free energy,such as the models introduced by Austgen et al.[22],Clegg and Pitzer[23],the electrolyte-NRTL modelofChen and Evans[24],and Deshmukh and Mather[25].There are some equations of state(EoS)which try to designate non-idealities of the amino acid absorption systems.Thermodynamic models such as SAFT and CPA could be applicable for predicting CO2absorption using amino acid salts,albeit the lack of data on critical and some physical properties of amino acid solutions is a major problem.

    In this study,we are trying to develop a rebuts predictive mathematical model for estimating CO2solubility in potassium based amino acid salt solutions by using neural networks and assess the in fluential parameters of the absorption process with resultant model.

    2.Methodology

    An important step in designing a network is the determination of number of hidden layers.It is believed that all kinds of nonlinear mapping could be performed by using a network which has just one hidden layer[26–28].MLP is broadly used for prediction,approximation,pattern classi fication,and recognition.MLP can predictissues stochastically which are not linearly separable.Hence,in this study,single-hiddenlayer MLP was selected to predict acid gas absorption in the different amino acid salt solutions.

    2.1.Multilayer perceptron(MLP)

    An MLP is a feed-forward artificialneuralnetwork ofsimple neurons called perceptrons with single or multiple layers between input and output layer with the back-propagation learning algorithm.Fig.1 displays the graphical of the MLP with one hidden layer in the prediction of CO2solubility in different amino acid solutions.Each MLP layer contains one or more neurons directionally connected with the neurons from the nextand the previous layer.Allthe neurons in MLP are similar.The values regained from the former layerare summed up with weights and bias which are individual for each neuron.The summation is transformed using the activation function which can be also changed foreach neuron.In this study,tangent sigmoid activation function was used for hidden layer while a linear function was used for the output layer[28–31].

    However,MLP using a back-propagation algorithm is the standard algorithm for any chemical engineering problems and the subjectof ongoing research in the prediction of acid gas absorption in different amino acid salt solutions.

    Fig.1.The structure of MLP with one hidden layer containing 12 neurons.

    Table 1 Range of Data for each amino acid salt solution system

    2.2.Data

    For training,the network,255 data points of CO2absorption at various operating conditions in different amino acid salt solutions were gathered from numerous literature review and were reported in Table A1.The range of data for each amino acid salt solution system was reported in Table 1.These data are divided into three classes named training(70%,179 data points),validation(15%,38 data points),and testing(15%,38 data points)datasets.The data selection was carried out randomly.

    For creating an ANN,the independent inputs must be de fined.It is essentialto determine criteria to discriminate the types ofamine saltsolutions.Moreover,operating conditions are imperative asthey in fluence the solubility of acid gases.Based on empirical experience,acid gas absorption into amino salt solutions depends on amine salt solution's type,temperature,equilibrium partial pressure of CO2,and the molar concentration ofthe solution.Some other parameters such as molecular weight and the boiling point of amino acid salts may be taken into account as a characteristic of amino salt solutions.With varying the amino salt solutions type and concentration,the apparent boiling pointand molecular weightalso varies.The boiling pointand molecular weight were chosen because of its availability.

    2.3.Optimum ANN architecture

    2.3.1.ANN training

    The optimum ANN architecture must be designed after de fining the number of input variables.For this purpose,trial and error was used to reach the best layer,the optimum number of neurons in each layer and the finest transfer function.MATLAB neural network toolbox was used to implementthe model.Levenberg–Marquardt(LM)back-propagation method was selected for the training network.

    2.3.2.Selecting the optimal ANN structure

    To examine the ANNability forprediction ofacid gassolubility in different amino acid salt solutions,conventional regression analysis including mean square error(MSE),average absolute relative deviation(AARD)percent,and the coefficientofdetermination(R2)were utilized.The R2indicates how the ANN estimation is associated with the data sets.In this study,the number of optimum neurons in the hidden layerwasfound iteratively to reach the minimum value ofMSE.However,the developed ANN with the least MSE and AARD was selected during the training procedure.

    3.Result and Discussion

    3.1.MLP accuracy

    In order to select,the optimal number of the neurons in the hidden layer,a trial and error technique,by increasing the number of neurons and monitoring the statistical parameters for the resultant networks was used.As shown in Table 2,the MLP with the 12 neurons in the hidden layer shows the finest results.For a better visual examination,the AARD and R2for the different number of neurons in the hidden layer are plotted in Fig.2(a)and(b),respectively.As it could be seen increasing the number of neurons in the hidden layer results in better performance of the network until it reaches 12 neurons,where a further increase in the number of neurons will increase the error and decrease the accuracy.The suggested network has the minimum MSE of 0.0011,which is an acceptable error trend,minimum AARD of 5.54%that indicates proper error distribution,and maximum R2of 0.9828 as a demonstration of excellent agreement between predicted and experimental data.

    It is worth mentioning that in addition to the remarkable results of training and validation data,the suggested network has a satisfactory error trend and accuracy for testing subset.The MSE of 0.0015,AARD of6.56%,and R2of0.9742 oftesting data show an acceptable generalization for the proposed MLP.

    In an attempt to provide a more sensible visual understanding for the performance of the proposed model a graphical analysis was conducted.The reliability of the suggested network is examined by a cross plotin Fig.3.The training,validation and testing data are specifiedwith differentcolorsforachieving a more discreetoutlook.The accumulation of data points around the 45 degree line indicates the robustness of the network and reasonable agreement between experimental and prognosticated values.The figure shows that there is no considerable over or underestimation of the individual data.

    Table 2 Tested networks and their statistical parameters

    Fig.2.(a)AARD for different number of neurons in the hidden layer(b)R2 for different number of neurons in the hidden layer.

    In Fig.4,all experimental data were plotted against their corresponding predicted values.As itis obvious fromthe figure,the proposed MLP can prognosticate CO2in an appropriate mannerforthe whole data range.Additionally,to ensure thatthe modelperforms well in modeling each individual system of the amino acid salt solution,a through statistical analysis was performed on each of the systems,which could be found in Table 3.The order of MSE for all four systems is an indication of outstanding error trend and network capability in distinguishing each individual amino acid salt system.

    3.2.Outlier diagnostics

    Individualorcollections ofdata thatdeviate from the behaviorofthe majority of data population are known as outliers.All mathematical models that require data collection face a high chance of probable outliers that threaten the reliability of the model.These doubtful values may harm the model or decline the preciseness of its predictions.The errors,which occur in experimental measurements,are known as the main source of outliers[34–38].An essential stage in developing a model is identification and elimination of the outliers.One of the common statistical methods used for outlier recognition is known as the Leverage approach.The details ofthis method and its formulation could be found elsewhere[34–38].

    In an attempt to investigate the data quality and applicability domain of the proposed MLP,an outlier diagnostic was conducted via Leverage approach.Fig.5 shows the William plot for the predictions of the model.As it can be seen the accumulation of the data in the 0≤H≤0.071 and-3≤R≤3 area indicates the statistical validity of the MLP and that the all of the data points are in the applicability domain of the network.

    3.3.Sensitivity analysis

    Fig.3.Cross plot assessment of training,validation and testing subsets for predicting CO2 loading(Selected network 5-12-1).

    Fig.4.Comparing the experimental data and results of MLP model.

    Table 3 The statistical analysis of each amino acid salt solution system

    In an attempt to examine the effect of each input parameter on CO2loading,extend our understanding of absorption process,and uncertainties of the variables a sensitivity analysis was conducted.The overall effect of each independent parameter on CO2was examined via relevancy factor(r)with directionality.The Pearson correlation[39,40]:

    Fig.5.Outlier diagnostics of the data set.

    Here LiandL designate the i th and the average value of CO2loading,respectively.The symbols Vi,jandVjshow the i th and average value of the j th input variable,respectively.The value of relevancy factor may vary between+1 to-1.A positive value of relevancy factor designates an increasing relation among the parameters while a negative value of r specifies a decreasing relation.When the relevancy factor has a value of 0,itcould be concluded thatthe parameters have no relations.Fig.6 illustratesthe relevancy factorofeach variable.In the firstglance one may notice that the most in fluential parameter on CO2loading is the partial pressure ofCO2and by increasing its value the CO2loading increase significantly.The figure clearly shows that second important parameter affecting the CO2loading is the concentration ofamino acid saltin the solution;nevertheless,the negative value ofits relevancy factor indicates thatithas an adverse effect.The system temperature and boiling point of the amino acid salts also have the adverse effect on the CO2loading,but due to the magnitude of their relevancy factor,it can be understood that they have just a slight effect on the CO2loading.It is interesting to note that the zero value of relevancy factor for the molecular weight of amino acid salts indicates that this parameter has no effect on the CO2loading.

    Fig.6.The relevancy factor for each of the input parameters.

    4.Conclusions

    In this study,a multilayer perceptron neural network algorithm as a supervised learning method has been suggested to prognosticate the CO2loading of amino acid salt solutions as a function of CO2partial pressure,molecular weight of amino acid salts,boiling point of amino acid salts,molar concentration of the solution,and temperature.In this manner,the data points of CO2absorption by different amino acid salt solutions for training,validation,and testing the model were gathered from dependable literature sources.Through a trial and error procedure,the best three layers network was selected to model the CO2loading.One of the most significant features of using MLP is that high theoretical knowledge or human experience throughout the training procedure is not required.Therefore,theoretical knowledge has not been used and the MLP training process is solely founded on the experimental data.Graphical and statistical measures designate that the suggested MLP can predict CO2loading with acceptable accuracy.Furthermore,it was confirmed that the suggested network is capable of predicting the actual physical behavior of absorption process.The relevancy factor indicated that CO2partial pressure is the most crucial variable in the model and has a positive effect on the CO2loading while the concentrations of the amino acid salts as the second important variables have a negative effect.Furthermore,it was found that the molecular weight of amino acid salts has no role on the CO2loading;but system temperature and boiling point of amino acid salts have a weak negative effect.In addition,the Leverage statistical algorithm was used to guarantee the data quality.

    Nomenclature

    AARD average absolute relative deviations,%

    ANN artificial neural network

    BP boiling point of amino acid salt,°C

    C molar concentration of the solution,mol·L-1

    GHG greenhouse gases

    H hat matrix

    Lii th value of the predicted CO2loading

    L average value of the predicted CO2loading

    LM Levenberg–Marquardt

    MEA monoethylamine

    MLP multilayer perceptron

    MSE mean square error

    MWmolecular weight of amino acid salt

    PCO2equilibrium partial pressure of CO2,kPa

    R2correlation coefficient

    T temperature,K

    Vi,j i th value of the j th input variable

    Vjaverage value of the j th input variable

    α CO2loading,mol CO2·(mol amino acid salt)-1

    Supplementary Material

    Supplementary data to this article can be found online athttps://doi.org/10.1016/j.cjche.2017.10.002.

    References

    [1]S.Shirazian,A.Marjani,M.Rezakazemi,Separation of CO2by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling,Eng.Comput.28(2)(2012)189–198.

    [2]M.Rezakazemi,A.E.Amooghin,M.M.Montazer-Rahmati,et al.,State-of-the-art membrane based CO2separation using mixed matrix membranes(MMMs):an overview on current status and future directions,Prog.Polym.Sci.39(5)(2014)817–861.

    [3]S.M.R.Razavi,et al.,Simulation of CO2absorption by solution of ammonium ionic liquid in hollow- fiber contactors,Chem.Eng.Process.Process Intensif.108(2016)27–34.

    [4]M.Rezakazemi,I.Heydari,Z.Zhang,Hybrid systems:combining membrane and absorption technologies leads to more efficient acid gases(CO2and H2S)removal from natural gas,J.CO2Util.18(2017)362–369.

    [5]M.Fasihi,S.Shirazian,A.Marjani,et al.,Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2separation,Math.Comput.Model.56(11–12)(2012)278–286.

    [6]A.Mansourizadeh,A.F.Ismail,CO2stripping from water through porous PVDF hollow fiber membrane contactor,Desalination 273(2)(2011)386–390.

    [7]M.Mesbah,et al.,Mathematical modeling and numerical simulation of CO2removal by using hollow fiber membrane contactors,Iran.J.Oil Gas Sci.Technol.(2017)https://doi.org/10.22050/IJOGST.2017.48143(in press).

    [8]S.Ma'mun,R.Nilsen,H.F.Svendsen,et al.,Solubility of carbon dioxide in 30 mass%monoethanolamine and 50 mass%methyldiethanolamine solutions,J.Chem.Eng.Data 50(2)(2005)630–634.

    [9]S.D.Kenarsari,D.Yang,G.Jiang,et al.,Review of recent advances in carbon dioxide separation and capture,RSC Adv.3(45)(2013)22739–22773.

    [10]T.Payagala,D.W.Armstrong,Chiral ionic liquids:a compendium of syntheses and applications(2005–2012),Chirality 24(1)(2012)17.

    [11]P.S.Kumar,et al.,Density,viscosity,solubility,and diffusivity of N2O in aqueous amino acid salt solutions,J.Chem.Eng.Data 46(6)(2001)1357–1361.

    [12]P.S.Kumar,J.A.Hogendoorn,S.J.Timmer,et al.,Equilibrium solubility of CO2 in aqueous potassium taurate solutions:part 2.Experimental VLE data and model,Ind.Eng.Chem.Res.42(12)(2003)2841–2852.

    [13]M.Rezakazemi,Z.Niazi,M.Mirfendereski,et al.,CFD simulation of natural gas sweetening in a gas-liquid hollow- fiber membrane contactor,Chem.Eng.J.168(3)(2011)1217–1226.

    [14]H.-J.Song,S.Lee,S.Maken,et al.,Solubilities of carbon dioxide in aqueous solutions of sodium glycinate,Fluid Phase Equilib.246(1)(2006)1–5.

    [15]D.M.Mu?oz,A.F.Portugal,A.E.Lozano,et al.,New liquid absorbents for the removal of CO2from gas mixtures,Energy Environ.Sci.2(8)(2009)883–891.

    [16]M.Majchrowicz,D.Brilman,Solubility of CO2in aqueous potassium L-prolinate solutions—absorber conditions,Chem.Eng.Sci.72(2012)35–44.

    [17]S.C.-C.Wei,G.Puxty,P.Feron,Amino acid salts for CO2capture at flue gas temperatures,Energy Procedia 37(2013)485–493.

    [18]H.-J.Song,M.-G.Lee,H.Kim,et al.,Density,viscosity,heat capacity,surface tension,and solubility of CO2in aqueous solutions of potassium serinate,J.Chem.Eng.Data 56(4)(2011)1371–1377.

    [19]U.E.Aronu,E.T.Hessen,T.Huang-Warberg,et al.,Vapor–liquid equilibrium in amino acid salt system:experiments and modeling,Chem.Eng.Sci.66(10)(2011)2191–2198.

    [20]R.L.Kent,B.Eisenberg,Better data for amine treating,Hydrocarb.Process.55(2)(1976)87–90.

    [21]P.S.Kumar,J.A.Hogendoorn,P.H.M.Feron,et al.,Equilibrium solubility of CO2 in aqueous potassium taurate solutions:part 1.Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids,Ind.Eng.Chem.Res.42(12)(2003)2832–2840.

    [22]D.M.Austgen,et al.,Model of vapor-liquid equilibria for aqueous acid gasalkanolamine systems using the electrolyte-NRTL equation,Ind.Eng.Chem.Res.28(7)(1989)1060–1073.

    [23]S.L.Clegg,K.S.Pitzer,Thermodynamics of multicomponent,miscible,ionic solutions:generalized equations for symmetrical electrolytes,J.Phys.Chem.96(8)(1992)3513–3520.

    [24]C.C.Chen,L.B.Evans,A local composition modelfor the excess Gibbs energy of aqueous electrolyte systems,AIChE J.32(3)(1986)444–454.

    [25]R.Deshmukh,A.Mather,A mathematical model for equilibrium solubility of hydrogen sul fide and carbon dioxide in aqueous alkanolamine solutions,Chem.Eng.Sci.36(2)(1981)355–362.

    [26]G.Cybenko,Approximation by superpositions of a sigmoidal function,Math.Control Signals Syst.2(4)(1989)303–314.

    [27]M.Rezakazemi,S.Razavi,T.Mohammadi,et al.,Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems,J.Membr.Sci.379(1–2)(2011)224–232.

    [28]M.Rostamizadeh,M.Rezakazemi,K.Shahidi,et al.,Gas permeation through H2-selective mixed matrix membranes:experimental and neural network modeling,Int.J.Hydrog.Energy 38(2)(2013)1128–1135.

    [29]M.Rezakazemi,T.Mohammadi,Gas sorption in H2-selective mixed matrix membranes:experimental and neural network modeling,Int.J.Hydrog.Energy 38(32)(2013)14035–14041.

    [30]M.Rezakazemi,A.Dashti,M.Asghari,et al.,H2-selective mixed matrix membranes modeling using ANFIS,PSO-ANFIS,GA-ANFIS,Int.J.Hydrog.Energy 42(22)(2017)15211–15225.

    [31]N.Azizi,M.Rezakazemi,M.M.Zarei,An intelligent approach to predict gas compressibility factor using neural network model,Neural Comput.&Applic.(2017)1–10.

    [32]S.Mazinani,R.Ramazani,A.Samsami,et al.,Equilibrium solubility,density,viscosity and corrosion rate of carbon dioxide in potassium lysinate solution,Fluid Phase Equilib.396(2015)28–34.

    [33]S.Shen,Y.Yang,Y.Wang,et al.,CO2absorption into aqueous potassium salts of lysine and proline:density,viscosity and solubility of CO2,Fluid Phase Equilib.399(2015)40–49.

    [34]P.J.Rousseeuw,A.M.Leroy,Robust Regression and Outlier Detection,Vol.589,John Wiley&Sons Inc.,Hoboken,New Jersey,2005.

    [35]M.Mesbah,E.Soroush,V.Azari,et al.,Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm,J.Supercrit.Fluids 97(2015)256–267.

    [36]M.Mesbah,E.Soroush,A.Shokrollahi,et al.,Prediction of phase equilibrium of CO2/cyclic compound binary mixtures using a rigorous modeling approach,J.Supercrit.Fluids 90(2014)110–125.

    [37]E.Soroush,M.Mesbah,A.Shokrollahi,et al.,Prediction of methane uptake on different adsorbents in adsorbed natural gas technology using a rigorous model,Energy Fuel 28(k)(2014)6299–6314.

    [38]E.Soroush,M.Mesbah,A.Shokrollahi,et al.,Evolving a robust modeling tool for prediction of natural gas hydrate formation conditions,J.Unconv.Oil Gas Res.12(2015)45–55.

    [39]M.Mesbah,E.Soroush,M.Rostampour Kakroudi,Predicting physical properties(viscosity,density,and refractive index)of ternary systems containing 1-octyl-3-methyl-imidazolium bis(tri fluoromethylsulfonyl)imide,esters and alcohols at 298.15 K and atmospheric pressure,using rigorous classi fication techniques,J.Mol.Liq.225(2017)778–787.

    [40]M.Mesbah,E.Soroush,M.Rezakazemi,Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature,Chin.J.Chem.Eng.25(9)(2017)1238–1248.

    麻豆成人av视频| 丝袜脚勾引网站| 建设人人有责人人尽责人人享有的| av免费在线看不卡| 日日爽夜夜爽网站| 啦啦啦啦在线视频资源| 午夜视频国产福利| 在线看a的网站| 精品久久久久久久久亚洲| 久久ye,这里只有精品| 国内精品宾馆在线| 少妇精品久久久久久久| 老司机影院毛片| 中文欧美无线码| 国产亚洲午夜精品一区二区久久| 美女cb高潮喷水在线观看| 成年av动漫网址| 国产伦理片在线播放av一区| 欧美亚洲 丝袜 人妻 在线| 国产精品免费大片| 久久精品夜色国产| 亚洲无线观看免费| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜| 99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| www.av在线官网国产| 亚洲精品,欧美精品| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 国产爽快片一区二区三区| 日本黄色日本黄色录像| 亚洲美女视频黄频| 免费观看的影片在线观看| 亚洲精品一区蜜桃| 国产av码专区亚洲av| 大香蕉久久成人网| 日韩大片免费观看网站| 97超视频在线观看视频| 成人漫画全彩无遮挡| 精品国产国语对白av| 美女国产高潮福利片在线看| 99久久综合免费| 免费日韩欧美在线观看| 精品人妻熟女av久视频| 亚洲精品456在线播放app| 91成人精品电影| 在线播放无遮挡| 国产欧美亚洲国产| 国产在线免费精品| 亚洲欧美精品自产自拍| 免费人妻精品一区二区三区视频| 日本免费在线观看一区| 久久久久久久久久久免费av| 大话2 男鬼变身卡| 国产黄色免费在线视频| 成人手机av| 免费播放大片免费观看视频在线观看| 99精国产麻豆久久婷婷| 人妻夜夜爽99麻豆av| 国产精品成人在线| 18在线观看网站| 男女啪啪激烈高潮av片| 国产免费一级a男人的天堂| av播播在线观看一区| 搡女人真爽免费视频火全软件| 日本vs欧美在线观看视频| 国产黄片视频在线免费观看| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看 | 精品亚洲成国产av| 久久免费观看电影| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 久久精品夜色国产| 国产精品一区二区三区四区免费观看| 九九久久精品国产亚洲av麻豆| av国产精品久久久久影院| 中文字幕制服av| 免费大片黄手机在线观看| 国产极品粉嫩免费观看在线 | 美女中出高潮动态图| 永久免费av网站大全| 精品久久久久久久久av| 久久99热6这里只有精品| 亚洲,欧美,日韩| 69精品国产乱码久久久| 国产精品久久久久成人av| 午夜影院在线不卡| 22中文网久久字幕| 久久影院123| 热re99久久精品国产66热6| 一个人看视频在线观看www免费| 这个男人来自地球电影免费观看 | 亚洲精品美女久久av网站| 日本色播在线视频| 最后的刺客免费高清国语| 一级爰片在线观看| 久久99蜜桃精品久久| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 国产欧美亚洲国产| 大片电影免费在线观看免费| 婷婷色av中文字幕| 久久国产精品大桥未久av| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 国产毛片在线视频| 国产成人免费观看mmmm| 99热全是精品| 久久久久久久久久人人人人人人| 亚洲综合色惰| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 少妇被粗大猛烈的视频| 人妻人人澡人人爽人人| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 五月天丁香电影| 赤兔流量卡办理| 久久99蜜桃精品久久| 亚洲人成77777在线视频| 女人精品久久久久毛片| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线 | 国产免费又黄又爽又色| 日韩成人伦理影院| 色婷婷av一区二区三区视频| 久久久久网色| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 国产亚洲精品久久久com| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片 | 婷婷色av中文字幕| 国产欧美日韩综合在线一区二区| 搡女人真爽免费视频火全软件| 欧美另类一区| 免费观看的影片在线观看| 久久精品夜色国产| 晚上一个人看的免费电影| 成年女人在线观看亚洲视频| www.av在线官网国产| 国产女主播在线喷水免费视频网站| 最新的欧美精品一区二区| 777米奇影视久久| 卡戴珊不雅视频在线播放| 大香蕉97超碰在线| 精品99又大又爽又粗少妇毛片| 亚洲精品国产av蜜桃| 国产成人一区二区在线| 肉色欧美久久久久久久蜜桃| 母亲3免费完整高清在线观看 | 精品久久久精品久久久| 久久av网站| 亚洲怡红院男人天堂| 2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 看非洲黑人一级黄片| 免费观看的影片在线观看| 欧美变态另类bdsm刘玥| www.色视频.com| av女优亚洲男人天堂| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩综合在线一区二区| 久久午夜福利片| 亚洲三级黄色毛片| 又大又黄又爽视频免费| 亚洲欧美日韩另类电影网站| 一个人看视频在线观看www免费| 少妇丰满av| 国产精品久久久久成人av| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| 三上悠亚av全集在线观看| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| videossex国产| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 下体分泌物呈黄色| 久久国产精品大桥未久av| 欧美另类一区| av在线老鸭窝| 少妇丰满av| 美女国产高潮福利片在线看| 国产成人精品福利久久| 亚洲欧洲精品一区二区精品久久久 | 九九爱精品视频在线观看| 亚洲av日韩在线播放| 天美传媒精品一区二区| 久热这里只有精品99| 精品久久久久久久久亚洲| 女性被躁到高潮视频| 伊人久久精品亚洲午夜| 精品一区在线观看国产| 午夜影院在线不卡| 亚洲国产av新网站| 久热久热在线精品观看| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 在线精品无人区一区二区三| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 高清午夜精品一区二区三区| 亚洲,一卡二卡三卡| 亚洲三级黄色毛片| 99热网站在线观看| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 亚洲精品国产av蜜桃| 美女大奶头黄色视频| 国产免费视频播放在线视频| 欧美激情 高清一区二区三区| 亚洲国产av影院在线观看| 51国产日韩欧美| 免费av不卡在线播放| 国产片内射在线| 97在线人人人人妻| 日韩中字成人| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 91精品伊人久久大香线蕉| 午夜视频国产福利| 高清av免费在线| 自线自在国产av| 久久久午夜欧美精品| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 一级a做视频免费观看| 欧美成人午夜免费资源| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 美女大奶头黄色视频| videossex国产| 麻豆成人av视频| 久久人人爽人人爽人人片va| 久久久国产欧美日韩av| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 欧美日韩综合久久久久久| 国产日韩一区二区三区精品不卡 | 日本午夜av视频| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| 99久久中文字幕三级久久日本| 久久精品夜色国产| 人成视频在线观看免费观看| 亚洲欧美清纯卡通| 国产成人精品在线电影| 亚洲色图综合在线观看| 少妇的逼水好多| 一级毛片 在线播放| 亚洲精品456在线播放app| 天天躁夜夜躁狠狠久久av| 丰满少妇做爰视频| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡 | 夫妻性生交免费视频一级片| 免费人成在线观看视频色| 少妇高潮的动态图| 中国美白少妇内射xxxbb| 亚洲怡红院男人天堂| 久久久久网色| 国产免费又黄又爽又色| 久久久午夜欧美精品| 一区二区三区免费毛片| 精品一品国产午夜福利视频| 精品久久久久久久久亚洲| 欧美日韩视频高清一区二区三区二| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 成人毛片60女人毛片免费| 18禁在线播放成人免费| 嘟嘟电影网在线观看| 女性生殖器流出的白浆| 亚洲综合色惰| 久久久久精品性色| 在线观看免费视频网站a站| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | 特大巨黑吊av在线直播| 免费看光身美女| 街头女战士在线观看网站| 黄色毛片三级朝国网站| 丁香六月天网| 这个男人来自地球电影免费观看 | 国产免费视频播放在线视频| 在线观看一区二区三区激情| 亚洲精品久久久久久婷婷小说| 久久久久人妻精品一区果冻| 久久久国产欧美日韩av| a级毛片在线看网站| 欧美日韩视频高清一区二区三区二| 啦啦啦啦在线视频资源| 人妻一区二区av| 国产国拍精品亚洲av在线观看| av电影中文网址| 亚洲精品一二三| 免费观看a级毛片全部| 日韩欧美精品免费久久| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕 | 亚洲熟女精品中文字幕| 大片免费播放器 马上看| 中文字幕人妻熟人妻熟丝袜美| 熟女电影av网| 亚洲欧洲日产国产| 99久国产av精品国产电影| 女人久久www免费人成看片| 亚洲av中文av极速乱| xxxhd国产人妻xxx| 亚洲精品一区蜜桃| 国产在线视频一区二区| a级毛片免费高清观看在线播放| 人妻系列 视频| 黑丝袜美女国产一区| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 国产成人freesex在线| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频| 欧美精品一区二区大全| av在线播放精品| 国产色爽女视频免费观看| 国产精品成人在线| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久人人人人人人| 欧美精品国产亚洲| 婷婷色av中文字幕| 老司机影院毛片| 91在线精品国自产拍蜜月| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| av卡一久久| av专区在线播放| 极品人妻少妇av视频| 午夜老司机福利剧场| 在线精品无人区一区二区三| 只有这里有精品99| 欧美日韩国产mv在线观看视频| 精品人妻一区二区三区麻豆| 日本色播在线视频| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 美女国产视频在线观看| 天堂俺去俺来也www色官网| 三级国产精品欧美在线观看| 黑人欧美特级aaaaaa片| 国产色婷婷99| av网站免费在线观看视频| 丝袜美足系列| 国产av一区二区精品久久| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 亚洲成色77777| 久久影院123| 午夜福利视频在线观看免费| 婷婷色综合大香蕉| 在现免费观看毛片| 人人妻人人爽人人添夜夜欢视频| 国产 一区精品| 水蜜桃什么品种好| 欧美+日韩+精品| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av成人精品| 国产毛片在线视频| 国产精品人妻久久久影院| 久久久久久久国产电影| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 久久精品国产鲁丝片午夜精品| 国产成人精品在线电影| 啦啦啦在线观看免费高清www| 午夜91福利影院| 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 一本大道久久a久久精品| 人体艺术视频欧美日本| 国产成人免费无遮挡视频| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 在线观看国产h片| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 国产免费又黄又爽又色| 午夜福利视频精品| 国产不卡av网站在线观看| 欧美日韩在线观看h| 日本av手机在线免费观看| 精品亚洲成a人片在线观看| 亚洲无线观看免费| 精品午夜福利在线看| 亚洲精品一区蜜桃| 最黄视频免费看| 99热这里只有是精品在线观看| 成人免费观看视频高清| 伦理电影免费视频| 国产精品麻豆人妻色哟哟久久| 2022亚洲国产成人精品| 人妻少妇偷人精品九色| 人成视频在线观看免费观看| 一本大道久久a久久精品| 久久久国产精品麻豆| 欧美日韩视频高清一区二区三区二| 国产高清三级在线| 国产黄色免费在线视频| 国产在视频线精品| 久久女婷五月综合色啪小说| 伦理电影免费视频| 久久久久久久久久久丰满| 少妇丰满av| 国产精品久久久久久久久免| 国产精品国产三级专区第一集| 免费不卡的大黄色大毛片视频在线观看| 99热6这里只有精品| 高清黄色对白视频在线免费看| 在线观看国产h片| 午夜精品国产一区二区电影| 国产白丝娇喘喷水9色精品| 精品国产露脸久久av麻豆| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 一级片'在线观看视频| 亚洲精品一区蜜桃| 看非洲黑人一级黄片| 亚洲成人一二三区av| av.在线天堂| 精品少妇内射三级| 日日摸夜夜添夜夜添av毛片| 一边亲一边摸免费视频| 新久久久久国产一级毛片| av福利片在线| 久久精品国产亚洲网站| 在线看a的网站| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| 啦啦啦中文免费视频观看日本| 色网站视频免费| 国产高清有码在线观看视频| 色网站视频免费| av女优亚洲男人天堂| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩另类电影网站| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 色吧在线观看| 80岁老熟妇乱子伦牲交| 国精品久久久久久国模美| 久久久久久久久久人人人人人人| 春色校园在线视频观看| 午夜日本视频在线| 久久久久久人妻| 日韩三级伦理在线观看| 中国美白少妇内射xxxbb| 国产成人a∨麻豆精品| 欧美三级亚洲精品| 一边摸一边做爽爽视频免费| 国产精品秋霞免费鲁丝片| 国产色婷婷99| 色视频在线一区二区三区| 亚洲成人av在线免费| 黄色视频在线播放观看不卡| av免费观看日本| 精品亚洲成a人片在线观看| √禁漫天堂资源中文www| 欧美激情国产日韩精品一区| 亚洲综合精品二区| 汤姆久久久久久久影院中文字幕| 中文字幕制服av| 国产欧美另类精品又又久久亚洲欧美| 精品视频人人做人人爽| 啦啦啦中文免费视频观看日本| 久久女婷五月综合色啪小说| 国产精品99久久99久久久不卡 | 最后的刺客免费高清国语| 亚洲av欧美aⅴ国产| 美女视频免费永久观看网站| 各种免费的搞黄视频| 日韩在线高清观看一区二区三区| 青春草亚洲视频在线观看| 国产毛片在线视频| 插阴视频在线观看视频| 2022亚洲国产成人精品| av线在线观看网站| 久久久精品94久久精品| 日韩熟女老妇一区二区性免费视频| 99久久综合免费| 成人毛片60女人毛片免费| 婷婷色av中文字幕| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 久久精品国产鲁丝片午夜精品| 国产成人精品婷婷| 日韩,欧美,国产一区二区三区| 国产av国产精品国产| 欧美三级亚洲精品| 国产精品久久久久久精品古装| 亚洲国产av新网站| 国产成人午夜福利电影在线观看| 免费观看无遮挡的男女| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 大码成人一级视频| 精品人妻熟女毛片av久久网站| 国产免费一区二区三区四区乱码| 国产免费一级a男人的天堂| 国产无遮挡羞羞视频在线观看| 国产伦精品一区二区三区视频9| 精品久久久噜噜| 色视频在线一区二区三区| 欧美三级亚洲精品| 成人二区视频| 啦啦啦在线观看免费高清www| 久久av网站| 一本大道久久a久久精品| 中文欧美无线码| 亚洲国产毛片av蜜桃av| 日本爱情动作片www.在线观看| 插逼视频在线观看| a级毛色黄片| 成人国语在线视频| 99国产精品免费福利视频| 日本欧美国产在线视频| 日本色播在线视频| 免费人成在线观看视频色| 啦啦啦视频在线资源免费观看| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频| xxx大片免费视频| 国产探花极品一区二区| 久久久久网色| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 一区二区三区四区激情视频| 美女大奶头黄色视频| 丝瓜视频免费看黄片| av一本久久久久| 最近中文字幕2019免费版| 三级国产精品片| 十分钟在线观看高清视频www| 亚洲精华国产精华液的使用体验| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 欧美日韩亚洲高清精品| √禁漫天堂资源中文www| 波野结衣二区三区在线| 少妇熟女欧美另类| 日韩大片免费观看网站| 伊人久久精品亚洲午夜| 午夜激情av网站| 日韩制服骚丝袜av| 国产毛片在线视频| 男人爽女人下面视频在线观看| 国产精品一国产av| 成年女人在线观看亚洲视频| 好男人视频免费观看在线| 国产黄频视频在线观看| 日韩视频在线欧美| 国产成人a∨麻豆精品| 我的老师免费观看完整版| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 最后的刺客免费高清国语| 日日啪夜夜爽| 在线观看三级黄色| 伦精品一区二区三区| 一级毛片我不卡| 天天躁夜夜躁狠狠久久av| 中文字幕制服av| 黑人高潮一二区| 欧美老熟妇乱子伦牲交| 美女内射精品一级片tv| 午夜福利在线观看免费完整高清在| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 麻豆乱淫一区二区| 日本欧美视频一区| √禁漫天堂资源中文www| 免费看光身美女| 丝袜美足系列| 日韩av不卡免费在线播放| 纯流量卡能插随身wifi吗| 久久人人爽人人爽人人片va| 日韩成人伦理影院| av电影中文网址| 国产精品偷伦视频观看了| 精品亚洲成国产av| 亚洲综合色网址| 国产一区二区三区综合在线观看 | av卡一久久| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 国产精品一国产av| 精品人妻一区二区三区麻豆| 国产精品免费大片| 欧美+日韩+精品|