• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The adsorptive properties of UiO-66 towards organic dyes:A record adsorption capacity for the anionic dye Alizarin Red S.

    2018-05-25 11:26:16MarwaEmbabySaberElwanyWidiastutiSetyaningsihMohamedSaber

    Marwa S.Embaby ,Saber D.Elwany ,Widiastuti Setyaningsih ,Mohamed R.Saber *

    1 Central laboratories,Fayoum Drinking Water and Sanitation Company(FDWaSC),Fayoum 63754,Egypt

    2 Food and Agricultural Product Technology Department,Faculty of Agricultural Technology,Gadjah Mada University,Jalan Flora,Bulaksumur,Yogyakarta,55281,Indonesia

    3 Chemistry Department,Faculty of Science,Fayoum University,Fayoum 63514,Egypt

    1.Introduction

    The amounts of wastewater containing dyes and organic pollutants have been significantly increasing due to the various sources from severalindustries including textile,paper,leather,plastic,printing,dyestuffand so on[1].Organic dyes are toxic[2],mutagenic and teratogenic and they may cause serious effects on flora and fauna[3].Dyes,even in low concentration,are visually detected and affect the photosynthetic activity in aquatic life by reducing light penetration[4].

    Several physical,chemical,and biological methods are used to remove dyes from the wastewater including coagulation[3],adsorptive oxidation[5],ultra- filtration[6]and biological treatment[7].However,physical methods are typically preferred over chemical and biological methods due to their low cost,simplicity and,more importantly,low level of byproducts left in water bodies[8].In this vein,adsorption techniques appear to be exceptionally efficient in removing color from the industrial effluents[9].

    Metal–organic frameworks(MOFs)are porous materials composed of inorganic metal nodes and organic linkers[10].Different types of MOFs have been typically synthesized using conventionalhydrothermal and solvo-thermal methods as well as slow diffusion techniques[11].Recently,the MW-assisted hydrothermal method was successfully applied to decrease MOFs syntheses reaction time up to a few minutes with high yield and high phase purity due to rapid/homogeneous heating and fast kinetics[12].The simple synthesis,large specific surface areas,and high porosity[13]of MOFs render them as efficient adsorbents for diverse applications[14–16],including;gas storage[17],heterogeneous catalysis[18],sensing[19]and for therapeutics and diagnostics in biomedicine[20].

    In water treatment,MOFs have shown high capacity to remove different pollutants.Many studies have been reported for removing metals[21,22],anions[23,24],dyes[25–27]and other organics[28,29].Among these studies,the adsorptive/degradation properties of UiO-66 have been thoroughly investigated due to its exceptional water stability and high adsorption capacity[30–33].It was found that UiO-66 has high affinity towards anions;Fluoride[2],Selenate and Selenite[34],Arsenate[35]and Phosphate[36].In contrast,the adsorption of metals on UiO-66 re flects no or negligible efficiency with less than 20%removal of Cd,Cr,Hg and Pb[37].Chen and co-workers,however,have reported high selectivity of UiO66 towards the cationic dyes(Methylene Blue,Rhodamine B and Neutral Red)as compared to the anionic dyes(Methyl Orange and Acid Chrome Black K)[38,39].Chen's observation is clearly contradicting all the previously mentioned reports indicating UiO66 affinity towards anionic species[2,34–37].

    In order to resolve these con flicting reports of UiO-66 adsorption selectivity towards anionic species[2,34–36]versus cationic species[38,39],the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS),Eosin(E),Fuchsin Acid(FA)and Methyl Orange(MO))and the cationic dyes(Neutral Red(NR),Fuchsin Basic(FB),Methylene Blue(MB),and Safranine T(ST))on UiO-66 has been investigated.The adsorption process of ARS as an example has been thoroughly investigated using the central composite design(CCD).The kinetics of the adsorption process have been thoroughly evaluated.

    2.Experimental

    2.1.Chemicals and reagents

    Zirconium(IV)Oxide Chloride Octahydrate(ZrOCl2·8H2O)(Merck,Germany),Terephthalic acid(H2BDC)(Loba Chemie,India),Acetic acid(BDH,England),N,N-dimethylformamide(DMF)(Loba Chemie,India),Acetone(Panreac,Spain),Alizarin Red S.(Fluka,United Kingdom),Fuchsin Basic(BDH,England),Methyl Orange(Panreac,Spain),Sodium Hydroxide(NaOH)(Merck,Germany),Hydrochloric acid(HCl)37 wt%(BDH,England),Deionized water were obtained from Barnstead Water Puri fication System(Thermo Scientific,USA).

    2.2.Synthesis of UiO-66

    UiO-66 was synthesized according to Ref.[40]with slight modi fications.ZrOCl2·8H2O(8.055 g,25 mmol),Terephthalic acid(4.150 g,25 mmol),45 ml Acetic acid and 2.7 ml Deionized water were mixed with 200 ml DMF and stirred for 30 min,then equally divided into four 75 ml PTFE vessels.An Anton Paar microwave oven(MV 3000)was used to irradiate the mixture for 30 min at 120°C then cooled.The productwas centrifuged,washed severaltimes by DMF and acetone then air-dried.Yield=78%.FTIR(KBr):3391 cm-1(H2O),1658 cm-1,1255,1102 cm-1.

    2.3.Adsorption experiments

    The adsorption experiments were carried out at room temperature in a batch process using an aqueous solution of different dyes;Alizarin R S(ARS),Eosin(E),Fuchsin Acid(FA),Methyl Orange(MO),Neutral Red(NR),Fuchsin Basic(FB),Methylene Blue(MB),and Safranine T(ST).An aqueous stock solution of these dyes(1000 μg·g-1)was prepared by dissolving 1 g of these dyes in a liter of DI water.Uio-66 was added to 100 ml working solutions of dyes(20 mg.L-1)and shaking with 200 r·min-1for 120 min as reported by Chen et al.[38].

    Among these dyes,Alizarin Red S.was studied in details to describe the adsorption mechanism.The effects of different parameters on the rate of adsorption process were investigated by varying initial pH,amount of adsorbent,initial dye concentration and contact time,whereas,the solution volume(V)was kept constant,50 ml.

    In each experiment a specific amount of UiO-66 was added into 100 ml stoppard conical flask containing 50 ml of the dye,the initial pH was adjusted by HCl and NaOH to be in range 2–10 using a pH meter UltraBasic UB-5,Denver,USA.Then,the mixture was agitated on a mechanical shaker Max Q 2000 from Thermo Scientific(USA)for a different time intervals.The adsorbent was separated from the solution by centrifugation using(Rotina 380,Hettich Zentrifugen,Germany).A Lambda 25 UV–vis Spectrophotometer,PerkinElmer,USA was used for measuring the absorbance of the supernatant at λmax=423 nm to determine the residual dye concentration.

    The kineticsofadsorption was investigated by analyzing dye adsorptive uptake from aqueous solution at different time increments using this equation.

    where R is removal percentage,c0and ctare the initial and final dye concentrations in mg·L-1,respectively.

    Adsorption capacities for Alizarin dye(qi,mg·g-1)were calculated by a mass balance:

    where c0and cfare respectively the initial and final concentrations(mg·L-1)of dye,V is the solution volume(L)and m indicates the adsorbent amount(g).

    2.4.Central composite design(CCD)

    The efficiency of the dye removal process depends on several variables,i.e.initial concentration of Alizarin Red S.dye(x1),pH(x2),adsorbent amount(x3),and shaking time(x4).Therefore,chemometric approaches based on a central composite design(CCD)were used to assess the variables that affect the dye removal process[41,42].

    In this study,a CCD was developed based on a five-level experimental design with six replicates at the center point in order to investigate the effects of four independent variables on the dye removal process.The independent variables were coded at five levels(-2,-1,0,1,and 2)and each level was selected based on preliminary trials.The chosen levels for the variables are listed in Table 1 and the CCD consisted of 30 experimental points are provided in Table 2.

    Table 1 Selected factors and their levels

    The data was fit to a polynomial model to obtain the surface response and evaluate the independent and mutual effects of each factor.The RSM for all factors can be expressed as follows:

    where y is the response of the system and xiare the factors.

    Assuming that the independent factors are continuous and controllable during the experiments,in order to maximize the response y,it was necessary to find the best estimation for the correlation between independent factors and the response surface using a second-order model:

    where x1,x2,…,xkare the factors that in fluence the response y;β0,βii(i=1,2,…,k),βij(i=1,2,…,k;j=1,2,…,k)are unknown parameters andεis a randomerror.Theβcoefficients are obtained by the least square method.

    STATGRAPHICS Centurion XVI(Statpoint Technologies,Inc.,USA,trial)was used to obtain the design of experiment(DOE)matrix.Gnumeric 1.12.17.Analysis of Variance(ANOVA)was used to analyzethe experimental results in single factor experiments and the signi ficance of differences between the means was determined using the Least Significant Difference(LSD)test.

    Table 2 CCD for four factors with their observed responses

    3.Results and Discussion

    3.1.Synthesis and characterization

    The microwave route to the synthesis of UiO-66 based on the precursor;ZrOCl2·8H2O has been used.This approach proved quite efficient with large scales and less reproducibility issues due to the less hygroscopic character of ZrOCl2·8H2O[43].

    The isolation of the target MOF has been confirmed by the identical powder XRD pattern(Fig.1)as compared to literature reports[40].The presence of terephthalate bands is indicated by the appearance of its fingerprint IR frequencies including νas(COO)and νs(COO)stretching frequencies at 1607 and 1408 cm-1respectively.The high frequency region(3800–3100 cm-1)is dominated by broad band centered at 3391 cm-1which is assigned to the hydrogen-bonded adsorbed water and ν(C--H)stretching modes of DMF molecules.While in the 3100–2850 cm-1region,weak bands due to aromatic and aliphatic ν(C--H)modes of benzene ring and DMF are seen.The low frequency region is dominated by intense band centered at 1658 cm-1and two narrow bands at 1255 and 1102 cm-1.These bands could be assigned to the δ(OH2),δ(CH3)and δ(C--O)vibration of the physisorbed water and DMF molecules respectively.

    3.2.Adsorption mechanism and selectivity

    The affinity of UiO-66 towards anionic vs cationic dyes has been assessed to decisively resolve the con flict in this issue.Different dyes,anionic(Alizarin Red S.(ARS),Eosin(E),Fuchsin Acid(FA)and Methyl Orange(MO))and cationic(Neutral Red(NR),Fuchsin Basic(FB),Methylene Blue(MB),and Safranine T(ST))have been employed on UiO-66.The selected conditions were 100 ml of 20 mg.L-1dye solution,120 min shaking time and 20 mg sorbent as reported by Chen et al.in 2015.The results shown in Fig.2 and summarized in Table 3 clearly show a general affinity towards anionic dyes with the highest removal for Alizarin Red S.and Eosin(about 80%)followed by the other two anionic dyes Fuchsine Acid and Methyl Orange(45.6%and 31%respectively).On the other hand,the adsorption of the cationic dyes is almost negligible(less than 5%).These results are in good agreement with previous reports of UiO-66 affinity towards anionic species[2,34–36].Also,the weak adsorptive removal of cationic dyes agrees with the negligible removalofmetals(Cd,Cr,Hg and Pb)on UiO-66[37].

    The adsorption mechanism of similar oxo-anions onto UiO-66 has been proposed to go via anion exchange of the adsorbate with the hyrdoxide bridges in the Zr6O4(OH)4nodes of the MOF[34,35].Similarly,the adsorption mechanism of the present set of sulfonated anionic dyes could proceed via anion exchange ofthe hydroxide bridges with the sulfonate groups of the dyes(Fig.3 top).In neutral media,the negatively charged dye anions are attracted to the MOF nodes probably due to hydrogen bonding between--OH groups on the nodes and--SO3-groups on the dyes.The zeta potential measurements of UiO-66 indicated a point of zero charge at pH=3.9 which means that the MOF has positive surface charges below this pH value,most likely due to the successive protonation of Zr6O4(OH)4nodes into[Zr6(OH)8]4+[35].The positively charged protonated surface offers more--OH interaction sites as well as stronger electrostatic attraction with the zwitterionic--SO3-groups on the dye molecules(Fig.3 bottom)leading to increased adsorption efficiency and capacity.

    3.3.Central composite design for ARS adsorption

    Based on the previous results,the Alizarin Red S.adsorption process has been thoroughly investigated using the central composite design as a representative anionic dye.The results are successively presented in the following sections.

    Fig.1.(a)The nano cavities in UiO-66(back and frontBDC spacers shown in wire modelforclarity.(b)Enlarged picture showing Zr6O4(OH)4 nodes.Zr(violet)and O(red).c)XRDpattern of the pristine UiO-66 sample.Inset:IR spectrum.

    Fig.2.Absorbance of anionic dyes a)ARS,b)Eosin,c)AF,d)MO and cationic dyes,e)NR,f)MB,g)FB,h)Safranine T before(blue)and after(red)adsorption on UiO66.

    Table 3 Removal of anionic vs.cationic dyes on UiO-66

    3.3.1.Effects of the studied parameters

    A CCD with 30 runs that included six center points was constructed to evaluate the effect of 4 factors related to dye removal process.The factors measured were the initial concentration of Alizarin Red S.(x1;10–90 mg.L-1),pH(x2;2–10),adsorbent amount(x3;0.005–0.025),and shaking time(x4;30–150 min).The principal response was the level of dye removal(%).Based on the half-fractional CCD,an experimental design was developed and 30 dye removal processes were completed to remove Alizarin Red S.from aqueous medium(Table 2)and the estimated effects of different factors on the dye removal(%)were analyzed based on the following equation:

    Fig.3.Zr6O4(OH)4 nodes interacting with anionic dyes via coordinating with sulfonic acid groups(top).Possible interaction through hydrogen bonding/electrostatic attraction between OHgroups of the MOF and--groups of the dye molecules(bottom).The proposed mechanism may be enhanced in acidic medium via MOF successive protonation into[Zr6(OH)8]4+which offers more interaction sites.

    Fig.4.Pareto chart for the standardized effects on dye removal.

    where nsrefers to the number of points collected at each level and ysrefers to the associated responses.The absolute values of the investigated effects divided by their standard value are plotted in the Pareto chart(Fig.4).The bars crossing the vertical line represent the factor or combination of factors that affect the response significantly.As shown in the figure,two factors have p-values below 0.05,indicating that they are different from zero at the 95.0%confidence level.The factors that gave rise to the main effects,i.e.,pH(x2)and adsorbent amount(x3),had a significant in fluence on the dye removal process.The pH showed a negative effect in that a higher percentage of dye removal was achieved on decreasing the pH.In contrast,the amount of absorbent had a positive effect as the percentage of dye removal increased with increasing sorbent amount.

    3.3.2.Prediction capability of the regression model

    A predictive equation for dye removal process based on the previously identified significant variables has been developed from the regression model.The smallest possible number of variables for an optimized design has been used in order to avoid a large degree of variability,thus,the equation for the fitted model is:

    where y is the percentage of dye removal,x2is the pH and x3is the amount of adsorbent.

    The R2value of the fitted model indicates that it explains 81.89%of the variability in the percentage of dye removal.The standard error of the predicted value shows that the standard deviation of the residuals is 8.4786.The predictive capability ofthe regression modelwas evaluated using a plot of the measured vs.predicted values(Fig.5).The model equations were found to be suitable to describe the experimentaldesign as indicated by the high slope values in this plot.The average error for the prediction was 13%,although only four experiments gave very high error values(>25%)and most of these were for processes that led to low percentage of dye removal.

    Fig.5.The prediction capability of the regression model.

    Prediction errors for higher recoveries extractions were much lower,with an error of 9%.

    3.3.3.Response optimization

    Three-dimensionalsurface plots were constructed based on the model in order to predictthe relationships between independentfactors and the response.A plot of the surface response versus pH(x2)and absorbent amount(x3)was constructed based on CCD results(Fig.6).

    Fig.6.Response surface plots showing effects of variables(x2,pH;x3,adsorbent amount)on the percentage of dye removal.

    As can be observed,a high point was found at which the optimum dye removal was obtained at coordinates for a pH of-2.0 and an adsorbent amount of 1.95221.Based on RSM,the optimized dye removal process was achieved upon applying an initial concentration of 11.82 μg·g-1,adsorbent amount 0.0248 g and shaking time of 36 min,with the lowest pH in the studied range.The pH value was in the corner of the investigated range,however,DeCoste and coworkers have reported that the stability of UiO-66 in strong acidic medium,0.1 mol·L-1HCl,may be affected as indicated by slight changes in both the XRD pattern and FTIR spectrum[44].For this reason,we decided not to go below pH=2 to avoid sorbent decomposition.The structure of the Alizarin R S loaded UiO-66 has been studied by XRD.The collected data reveals a stable structure within the studied range of pH values(2–10).Under these optimum conditions,the adsorption experiment was conducted in three replicates;the maximum removal percentage is 98.4%±1.2%(Fig.7).

    Fig.7.The maximum removal of Alizarin Red S.on UiO-66.

    3.4.Isotherms

    Langmuir,Freundlich,Tempkin and Dubinin–Radushkevich isotherm models were consulted to describe the adsorption process.The equation parameters of these models supply useful knowledge in terms of type of adsorption layer of the adsorbate and distribution of the active sites on the sorbent surface.

    Langmuir isotherm is expressed as

    where Q0and KLare Langmuir constants which can be calculated from slope and intercept of an Ce/qeversus Ceplot.The correlation coefficient R2is 0.999 which indicates that the adsorption process fits Langmuir model which is typically reported for the adsorption behavior on UiO-66[2,34,36].The maximum adsorption capacity(Q0)of Alizarin Red S.on the surface of UiO-66 is 400 mg·g-1(Table 4).

    Table 4 Parameters of different isotherms for adsorption of Alizarin R S on UiO-66

    To study the heterogeneity ofthe UiO-66 surface,the linearized form of Freundlich isotherm model was used:

    where KFis adsorption capacity at unit concentration and 1/n is adsorption intensity.Plot of lg qeversus lg Ceenables determination of the values of Kfand 1/n as shown in Table 4.1/n value gives insights into the type of isotherm whether it is irreversible(1/n=0),favorable(0<1/n<1),or unfavorable(1/n>1).

    Heat of adsorption and the adsorbent–adsorbate interaction on adsorption isotherms were studied by Tempkin using the equation:

    where KTthe equilibrium binding constant(L·mg-1)and B1is related to the heat of adsorption.T is the absolute temperature in K,R is the universal gas constant,8.314 J·mol-1·K-1.The experimental data was acceptably fitted to Tempkin isotherm(Table 4).High correlation coefficient implies that the heat of adsorption of all the dye molecules decreases with increasing coverage[45].

    Dubinin–Radushkevich isotherm model describes the sorbent characteristics and free energy transported from the molecules to the surface.For this regard,the following equation was used:

    K is a constant related to the adsorption energy,Qsis the theoretical saturation capacity and ? is the Polanyi potential.The applicability of this model was evaluated by plotting ln qeversus ?2where B and Qswere calculated.The correlation coefficient of Dubinin–Radushkevich isotherm was found to be 0.7189,indicating a poor correlation to the model(Table 4).

    The collective analysis of the results indicates that the adsorption process is highly correlated to two models,Langmuir and Tempkin isotherms which suggest that different sorption mechanisms are involved in this adsorption process[46].

    3.5.Kinetics

    The adsorption mechanism and rate limiting steps such as diffusion control,chemical reaction and mass transport processes have been investigated using different kinetic models including pseudo first and second order,intra particle diffusion and Elovich model.The pseudofirst order equation is given as:

    where qe(mg·g-1)and qt(mg·g-1)are the adsorption capacities at equilibrium and at time t(min),respectively;K1is the pseudo firstorder rate constant(min-1).Under the assumption that the adsorption capacity depends on surface active sites,the pseudo-second order equation is:

    where K2is the pseudo-second order rate constant(g·mg-1·min-1).UiO-66 is a porous material so the rate of intra particle diffusion should be investigated using this equation:

    where Kpis the rate constantofintra particle diffusion(mg·g-1·min-1/2)and C shows the boundary layer thickness.

    Elovich model equation is expressed as

    The adsorption kinetic parameters of all the models are summarized in Table 5 which indicates that the theoretical qevalue calculated from first order model is not close to the experimental value whereas the pseudo second order model gives capacity close to the experimental one.Also,the correlation coefficient R2of pseudo-second order is more than 0.99 while 0.89 in the case of first order.Hence,the adsorption process may fit pseudo-second order kinetics.These collective results indicate that the adsorption process may depend on the surface active sites[47]in agreement with other adsorption studies based on UiO66[2,34,36,38].

    Table 5 Parameters of different kinetic models for adsorption of Alizarin R S on UiO-66

    3.5.1.Record adsorption capacity of UiO-66 for ARS

    The maximum adsorption capacity of UiO-66 for alizarin R S has been assessed based on Langmuir model(Q0=400 mg·g-1)(Table 4).This Q0value is significantly higher than the conventional sorbents reported so far for ARS[48–50].Table 6,summarizes the adsorption capacities ofARS on differentsorbents.Itobviously observed that UiO-66 has a capacity about 3 times higher than the best nano sorbent,(Multiwalled Carbon Nanotubes,161 mg·g-1).On the otherhand,the adsorption capacity of UiO-66 towards different adsorbates indicates a significantly higher affinity towards ARS as compared to other pollutants.This significantly high adsorption capacity towards ARS agrees well with the previous reports indicating high affinity of UiO-66 towards different anionic species including,Fluoride[2],Selenate and Selenite[34]and Phosphate[36].However,Chen and coworkers have recently reported the selective adsorption of cationic dyes(Methylene Blue,Rhodamine B and Neutral Red)on UiO-66[38],results that are not reproducible for MB and might be attributed to the experimental error of using filtering media in their set-up.Several types of filtering media have filtering/adsorptive capabilities towards organic dyes[51,52].

    Table 6 Comparison of adsorption capacities of different pollutants on UiO-66

    4.Conclusions

    In summary,this study reveals exceptional adsorptive capabilities of the nano-porous microwave-synthesized MOF UiO-66 towards anionic dyes as compared to cationic dyes.The adsorptive removal of Alizarin Red S.from aqueous solutions has a record adsorption capacity of 400 mg·g-1in acidic conditions.The kinetics of adsorption can be well described by the pseudo second-order model with R20.999.The results of equilibrium studies data showed that the equilibrium follows the Langmuir isotherm with R2=0.999.Optimum conditions for the removal of Alizarin Red S.with UiO-66 as optimized by CCD are 0.0248 g of adsorbent,dye concentration of 11.82 mg.L-1and pH=2 at shaking time of 36 min.This study adds further evidence of the anticipated potential of MOFs in the field of organic pollutants removal from water.

    Acknowledgements

    The authors would like to thank the FDWaSC for supporting this work.Also,we thank Dr.Ahmed M.Ahmed and Dr.Abdullah A.Khamees for their assistance.

    References

    [1]G.Crini,Non-conventional low-costadsorbents for dye removal:a review,Bioresour.Technol.97(2006)1061–1085.

    [2]X.Zhao,D.Liu,H.Huang,W.Zhang,Q.Yang,C.Zhong,The stability and de fluoridation performance of MOFs in fluoride solutions,Microporous Mesoporous Mater.185(2014)72–78.

    [3]I.Uzun,Kinetics of the adsorption of reactive dyes by chitosan,Dyes Pigments 70(2006)76–83.

    [4]V.S.Mane,I.D.Mall,V.C.Srivastava,Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution,Dyes Pigments 73(2007)269–278.

    [5]S.J.Allen,G.McKay,K.Y.H.Khader,The adsorption of acid dye onto peat from aqueous solution–solid diffusion model,J.Colloid Interface Sci.126(1988)517–524.

    [6]N.K.Amin,Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith,Desalination 223(2008)152–161.

    [7]I.C.Gon?alves,A.C.Gomes,R.Brás,M.I.A.Ferra,Biological treatment of effluent containing textile dyes,J.Soc.Dye.Colour.116(2000)393–397.

    [8]S.Elwany,M.F.Elshhat,N.Burham,Green puri fication of different natural water samples in Fayoum governorate by using a novel and safe modi fied rice husk,Int.J.Adv.Res.2(2014)502–522.

    [9]D.Couillard,The use of peat in wastewater treatment,Water Res.28(1994)1261–1274.

    [10]H.Furukawa,K.E.Cordova,M.O'Keeffe,O.M.Yaghi,The chemistry and applications of metal–organic frameworks,Science 341(2013)1230444.

    [11]G.Ferey,Hybrid porous solids:past,present,future,Chem.Soc.Rev.37(2008)191–214.

    [12]J.Klinowski,F.A.Paz,P.Silva,J.Rocha,Microwave-assisted synthesis of metal–organic frameworks,Dalton Trans.40(2011)321–330.

    [13]N.Stock,S.Biswas,Synthesis of metal–organic frameworks(MOFs):routes to various MOF topologies,morphologies,and composites,Chem.Rev.112(2012)933–969.

    [14]M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O'Keeffe,O.M.Yaghi,Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage,Science 295(2002)469–472.

    [15]M.R.Saber,A.V.Prosvirin,B.F.Abrahams,R.W.Elliott,R.Robson,K.R.Dunbar,Magnetic coupling between metal spins through the 7,7,8,8-tetracyanoquinodimethane(TCNQ)dianion,Chemistry 20(2014)7593–7597.

    [16]X.Zhang,M.R.Saber,A.P.Prosvirin,J.H.Reibenspies,L.Sun,M.Ballesteros-Rivas,H.Zhao,K.R.Dunbar,Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions,Inorg.Chem.Front.2(2015)904–911.

    [17]J.R.Li,R.J.Kuppler,H.C.Zhou,Selective gas adsorption and separation in metal–organic frameworks,Chem.Soc.Rev.38(2009)1477–1504.

    [18]J.Lee,O.K.Farha,J.Roberts,K.A.Scheidt,S.T.Nguyen,J.T.Hupp,Metal–organic framework materials as catalysts,Chem.Soc.Rev.38(2009)1450–1459.

    [19]L.E.Kreno,K.Leong,O.K.Farha,M.Allendorf,R.P.Van Duyne,J.T.Hupp,Metal–organic framework materials as chemicalsensors,Chem.Rev.112(2012)1105–1125.

    [20]A.C.McKinlay,R.E.Morris,P.Horcajada,G.Ferey,R.Gref,P.Couvreur,C.Serre,BioMOFs:metal–organic frameworks for biological and medical applications,Angew.Chem.49(2010)6260–6266.

    [21]A.Maleki,B.Hayati,M.Naghizadeh,S.W.Joo,Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution,J.Ind.Eng.Chem.28(2015)211–216.

    [22]N.Bakhtiari,S.Azizian,Adsorption of copper ion from aqueous solution by nanoporous MOF-5:a kinetic and equilibrium study,J.Mol.Liq.206(2015)114–118.

    [23]J.Li,Y.N.Wu,Z.Li,M.Zhu,F.Li,Characteristics of arsenate removal from water by metal–organic frameworks(MOFs),Water Sci.Technol.70(2014)1391–1397.

    [24]Q.Zhang,J.C.Yu,J.F.Cai,L.Zhang,Y.J.Cui,Y.Yang,B.L.Chen,G.D.Qian,A porous Zrcluster-based cationic metal–organic framework for highly efficient Cr2O72-removal from water,Chem.Commun.51(2015)14732–14734.

    [25]E.García,R.Medina,M.Lozano,I.Hernández Pérez,M.Valero,A.Franco,Adsorption of azo-dye orange II from aqueous solutions using a metal–organic framework material:iron-benzenetricarboxylate,Materials 7(2014)8037–8057.

    [26]E.Haque,J.W.Jun,S.H.Jhung,Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal–organic framework material,iron terephthalate(MOF-235),J.Hazard.Mater.185(2011)507–511.

    [27]E.Haque,J.E.Lee,I.T.Jang,Y.K.Hwang,J.S.Chang,J.Jegal,S.H.Jhung,Adsorptive removal of methyl orange from aqueous solution with metal–organic frameworks,porous chromium-benzenedicarboxylates,J.Hazard.Mater.181(2010)535–542.

    [28]Y.S.Seo,N.A.Khan,S.H.Jhung,Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal–organic framework,Chem.Eng.J.270(2015)22–27.

    [29]Z.Hasan,J.Jeon,S.H.Jhung,Adsorptive removal of naproxen and clo fibric acid from water using metal–organic frameworks,J.Hazard.Mater.209-210(2012)151–157.

    [30]S.Pu,L.Xu,L.Sun,H.Du,Tuning the optical properties of the zirconium–UiO-66 metal–organic framework for photocatalytic degradation of methyl orange,Inorg.Chem.Commun.52(2015)50–52.

    [31]Z.Sha,J.S.Wu,Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr)composite for dye degradation with the assistance of UiO-66,RSC Adv.5(2015)39592–39600.

    [32]Z.Sha,J.L.Sun,H.S.O.Chan,S.Jaenicke,J.S.Wu,Bismuth tungstate incorporated zirconium metalorganic framework composite with enhanced visible-light photocatalytic performance,RSC Adv.4(2014)64977–64984.

    [33]Z.Sha,H.S.Chan,J.Wu,Ag2CO3/UiO-66(Zr)composite with enhanced visible-light promoted photocatalytic activity for dye degradation,J.Hazard.Mater.299(2015)132–140.

    [34]A.J.Howarth,M.J.Katz,T.C.Wang,A.E.Platero-Prats,K.W.Chapman,J.T.Hupp,O.K.Farha,High efficiency adsorption and removal of selenate and selenite from water using metal–organic frameworks,J.Am.Chem.Soc.137(2015)7488–7494.

    [35]C.Wang,X.Liu,J.P.Chen,K.Li,Superior removal of arsenic from water with zirconium metal–organic framework UiO-66,Sci.Rep.5(2015)16613.

    [36]K.-Y.A.Lin,S.-Y.Chen,A.P.Jochems,Zirconium-based metal organic frameworks:highly selective adsorbents for removal of phosphate from water and urine,Mater.Chem.Phys.160(2015)168–176.

    [37]H.Saleem,U.Ra fique,R.P.Davies,Investigations on post-synthetically modi fied UiO-66-NH2for the adsorptive removal of heavy metal ions from aqueous solution,Microporous Mesoporous Mater.221(2016)238–244.

    [38]Q.Chen,Q.He,M.Lv,Y.Xu,H.Yang,X.Liu,F.Wei,Selective adsorption of cationic dyes by UiO-66-NH2,Appl.Surf.Sci.327(2015)77–85.

    [39]Q.He,Q.Chen,M.Lü,X.Liu,Adsorption behavior of rhodamine B on UiO-66,Chin.J.Chem.Eng.22(2014)1285–1290.

    [40]M.Taddei,P.V.Dau,S.M.Cohen,M.Ranocchiari,J.A.van Bokhoven,F.Costantino,S.Sabatini,R.Vivani,Ef ficient microwave assisted synthesis of metal–organic framework UiO-66:optimization and scale up,Dalton Trans.44(2015)14019–14026.

    [41]J.K.Im,I.H.Cho,S.K.Kim,K.D.Zoh,Optimization of carbamazepine removal in O3/UV/H2O2system using a response surface methodology with central composite design,Desalination 285(2012)306–314.

    [42]R.Tabaraki,A.Nateghi,Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology,Ultrason.Sonochem.18(2011)1279–1286.

    [43]F.Ragon,P.Horcajada,H.Chevreau,Y.K.Hwang,U.H.Lee,S.R.Miller,T.Devic,J.S.Chang,C.Serre,In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66,Inorg.Chem.53(2014)2491–2500.

    [44]J.B.DeCoste,G.W.Peterson,H.Jasuja,T.G.Glover,Y.G.Huang,K.S.Walton,Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)(4)secondary building unit,J.Mater.Chem.A 1(2013)5642–5650.

    [45]G.Akkaya,A.?zer,Biosorption of Acid Red 274(AR 274)on Dicranella varia:determination of equilibrium and kinetic model parameters,Process Biochem.40(2005)3559–3568.

    [46]A.ElNemr,A.El-Sikaily,A.Khaled,O.Abdelwahab,Removal of toxic chromium from aqueous solution,wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon,Arab.J.Chem.8(2015)105–117.

    [47]Y.S.Ho,G.McKay,Kinetic models for the sorption of dye from aqueous solution by wood,Process.Saf.Environ.Prot.76(1998)183–191.

    [48]P.B.Wagh,A.Shrivastava,Removal of alizarin red-S dye from aqueous solution by sorption on coconut shell activated carbon,J.Sci.Res.Rep.3(2014)2197–2215.

    [49]J.Samusolomon,A.Devaprasath,Removal of alizarin red S(dye)from aqueous media by using Cynodon dactylon as an adsorbent,J.Chem.Pharm.Res.3(2011)478–490.

    [50]F.Fu,Z.Gao,L.Gao,D.Li,Effective adsorption of anionic dye,alizarin red S,from aqueous solutions on activated clay modi fied by iron oxide,Ind.Eng.Chem.Res.50(2011)9712–9717.

    [51]S.Homaeigohar,A.U.Zillohu,R.Abdelaziz,M.K.Hedayati,M.Elbahri,A novel nanohybrid nano fibrous adsorbent for water puri fication from dye pollutants,Materials 9(2016)848.

    [52]R.Lin,B.Chen,G.Chen,J.Wu,H.Chiu,S.Suen,Preparation of porous PMMA/Na+montmorillonite cation-exchange membranes for cationic dye adsorption,J.Membr.Sci.326(2009)117–129.

    [53]H.Roopaei,A.R.Zohdi,Z.Abbasi,M.Bazrafkan,Preparation of new photocatalyst for removal of alizarin red-S from aqueous solution,Indian J.Sci.Technol.7(2014)1882–1887.

    [54]K.M.Joshi,S.V.Shrivastava,Degradation of alizarine red-S(a textiles dye)by photocatalysis using ZnO and TiO2as photocatalyst,Int.J.Environ.Sci.2(2011)8.

    [55]H.V.Jadhav,S.M.Khetre,S.R.Bamane,Removal of alizarin red-S from aqueous solution by adsorption on nanocrystalline Cu0.5Zn0.5Ce3O5,Pelagia Res.Libr.2(2011)68–75.

    [56]M.Ghaedi,A.Hassanzadeh,S.N.Kokhdan,Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red S and morin,J.Chem.Eng.Data 56(2011)2511–2520.

    [57]Z.Hasan,N.A.Khan,S.H.Jhung,Adsorptive removalof diclofenac sodium from water with Zr-based metal–organic frameworks,Chem.Eng.J.284(2016)1406–1413.

    [58]H.B.Shang,C.X.Yang,X.P.Yan,Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples,J.Chromatogr.A 1357(2014)165–171.

    亚洲内射少妇av| 亚洲性久久影院| 一级毛片黄色毛片免费观看视频| 日日撸夜夜添| 最后的刺客免费高清国语| 免费看av在线观看网站| 尾随美女入室| 亚洲激情五月婷婷啪啪| 精品久久国产蜜桃| 人妻少妇偷人精品九色| 日本欧美视频一区| 国产免费福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 妹子高潮喷水视频| a级一级毛片免费在线观看| 欧美xxⅹ黑人| 精品久久久久久久久av| av女优亚洲男人天堂| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 精华霜和精华液先用哪个| 天堂8中文在线网| 麻豆乱淫一区二区| 国产成人午夜福利电影在线观看| 中文欧美无线码| 国产精品一区二区在线不卡| 人妻少妇偷人精品九色| 国产av一区二区精品久久 | 日韩成人av中文字幕在线观看| 午夜激情福利司机影院| 国产精品人妻久久久久久| 午夜福利高清视频| 一级a做视频免费观看| av不卡在线播放| 国产亚洲av片在线观看秒播厂| .国产精品久久| 观看av在线不卡| 一级二级三级毛片免费看| 少妇 在线观看| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 欧美成人一区二区免费高清观看| 国产一区有黄有色的免费视频| 国产av精品麻豆| 国产精品av视频在线免费观看| 少妇猛男粗大的猛烈进出视频| 欧美 日韩 精品 国产| 久久久久久久久久成人| 国产 一区精品| 综合色丁香网| 丝瓜视频免费看黄片| 少妇高潮的动态图| 草草在线视频免费看| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 不卡视频在线观看欧美| 日韩中字成人| 欧美日韩国产mv在线观看视频 | 色哟哟·www| 丝袜脚勾引网站| 青春草视频在线免费观看| 大话2 男鬼变身卡| 亚洲国产欧美人成| 久久久久性生活片| 国产探花极品一区二区| 成人国产麻豆网| 卡戴珊不雅视频在线播放| 精品99又大又爽又粗少妇毛片| 看免费成人av毛片| 精品久久久久久电影网| 男人和女人高潮做爰伦理| 日本欧美视频一区| 亚洲美女黄色视频免费看| 国产精品爽爽va在线观看网站| 97精品久久久久久久久久精品| 久热这里只有精品99| 日韩av不卡免费在线播放| 97在线视频观看| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av涩爱| 久久国产乱子免费精品| 日本av手机在线免费观看| 男人狂女人下面高潮的视频| 大陆偷拍与自拍| 国产精品国产三级国产av玫瑰| 日本一二三区视频观看| 国产淫语在线视频| av在线观看视频网站免费| 久久影院123| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放| 亚洲怡红院男人天堂| 欧美日韩国产mv在线观看视频 | 青春草亚洲视频在线观看| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 久久韩国三级中文字幕| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 免费不卡的大黄色大毛片视频在线观看| 我要看黄色一级片免费的| 国产大屁股一区二区在线视频| 久久人妻熟女aⅴ| 亚洲自偷自拍三级| 少妇 在线观看| 高清视频免费观看一区二区| www.色视频.com| 99久国产av精品国产电影| 大又大粗又爽又黄少妇毛片口| 男的添女的下面高潮视频| 日韩强制内射视频| 男人狂女人下面高潮的视频| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站高清观看| 午夜福利在线在线| 国精品久久久久久国模美| 欧美成人午夜免费资源| 亚洲第一区二区三区不卡| 中文精品一卡2卡3卡4更新| 国产成人aa在线观看| 熟女av电影| 一区在线观看完整版| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| 亚洲无线观看免费| 久久av网站| 99久久精品国产国产毛片| 久久精品久久久久久久性| 少妇精品久久久久久久| 91精品一卡2卡3卡4卡| 国产精品一区二区性色av| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 伦理电影免费视频| 蜜桃久久精品国产亚洲av| 一级毛片黄色毛片免费观看视频| 麻豆国产97在线/欧美| 天堂俺去俺来也www色官网| 亚洲国产日韩一区二区| 国产精品人妻久久久影院| 乱系列少妇在线播放| 亚洲欧美成人精品一区二区| 精品久久久久久电影网| 97精品久久久久久久久久精品| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 亚洲精品日本国产第一区| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 在线免费观看不下载黄p国产| 99国产精品免费福利视频| 国产一区二区在线观看日韩| 日韩欧美精品免费久久| 精品99又大又爽又粗少妇毛片| 欧美日本视频| 久久久成人免费电影| 久久综合国产亚洲精品| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 观看美女的网站| 日日啪夜夜爽| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 日本欧美视频一区| 美女主播在线视频| 女性被躁到高潮视频| 在线播放无遮挡| 日韩伦理黄色片| 日本欧美国产在线视频| 国产伦理片在线播放av一区| 中国三级夫妇交换| 色视频www国产| 成人亚洲精品一区在线观看 | 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费| 99热网站在线观看| 久久精品久久久久久久性| 国产高清不卡午夜福利| 国产高清国产精品国产三级 | 大片电影免费在线观看免费| 婷婷色av中文字幕| 精品熟女少妇av免费看| av国产精品久久久久影院| 最近最新中文字幕大全电影3| 亚洲精品视频女| 女人十人毛片免费观看3o分钟| 久久久a久久爽久久v久久| 男女边摸边吃奶| 男男h啪啪无遮挡| 99久久精品一区二区三区| av免费观看日本| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 国产精品久久久久成人av| 在线播放无遮挡| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 国产男女超爽视频在线观看| 久久久久久久精品精品| 精品一区二区三卡| 亚洲国产av新网站| 三级国产精品片| 精品国产一区二区三区久久久樱花 | 一区二区三区免费毛片| 少妇的逼水好多| 一区二区av电影网| 建设人人有责人人尽责人人享有的 | 人妻 亚洲 视频| 免费观看a级毛片全部| 性色avwww在线观看| 日韩欧美一区视频在线观看 | 视频中文字幕在线观看| 妹子高潮喷水视频| 亚洲精品中文字幕在线视频 | 久久99蜜桃精品久久| 日韩强制内射视频| 婷婷色综合www| 少妇 在线观看| 成年女人在线观看亚洲视频| 18+在线观看网站| 国产女主播在线喷水免费视频网站| 亚洲精品,欧美精品| 日韩中文字幕视频在线看片 | 久久毛片免费看一区二区三区| 制服丝袜香蕉在线| www.色视频.com| 人妻少妇偷人精品九色| 你懂的网址亚洲精品在线观看| 国产精品女同一区二区软件| 又黄又爽又刺激的免费视频.| 亚洲欧美精品专区久久| a 毛片基地| 国产精品一区二区三区四区免费观看| 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| 亚洲美女黄色视频免费看| 老司机影院成人| 看十八女毛片水多多多| 99九九线精品视频在线观看视频| tube8黄色片| 免费观看a级毛片全部| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看| 亚洲av电影在线观看一区二区三区| 成年av动漫网址| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| 黄色一级大片看看| 深爱激情五月婷婷| 另类亚洲欧美激情| 久久久国产一区二区| 中文字幕免费在线视频6| av网站免费在线观看视频| 久久97久久精品| 人人妻人人看人人澡| av卡一久久| 久久久精品免费免费高清| 久久久久久伊人网av| 干丝袜人妻中文字幕| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 黄色一级大片看看| 国产黄片视频在线免费观看| 国产在线男女| 亚洲欧洲日产国产| videos熟女内射| 欧美日韩视频精品一区| 国产 精品1| 亚洲成人av在线免费| 午夜免费鲁丝| 在线播放无遮挡| 久久久国产一区二区| 日日啪夜夜爽| 九九久久精品国产亚洲av麻豆| 色视频www国产| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| av福利片在线观看| 国产精品女同一区二区软件| 熟女av电影| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 久久99热6这里只有精品| 交换朋友夫妻互换小说| 国产综合精华液| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看 | 99国产精品免费福利视频| 老司机影院毛片| 成人毛片60女人毛片免费| 伦理电影免费视频| 直男gayav资源| 九草在线视频观看| 国产欧美另类精品又又久久亚洲欧美| 久久久久国产精品人妻一区二区| 久久久久国产网址| 黄片无遮挡物在线观看| 国产精品爽爽va在线观看网站| 婷婷色av中文字幕| av视频免费观看在线观看| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看| 直男gayav资源| 午夜福利高清视频| 一区二区三区四区激情视频| tube8黄色片| 日韩一本色道免费dvd| 久久99热这里只频精品6学生| 中文在线观看免费www的网站| freevideosex欧美| 精品少妇久久久久久888优播| 亚洲图色成人| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 精品久久久精品久久久| 成人美女网站在线观看视频| 国产高潮美女av| 久久ye,这里只有精品| 99久国产av精品国产电影| 极品少妇高潮喷水抽搐| 午夜福利在线观看免费完整高清在| 国产精品免费大片| 色视频www国产| .国产精品久久| 日日撸夜夜添| 啦啦啦视频在线资源免费观看| 蜜桃久久精品国产亚洲av| 成人免费观看视频高清| 在线观看三级黄色| 国产美女午夜福利| 人妻制服诱惑在线中文字幕| 亚洲av.av天堂| 亚洲精品第二区| 色网站视频免费| 五月玫瑰六月丁香| 少妇丰满av| 女人十人毛片免费观看3o分钟| 最近最新中文字幕大全电影3| 国产黄色免费在线视频| 国产精品精品国产色婷婷| 美女中出高潮动态图| 深夜a级毛片| 在线免费十八禁| 波野结衣二区三区在线| 亚洲国产精品一区三区| 国产成人a区在线观看| 成人国产麻豆网| 亚洲成人一二三区av| 国产熟女欧美一区二区| 成人18禁高潮啪啪吃奶动态图 | 女性生殖器流出的白浆| xxx大片免费视频| 女的被弄到高潮叫床怎么办| 一个人看视频在线观看www免费| 777米奇影视久久| 大片免费播放器 马上看| 免费黄网站久久成人精品| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 中文字幕久久专区| 日本免费在线观看一区| 91aial.com中文字幕在线观看| 在线观看三级黄色| 日韩亚洲欧美综合| 久久精品国产亚洲av天美| 亚洲第一av免费看| 你懂的网址亚洲精品在线观看| 视频区图区小说| 美女福利国产在线 | 91精品一卡2卡3卡4卡| 国产精品无大码| 大片免费播放器 马上看| 新久久久久国产一级毛片| 色网站视频免费| 久久久精品94久久精品| 五月天丁香电影| 在线亚洲精品国产二区图片欧美 | 97超视频在线观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲久久久国产精品| 国产精品三级大全| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 国产视频内射| 亚洲精品日韩在线中文字幕| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费 | 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 亚洲精品视频女| 国产成人aa在线观看| 纵有疾风起免费观看全集完整版| 亚洲综合精品二区| 黄色日韩在线| 人人妻人人添人人爽欧美一区卜 | freevideosex欧美| 国产老妇伦熟女老妇高清| 大陆偷拍与自拍| 高清不卡的av网站| 国产精品人妻久久久久久| 国产男人的电影天堂91| 直男gayav资源| 婷婷色综合大香蕉| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 女性生殖器流出的白浆| 天堂8中文在线网| 成人一区二区视频在线观看| 日本av免费视频播放| av国产精品久久久久影院| 亚洲av在线观看美女高潮| 免费观看在线日韩| 777米奇影视久久| 三级国产精品片| 国产在线免费精品| 国产精品人妻久久久影院| 99热6这里只有精品| 女性生殖器流出的白浆| 国产亚洲91精品色在线| 色视频www国产| 国产精品一区二区在线观看99| 草草在线视频免费看| 简卡轻食公司| 黄色配什么色好看| 亚洲自偷自拍三级| 天堂俺去俺来也www色官网| 精品国产一区二区三区久久久樱花 | 日韩伦理黄色片| 亚洲人与动物交配视频| 熟女电影av网| 免费观看无遮挡的男女| 亚洲丝袜综合中文字幕| 国产精品无大码| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 我的女老师完整版在线观看| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 亚洲精品乱码久久久久久按摩| 久久久久久久精品精品| 在线观看人妻少妇| 精品国产乱码久久久久久小说| 人妻少妇偷人精品九色| 国产黄片美女视频| 免费av中文字幕在线| 国产久久久一区二区三区| 汤姆久久久久久久影院中文字幕| 美女内射精品一级片tv| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 少妇人妻一区二区三区视频| 亚洲欧美中文字幕日韩二区| av福利片在线观看| 91在线精品国自产拍蜜月| 在线播放无遮挡| 精品久久国产蜜桃| 精品久久久噜噜| 亚洲av男天堂| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品专区久久| 51国产日韩欧美| 国产免费福利视频在线观看| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 大片电影免费在线观看免费| 亚洲精品乱码久久久v下载方式| 亚洲美女黄色视频免费看| 51国产日韩欧美| 我的老师免费观看完整版| 六月丁香七月| 免费大片黄手机在线观看| 精品少妇久久久久久888优播| 内射极品少妇av片p| 我要看日韩黄色一级片| 国产在线男女| 久久久精品94久久精品| 久久久精品免费免费高清| 国产精品三级大全| 国产乱人偷精品视频| 久久99蜜桃精品久久| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 久久99蜜桃精品久久| 精品一区二区三区视频在线| av福利片在线观看| 国产精品久久久久久av不卡| 黄色配什么色好看| 黄色怎么调成土黄色| 18+在线观看网站| 黑人猛操日本美女一级片| 午夜视频国产福利| 啦啦啦在线观看免费高清www| av在线app专区| av国产免费在线观看| 成人二区视频| 欧美日韩在线观看h| 三级国产精品片| 精品人妻偷拍中文字幕| 国内精品宾馆在线| 欧美区成人在线视频| 91精品国产国语对白视频| 亚洲性久久影院| 亚洲欧洲日产国产| 欧美97在线视频| 免费不卡的大黄色大毛片视频在线观看| 精品99又大又爽又粗少妇毛片| 国产一区二区三区av在线| 久久精品夜色国产| 高清黄色对白视频在线免费看 | 啦啦啦视频在线资源免费观看| 欧美+日韩+精品| 青春草亚洲视频在线观看| 午夜视频国产福利| 精品久久久久久久久av| 精品久久久噜噜| 亚洲av男天堂| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 韩国av在线不卡| av网站免费在线观看视频| 日本欧美国产在线视频| 国产精品久久久久久久电影| av卡一久久| 性高湖久久久久久久久免费观看| 久久99热这里只频精品6学生| 国产伦在线观看视频一区| 丰满乱子伦码专区| 精品一品国产午夜福利视频| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| 国产在线一区二区三区精| 国内揄拍国产精品人妻在线| 中文字幕亚洲精品专区| 观看av在线不卡| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 男人舔奶头视频| 水蜜桃什么品种好| 1000部很黄的大片| 精品一区二区三区视频在线| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 国产毛片在线视频| 久久6这里有精品| 全区人妻精品视频| 国内精品宾馆在线| 在线看a的网站| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| av不卡在线播放| av在线蜜桃| 黄色视频在线播放观看不卡| 日韩欧美 国产精品| 亚洲国产精品成人久久小说| 91久久精品电影网| 国产人妻一区二区三区在| 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 男女边摸边吃奶| 免费在线观看成人毛片| 久久99蜜桃精品久久| 超碰97精品在线观看| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 蜜桃久久精品国产亚洲av| 亚洲国产av新网站| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| 国产日韩欧美在线精品| 一级片'在线观看视频| 秋霞伦理黄片| 欧美另类一区| 国产精品人妻久久久久久| 欧美一区二区亚洲| 日韩国内少妇激情av| 久久国产亚洲av麻豆专区| 黄色日韩在线| 美女cb高潮喷水在线观看| 亚洲国产高清在线一区二区三| 秋霞在线观看毛片| 视频区图区小说| 美女中出高潮动态图| 色视频在线一区二区三区| 最近中文字幕2019免费版| 乱系列少妇在线播放| 日本色播在线视频| tube8黄色片| 青春草亚洲视频在线观看| 国产精品.久久久| 成年人午夜在线观看视频| 蜜臀久久99精品久久宅男| 久久久久久人妻| 国产男女内射视频| 欧美人与善性xxx| 王馨瑶露胸无遮挡在线观看| 午夜福利网站1000一区二区三区| 人妻系列 视频| 成人国产麻豆网|