• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design aspect of a novel L-shaped pulsed column for liquid–liquid extraction applications:Energy consumption and the characteristics velocity concept

    2018-05-25 11:26:14PouriaAmaniElhamMohammadiSaharAkhgar

    Pouria Amani*,Elham Mohammadi,Sahar Akhgar

    1 School of Chemical Engineering,College of Engineering,University of Tehran,P.O.Box:11155-4563,Tehran,Iran

    2 Chemical Engineering Department,Tarbiat Modares University,P.O.Box:14115-143,Tehran,Iran

    1.Introduction

    Solvent extraction is one of the methods applied in separation industry.There are numerous types of extractors including mixersettlers,columns and centrifugal extractors[1].Pulsed columns are a class of solvent extractors which offer various advantages such as high throughput,simple design,low space requirement and no internal moving parts[2].

    Various internals have been used so far in pulsed columns such as packing,perforated plates and disc&doughnuts.However,generally pulsed columns can be classi fied in two structural groups:1—vertical pulsed columns;2—horizontal pulsed columns.In most studies,vertical pulsed columns have been employed and investigated[3–5].However,in various applications,especially when height limitation is a concern or in nuclear industries it is highly required to use the horizontal pulsed columns[6–10].It should be noted that the mass transfer rate in verticaland horizontalstructure ofthe columns is approximately comparable[11]and the horizontal columns provide higher performance based on the identical required space,while the throughput of the horizontal columns is much less than the vertical ones.Therefore,there is a need to propose a new type of extraction columns which offers higher performance compared to previous conventionaltypes.In this regard,the novel L-shaped(horizontal–vertical)pulsed sieve-plate column has been proposed in order to potentially achieve higher advantages compared to the other types.In our previous studies,we have investigated the hydrodynamic of such columns and the results revealed that an L-shaped extraction column has a great potential to extract rare earth elements[12,13].However,the knowledge concerning the design and performance of such columns is still far from ful filling expectations due to the complex behaviors of the hydrodynamics as well as mass transfer performance.

    One ofthe key factors in design and scale-up ofextraction columns is the total energy consumed during the steady-state operation of the apparatus.Among the various types of extraction columns,the L-shaped pulsed sieve-plate column is one type of extractors whose energy consumption is much less than that of the conventional vertical pulsed extraction columns with identical length,while their application for extraction,separation and puri fication of rare earth elements has not extensively been referred to the literature.Thus,the primary objective of this research is to study the feasibility of the L-shaped pulsed sieveplate columns for solventextraction applications by evaluating the consumption of energy at different conditions.

    On the other hand,the characteristic velocity is another key factor in steady state operation of extraction columns since it demonstrates the maximum throughput of the column.The characteristic velocity can be obtained by flooding measurements,reported in our previous research for an L-shaped extraction column[13].Thus,this article also concerns the characteristic velocity approaches in order to evaluate the applicability of such models for an L-shaped extraction column.

    2.Experimental

    2.1.Description of equipment

    Schematic diagram ofthe L-shaped pulsed sieve-plate column used in this work is illustrated in Fig.1.The setup consists ofverticaland horizontal parts,upper and lower settler,four tanks,two dosing pumps,two rotameters and air pulsating system.The active part of the column is a pipe housing an internal plate cartridge consisting of 24 pairs of sieve plate in the horizontal section as well as 29 individual sieve plates in the vertical section.The main characteristics of the column are listed in Table 1.

    2.2.Liquid–liquid system

    Liquid–liquid systems used in this work are toluene/water,butanol/water,butyl acetate/water in order to cover a wide range of interfacial tension.These systems have been recommended by the EuropeanFederation of Chemical Engineering as of ficial test systems for extraction investigations[14].The physical properties of these systems are listed in Table 2.All experiments are carried out at the(20 ± 1)°C.The density and viscosity of each phase are determined using a balance in the order of 0.0001 g and with a LAUDA viscometer.

    Table 1 Plate properties

    Fig.1.A schematic of the apparatus.

    Table 2 Physical properties of the chemical systems at(20 ± 1)°C

    2.3.Theoretical framework

    2.3.1.Energy consumption concept

    The pressure drop can be calculated by following classical Eq.(15):

    where U represents the velocity,Dcis the column diameter,Z represents the distance between measuring points,ρmis the density ofthe mixture[Eq.(2)],and Δl represents the differential manometer height.In addition,C corresponds to the pressure drop coefficient in the case of permanent flow.

    The velocity ofthe pulsed flow provided by an airpulsing system can be expressed in every moment as follows:

    where A and f represent pulsation amplitude and frequency,and t represents time.The period of pulsation is T=1/f.So,the expression for U(t)(Eq.(3))can be rewritten as,

    The energy is consumed by the flow with both positive and negative velocity.If integrated directly over the interval 0 to T,the mean velocity will be zero,because for the half of the interval the velocity is equal to the other half,but with opposite sign.For this reason,the absolute value of the velocity is integrated.To obtain the value of mean velocity,the period of pulsation can be divided in three zones:

    (1)Time interval 0 to T/4—the velocity is positive.

    (2)Time interval T/4 to 3/4 T-velocity is negative and its absolute value is taken.

    (3)Time interval 3/4 T to T—the velocity is positive.It is analogous to the first zone and the result is the same.

    Thus,the mean pulsation velocity(Um)can be expressed as follows:

    Assuming that the pressure drop in a pulsed flow is proportional to the square of its velocity,one can replace the velocity term in Eq.(1)by the expression for mean pulsation velocity[Eq.(8)].This assumption is explicitly supported by the experimentalobservation ofother authors[16,17],stating that in both permanent and pulsed flows the energy(which is proportional to the product of pressure drop and velocity)is proportional to the cube of velocity.

    Integration over a pulsation period T results in:

    where C is a proportionality coefficientin case ofpermanent flow,Cpis for the case of a pulsed flow(2Af)is mean velocity of the pulsed flow.It is seen that the pressure drop coefficient for the pulsed flow Cpis about 25%greater than that of an equivalent permanent flow C.The pressure drop characterizes the column resistance.Energy is consumed to overcome this resistance so as to make the flow passing through the column.Arelation for determination ofenergy consumption due to pressure drop in an L-shaped extraction column with pulsed flow is developed below.In the case of a permanent flow,the force exerted perpendicular to the cross section of the column(FN)can be calculated by Eq.(11):

    Therefore,the energy(E)consumed can be expressed as,

    Replacing Δp in Eq.(12)by Eq.(1)results in:

    Considering SX=V and Vρ=m,the energy consumption can be expressed by:

    Consequently,since t=X/U,energy per unity of mass and time can be expressed as below:

    Determining Δl from Eq.(1)can be resulted in Eq.(16).

    For a pulsed flow,the consumption of energy and velocity vary regarding the time and depend on its moment during the pulsation.Thus,integrating overa period of pulsation can be resulted in the determination of the mean energy consumption,as follows:

    The comparison of Eqs.(16)and(18)demonstrates that the mean energy consumed for a pulsed flow is one and a half times more than that of a permanent flow at identical velocity.

    The mean energy consumption for a permanent flow can therefore be determined as below:

    2.3.2.Characteristic velocity concept

    With respect to the variation of pressure drop through the column length[13], flooding velocities can be determined.Consequently,the characteristic velocity can be obtained by flooding measurements.Many correlations are proposed for prediction of characteristic velocity in order to relate the slip velocity and the dispersed phase holdup.Thornton and Pratt[18]proposed a model for determination of U0at the flooding point as follows:

    Thornton and Pratt[18]suggested that flooding will occur when the phases velocity reaches its highest value due to the variation of holdup.Therefore,for determination of flooding capacity in terms of dispersed and continuous phase velocities,Eq.(21)is differentiated based on φ,treating Udand Ucas dependent variables as follows:

    Highest super ficial velocity of each phase can be determined by only one of Eq.(22)or(23)and by the other characteristic velocity approaches.With the substitution of Eq.(21)in Eqs.(22)and(23),the super ficial velocities at flooding point can be calculated as follows:

    Another equation developed by Richardson and Zaki[19]which was originally presented for sedimenting and fluidized processes of homogenous solid particles.However,Godfrey and Slater[20]revealed that it has a wide applicability for determination of U0and also can be employed for liquid–liquid systems as follows:

    where n is the parameter which has to be obtained based on the experimental data.It should be noted that the idea of differentiating the relationship between slip velocity and holdup to obtain limiting values of super ficial velocities(Udfand Ucf)was firstly presented by Dell and Pratt[21].In this approach,it is assumed that near the highest feasible flow rate,slight variation of one flow when the other is considered to be fixed,will significantly increase the holdup.Accordingly,Eq.(22)is differentiated based on φ,treating Udand Ucas dependent variables in order to determine flooding conditions,and the substitution of Eq.(26)in Eqs.(22)and(23)leads to:

    3.Results and Discussion

    3.1.Pressure drop

    The primary objective of this research is to find how the pressure drop will change when varying the geometry parameters of the stage and pulsation parameters.In this regard,two dimensionless parameters characterize the stage geometry:plate free area(F)and dimensionless interplate distance(h)which is the ratio of the plate spacing to the column dimeter.The two-phase pressure drop through the column length is measured by using a manometer as can be seen in Fig.1.Each experiment is repeated three times to guarantee the statistical significance of the determined pressure drop.

    To illustrate the in fluence of column geometry on pressure drop,the pulsed flow pressure drop coefficient(Cp)is studied at different plate distances and several constant values of plate free cross area.The Cpcan be generally obtained from experimentalΔp,Dc,ρ,X,and Af by plotting DcΔp/ρX versus(2Af)2.A linear plot through the origin between DcΔp/ρX versus(2Af)2can be observed which is in agreement with the general Eqs.(9)and(10).The slope of the lines corresponds to the pulsed flow pressure drop coefficient Cp.It is found that it does not depend on flow velocity and takes specific values for each particular stage configuration and extraction system.So,Cpcharacterizes the in fluence ofstage geometry.In this regard,Fig.2 exhibits the variation of Cpatdifferent h and F.

    Accordingly,a numerically obtained relation for determination of pressure drop in the L-shaped pulsed sieve-plate extraction column is derived as below:

    where K1=4.507,3.759,and 2.820 for toluene-water,butyl acetate–water and butanol–water,respectively.The Average Absolute Relative Error(AARE)is adopted to make comparison between the experimental data and the predicted results:

    The AARE values between the experimentaldata and those obtained from Eq.(29)are about 9.48%,8.47%and 10.16%for toluene–water,butyl acetate–water and butanol–water,respectively.Also,an easy access to Emat different stage configurations is possible through Eq.(29)for determination of Cpor by an expression for CpEderived by combining Eqs.(29)and(19),as follows:

    Fig.2.In fluence of interplate distance and plate free area on pressure drop coefficient.

    where K2=6.009,5.012,and 3.760 for toluene-water,butyl acetate–water and butanol–water,respectively.As it is seen,the pulsed flow pressure drop coefficient Cpde fined by Eq.(29),does not depend on Re number.From one pointof view,Cpshould depend on Re number,since itintegrates the in fluence oftwo types ofhydraulic losses:Re dependent friction losses( flow in pipe)and Re independent local resistance losses( flow through ori fices).However,a possible explanation can be found by considering separately the in fluence of hydraulic losses.Calculations of local resistance and friction losses have revealed that the pressure drop due to friction is below 2%oftotalpressure drop,i.e.the localresistance losses in the studied column strongly dominate[13].In such a case,in view of the correlation precision of about 10%,negligible impact of Re number on Cpmight be expected.Additionally,in previous studies concerning one-phase flow in perforated plate columns with immobile or oscillating plates,no in fluence of Re on pressure drop have been observed[15,22,23].

    3.2.Energy consumption in a pulsed flow

    The secondary objective of this study was to investigate the energy input consumed for a steady state operating of a horizontal pulsed perforated-plate extraction column.Regarding to de fine the dynamic conditions ofthe column,the mean pulsed velocity has been considered using the Reynolds number:

    where is the mixture kinematic viscosity.The mean energy consumption ofa pulsed two-phase flow versus various Reynolds numberis illustrated in Fig.3 forfour differentchemicalsystems.The calculated results are obtained through Eqs.(18)and(31)for the same conditions.The experimental observations reveal that when the Reynolds number is increased(higher pulsation intensity),the energy consumption is increased.It is because of the fact that when the pulsation intensity increments,the pressure drop along the column slightly increases which results in an increase in consumption of energy.Moreover,it is observed that,except for the kerosene-water system,the energy consumption decreases with an increase in the interfacialtension in different chemical systems.However,because of the significant difference between the other physical properties including density and viscosity of kerosene with other chemical liquids,different trend is observed in similar conditions for the kerosene-water system.

    Fig.3.Mean energy consumption at various Reynolds numbers.

    In order to provide a better evaluation of the energy consumption of an extraction column,the in fluence of geometrical parameters including the plate spacing and the plate free area is also investigated.In this regard,for evaluation of the plate spacing,the dimensionless interplate distance(H),which can be characterized as the ratio of the plate spacing to the column dimeter,is considered and the results for four different interplate distances(geometry ratio=H/Dc)are illustrated in Fig.4.It is observed that increasing the plate spacing leads to the reduction of energy consumption.Moreover,one can see that its influence becomes smaller at larger interplate distances and for greater values of h,the in fluence of plate spacing is not pronounced.According to the experimental results,with further increase in the geometry ratio,more than 1.5,the in fluence of increasing its value becomes insigni ficant.Thus,a value of h around 1.5 can be considered as the optimum values from the energy point of view.However,it should be noted that the geometry ratio also significantly affects the turbulence of the flow and consequently highly affects the mass transfer performance and a multi-objective optimization is required to evaluate the optimal condition of the column.

    Fig.4.In fluence ofgeometry ratio h on energy consumption fordifferentchemicalsystems at Re=1.5 and F=0.11.

    Furthermore,another affecting geometrical parameter called plate free area is also concerned.In this regard,three different internals(half-perforated plates)with 0.11,0.22,and 0.31 fractional free area are used,while the plate spacing is considered to be constant(0.06 m).The results for four different chemical systems are illustrated in Fig.5 for Re=1.5.It is observed that the plate free area(F)has a significant impact on the consumption of energy.Emdecreases with an increase in the plate free area.Moreover,the in fluence of F on energy consumption is found to be more profound at smaller values.It is because of the fact that at smaller plate free area,the resistances against the flow significantly increases which results in a remarkable increase in the pressure drop along the column.

    Fig.5.In fluence of plate free area F on energy consumption for differentchemicalsystems at Re=1.5 and h=0.83.

    3.3.The characteristic velocity concept

    The applicability of Gayler and Pratt's model[24]for an L-shaped extraction column depends on the linearity of U0plot.Fig.6 shows the flooding point data based on Eq.(13)for the chemical systems studied in this work.According to Fig.6,the slope of lines is twice the value of characteristic velocity.Moreover,the concept of U0can be de fined for the L-shaped extraction column due to the linear plots,although there is a slight deviation in some experiments.Also,it has been found that the characteristic velocity declines with increasing Af and also U0has higher value in the chemical systems with higher interfacial tension.The resulting characteristic velocity values are given in Table 3.

    In this work,Eq.(18)is also correlated to the experimental Udfobtained from the variation of pressure drop through the column length and the exponent n as well as U0are presented in Table 4 for three liquid–liquid systems.Fig.7 shows the flooding point data based on Eq.(18).It was apparent that the characteristic velocity method based on Richardson and Zaki's Eq.(19]is applicable for an L-shaped extraction column due to the linear plots through the origin point for different chemical systems.According to literature,the parameter of Richardson and Zaki model is different in various columns.Godfrey and Slater[20]revealed that n varies between 0 and 4 for rotating disc contactors,0.3 to 1.5 for packed columns.Moreover,this range is noted for perforated-plate columns from-3 to 1[25],for Graesser raining bucket contactors from-0.9 to 3.6[26]for Hanson mixer–settler extraction columns from-6 to 6[27]and for multiimpeller columns from 1 to 9[28].The values found in this research are in satisfactory agreement with Godfrey and Slater's[20]values for perforated-plate columns.

    Fig.6.Characteristic velocity plots of flood point data under different pulsation intensities based on Gayler and Pratt's model[24]for(a)toluene–water(b)butyl acetate–water and(c)butanol–water.

    Table 3 Characteristic velocities under different pulsation intensities

    Table 4 Characteristic velocities under different pulsation intensities

    Fig.7.Characteristic velocity plots of flood point data under different pulsation intensities based on Richardson and Zaki model for(a)toluene-water(b)butyl acetate-water and(c)butanol-water.

    4.Conclusions

    In this research,the feasibility of a novel L-shaped pulsed sieveplate column for solvent extraction applications is investigated.In this regard,an evaluation on the energy consumption of the column is conducted due the variation of two-phase pressure drop which is previously reported[13].The in fluences of pulsation intensity and the geometrical parameters including the plate spacing and plate free area on the energy consumed are determined.A correlation for determination of mean energy consumption in column apparatuses with perforated plates in case of pulsed flow is proposed.It is useful for design purposes,namely for determination of energy losses due to pressure drop at different geometry parameters of the column–plate free area and interpolate distance and at different pulsation parameters.The results are helpful for optimization of column geometry targeted to lower energy consumption.

    Furthermore,the concept of the characteristic velocity,which is an important parameter in design of an extractor,is investigated as well.The applicability of characteristic velocity approaches including the Gayler and Pratt's model[24]and Richardson and Zaki model[19]is evaluated and it is apparent that both methods can be used for designing the L-shaped extraction columns;however,the Richardson and Zaki model provides much more accurate results.

    Nomenclature

    A amplitude of pulsation,m

    Af pulsation intensity,m·s-1

    a specific interfacial area,m2·m-3

    C pressure drop coefficient for a permanents flow(in Eq.(1))

    Cppressure drop coefficient for a pulsed flow(in Eq.(9))

    CpEpressure drop coefficient in Eq.(18)

    Dccolumn diameter,m

    Emmean energy per unity of mass and time,pulsed flow,J·s-1·kg-1

    E(t) instantaneous energy,pulsed flow,J·s-1·kg-1

    Etenergy per unity of mass and time,permanent flow,J·s-1·kg-1

    F plate free area

    FNforce exerted Perpendicular to the cross section,N·m-2

    f frequency of pulsation,Hz

    g gravity,m·s-2

    H interplate distance,m

    h geometry ratio,=H/Dc

    Δl differential manometer height,m

    Δp pressure drop,Pa

    Re Reynolds number

    S column cross section,m2

    t time,s

    U velocity,m·s-1

    Ucsuper ficial velocity of continuous phase,m·s-1

    Udsuper ficial velocity of dispersed phase,m·s-1

    Ummean velocity,pulsed flow,m·s-1

    Uslipslip velocity,m·s-1

    U(t) instantaneous flow velocity,pulsed flow,m·s-1

    U0characteristic velocity,m·s-1

    X distance between measuring points,m

    μ viscosity,N·s·m-2

    ρ density,kg·m-3

    σ interfacial tension between two phases,N·m-1

    ? kinematic viscosity,m2·s-1

    φ holdup

    Subscripts

    c continuous phase

    d dispersed phase

    f flooding

    m mixture

    Acknowledgments

    The authors thank the reviewers for constructive and helpful comments that led to de finite improvement in the paper.The authors also thank SchoolofChemicalEngineering,College ofEngineering,University of Tehran,for the financial support.

    References

    [1]M.Asadollahzadeh,A.Ghaemi,M.Torab-Mostaedi,S.Shahhosseini,Experimental mass transfer coefficients in a pilot plant multistage column extractor,Chin.J.Chem.Eng.24(2016)989–999.

    [2]Y.Wang,K.H.Smith,K.Mumford,T.F.Grabin,Z.Li,G.W.Stevens,Prediction of dispersed phase holdup in pulsed disc and doughnut solvent extraction columns under different mass transfer conditions,Chin.J.Chem.Eng.24(2016)226–231.

    [3]R.L.Yadav,A.W.Patwardhan,Design aspects of pulsed sieve plate columns,Chem.Eng.J.138(2008)389–415.

    [4]P.Amani,M.Amani,M.Mehrali,K.Vajravelu,In fluence of quadrupole magnetic field on mass transfer in an extraction column in the presence of MnFe2O4nanoparticles,J.Mol.Liq.238(2017)145–154.

    [5]P.Amani,M.Amani,R.Hasanvandian,Investigation of hydrodynamic and mass transfer of mercaptan extraction in pulsed and non-pulsed packed columns,Korean J.Chem.Eng.34(2017)1456–1465.

    [6]P.Amani,J.Safdari,A.Gharib,H.Badakhshan,M.H.Mallah,Mass transfer studies in a horizontal pulsed sieve-plate column for uranium extraction by tri-n-octylamine using axial dispersion model,Prog.Nucl.Energy 98(2017)71–84.

    [7]F.Panahinia,J.Safdari,M.Ghannadi-Maragheh,P.Amani,M.H.Mallah,Modeling and simulation ofa horizontalpulsed sieve-plate extraction column using axialdispersion model,Sep.Sci.Technol.52(9)(2017)1537–1552.

    [8]F.Panahinia,M.Ghannadi-Maragheh,J.Safdari,P.Amani,M.-H.Mallah,Experimental investigation concerning the effect of mass transfer direction on mean drop size and holdup in a horizontalpulsed plate extraction column,RSC Adv.7(2017)8908–8921.

    [9]P.Amani,M.Amani,R.Saidur,W.-M.Yan,Hydrodynamic performance of a pulsed extraction column containing ZnO nanoparticles:Drop size and size distribution,Chem.Eng.Res.Des.121(2017)275–286.

    [10]P.Amani,M.Esmaieli,Drop behavior characteristics in different operating regimes in an L-shaped pulsed sieve-plate column,Can.J.Chem.Eng.(2017)https://doi.org/10.1002/cjce.22911,http://onlinelibrary.wiley.com/adranced/search/results.

    [11]C.Hanson,Recent Advances in Liquid–Liquid Extraction,Elsevier,1971.

    [12]S.Akhgar,J.Safdari,J.Tow fighi,P.Amani,M.H.Mallah,Experimental investigation on regime transition and characteristic velocity in a horizontal–vertical pulsed sieve-plate column,RSC Adv.7(2017)2288–2300.

    [13]P.Amani,J.Safdari,H.Abolghasemi,M.H.Mallah,A.Davari,Two-phase pressure drop and flooding characteristics in a horizontal–vertical pulsed sieve-plate column,Int.J.Heat Fluid Flow 65(2017)266–276.

    [14]T.Mí?ek,R.Berger,J.Schr?ter,Standard test systems for liquid extraction studies,EFCE Publ.Ser.46(1985)1.

    [15]J.D.Thornton,Liquid-liquid extraction.Part XIII:The effect of pulse wave-form and plate geometry on the performance and throughput of a pulsed column,Trans.Inst.Chem.Eng.36(1957)316–330.

    [16]M.S.Aoun,Numerical simulation of hydrodynamics and axial mixing in pulsed extraction columns with discs and doughnuts,PhD Thesis.INP-Toulouse,France,1995.

    [17]J.F.Milot,J.Duhamet,C.Gourdon,G.Casamatta,Simulation of a pneumatically pulsed liquid–liquid extraction column,Chem.Eng.J.45(1990)111–122.

    [18]J.Thornton,H.Pratt,Liquid–liquid extraction:Part VII, flooding rates and mass transfer data rotary annular columns,Trans.Inst.Chem.Eng.31(1953)4.

    [19]J.Richardson,W.Zaki,Fluidization and sedimentation—Part I,Trans.Inst.Chem.Eng.32(1954)38–58.

    [20]J.Godfrey,M.Slater,Slip velocity relationships for liquid–liquid extraction columns,Chem.Eng.Res.Des.69(1991)130–141.

    [21]F.R.Dell,H.R.C.Pratt,A note on the correlation of flooding rates for packed gasliquid columns,J.Appl.Chem.2(2007)429–435.

    [22]T.Miyauchi,H.Oya,Longitudinal dispersion in pulsed perforated-plate columns,AIChE J.11(1965)395–402.

    [23]M.M.Hafez,J.Procházka,The dynamic effects in vibrating-plate and pulsed extractors-I.Theory and experimental technique,Chem.Eng.Sci.29(1974)1745–1753.

    [24]R.Gayler,H.Pratt,Holdup and pressure drop in packed columns,Trans.Inst.Chem.Eng.29(1951)110–125.

    [25]A.Hamidi,M.Van Berlo,K.C.A.M.Luyben,L.A.M.Van Der Wielen,Flooding characteristics of aqueous two-phase systems in a countercurrent sieve-plate column,J.Chem.Technol.Biotechnol.74(1999)244–249.

    [26]A.D.Giraldo-Zuniga,J.S.R.Coimbra,L.A.Minim,E.E.G.Rojas,Dispersed phase holdup in a Graesser raining bucket contactor using aqueous two-phase systems,J.Food Eng.72(2006)302–309.

    [27]M.Napeida,A.H.Asl,Chemical engineering research and design holdup and characteristic velocity in a Hanson mixer–settler extraction column,Chem.Eng.Res.Des.8(2010)703–711.

    [28]M.Asadollahzadeh,M.Torab-Mostaedi,S.Shahhosseini,A.Ghaemi,Holdup,characteristic velocity and slip velocity between two phases in a multi-impeller column for high/medium/low interfacial tension systems,Chem.Eng.Process.Process Intensif.100(2016)65–78.

    ponron亚洲| 午夜成年电影在线免费观看| 国产精品九九99| 99国产综合亚洲精品| 午夜福利一区二区在线看| 欧美日本亚洲视频在线播放| 久久午夜综合久久蜜桃| 国产精品 欧美亚洲| 日本撒尿小便嘘嘘汇集6| 午夜精品在线福利| 18禁黄网站禁片午夜丰满| 国产熟女午夜一区二区三区| 少妇的丰满在线观看| 久久人妻av系列| 欧美乱色亚洲激情| 黄色 视频免费看| 久久精品夜夜夜夜夜久久蜜豆 | 精品国产乱子伦一区二区三区| 九色国产91popny在线| 亚洲av成人一区二区三| 亚洲最大成人中文| 成人特级黄色片久久久久久久| 老熟妇仑乱视频hdxx| 亚洲精品久久成人aⅴ小说| 欧美成人一区二区免费高清观看 | 欧美乱妇无乱码| 视频在线观看一区二区三区| 首页视频小说图片口味搜索| 欧美久久黑人一区二区| 亚洲 欧美一区二区三区| 亚洲人成网站高清观看| 韩国av一区二区三区四区| 日韩精品中文字幕看吧| 国产精品久久电影中文字幕| 人成视频在线观看免费观看| 97人妻精品一区二区三区麻豆 | 国内少妇人妻偷人精品xxx网站 | 国产一区二区在线av高清观看| 亚洲成人久久性| 一级毛片精品| 免费在线观看亚洲国产| 天天添夜夜摸| 2021天堂中文幕一二区在线观 | 亚洲国产欧洲综合997久久, | 久久精品成人免费网站| 黄色女人牲交| 亚洲熟女毛片儿| 久久人妻av系列| 可以在线观看的亚洲视频| 久久久久久久午夜电影| 神马国产精品三级电影在线观看 | 啦啦啦韩国在线观看视频| 嫁个100分男人电影在线观看| 香蕉av资源在线| 97碰自拍视频| 99国产精品一区二区三区| 亚洲国产中文字幕在线视频| 日韩av在线大香蕉| 久久精品国产清高在天天线| 侵犯人妻中文字幕一二三四区| 九色国产91popny在线| 别揉我奶头~嗯~啊~动态视频| 日本精品一区二区三区蜜桃| 999精品在线视频| 亚洲中文日韩欧美视频| 久久久久久亚洲精品国产蜜桃av| 国产精品av久久久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久国产精品人妻aⅴ院| www.熟女人妻精品国产| 精品久久久久久久末码| 中文字幕人妻丝袜一区二区| 每晚都被弄得嗷嗷叫到高潮| 成人精品一区二区免费| 国产精品亚洲av一区麻豆| 国产高清有码在线观看视频 | 老司机深夜福利视频在线观看| 午夜福利成人在线免费观看| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久久人妻精品电影| av在线播放免费不卡| 中文亚洲av片在线观看爽| 一级毛片精品| 色综合欧美亚洲国产小说| 十八禁人妻一区二区| 哪里可以看免费的av片| 婷婷精品国产亚洲av在线| 欧美精品啪啪一区二区三区| www.精华液| 久9热在线精品视频| 黄色视频,在线免费观看| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 久久伊人香网站| 午夜日韩欧美国产| 午夜福利成人在线免费观看| videosex国产| 亚洲国产精品999在线| 女同久久另类99精品国产91| 日韩大尺度精品在线看网址| 精品熟女少妇八av免费久了| 日本 欧美在线| av天堂在线播放| 老司机在亚洲福利影院| 亚洲在线自拍视频| 久久精品国产99精品国产亚洲性色| 成在线人永久免费视频| 啦啦啦免费观看视频1| 午夜免费成人在线视频| 久久精品91蜜桃| 美女国产高潮福利片在线看| 一级毛片高清免费大全| 国产又黄又爽又无遮挡在线| 老司机福利观看| 99热6这里只有精品| 一本一本综合久久| 中国美女看黄片| 日本免费a在线| 天堂√8在线中文| 在线观看一区二区三区| 国产野战对白在线观看| 悠悠久久av| 国产亚洲精品久久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 波多野结衣巨乳人妻| 亚洲国产精品久久男人天堂| 成年女人毛片免费观看观看9| 一进一出抽搐动态| 久久性视频一级片| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品电影 | 热99re8久久精品国产| 91国产中文字幕| 日韩大码丰满熟妇| a在线观看视频网站| 少妇粗大呻吟视频| 精品无人区乱码1区二区| 久久天躁狠狠躁夜夜2o2o| 久久久久久久精品吃奶| 午夜亚洲福利在线播放| 久久久久久大精品| 国产成年人精品一区二区| 少妇被粗大的猛进出69影院| 啦啦啦免费观看视频1| 日韩成人在线观看一区二区三区| 中文字幕人成人乱码亚洲影| 久久天堂一区二区三区四区| 午夜福利在线在线| 亚洲国产高清在线一区二区三 | 国语自产精品视频在线第100页| 欧美性长视频在线观看| 色综合婷婷激情| 男人舔女人下体高潮全视频| 欧美国产日韩亚洲一区| 亚洲成a人片在线一区二区| 国产国语露脸激情在线看| 久久午夜亚洲精品久久| 日韩高清综合在线| 日本 欧美在线| 国产一区二区三区在线臀色熟女| 99在线人妻在线中文字幕| 亚洲成av片中文字幕在线观看| 黄色女人牲交| 他把我摸到了高潮在线观看| 亚洲性夜色夜夜综合| 99国产综合亚洲精品| 欧美乱妇无乱码| 国产久久久一区二区三区| 岛国在线观看网站| 午夜福利18| 国产精品香港三级国产av潘金莲| 嫩草影院精品99| 麻豆成人午夜福利视频| 亚洲免费av在线视频| 久久国产精品人妻蜜桃| 亚洲色图av天堂| 亚洲 国产 在线| 男女床上黄色一级片免费看| 精品久久久久久久毛片微露脸| 久久中文看片网| 一进一出好大好爽视频| 免费av毛片视频| 欧美午夜高清在线| 精品乱码久久久久久99久播| 国产私拍福利视频在线观看| 欧美午夜高清在线| 岛国视频午夜一区免费看| 免费在线观看完整版高清| 搡老岳熟女国产| 中文字幕人成人乱码亚洲影| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产| 在线观看一区二区三区| 婷婷六月久久综合丁香| 国产私拍福利视频在线观看| 他把我摸到了高潮在线观看| 亚洲av成人不卡在线观看播放网| 国产男靠女视频免费网站| 久久国产乱子伦精品免费另类| 国产又爽黄色视频| 男女做爰动态图高潮gif福利片| 1024香蕉在线观看| 十八禁网站免费在线| 午夜免费激情av| 高清毛片免费观看视频网站| 久久九九热精品免费| a在线观看视频网站| 国产欧美日韩一区二区精品| bbb黄色大片| 在线av久久热| 亚洲国产中文字幕在线视频| 国产aⅴ精品一区二区三区波| 看免费av毛片| 亚洲中文日韩欧美视频| 无限看片的www在线观看| 757午夜福利合集在线观看| 欧美精品亚洲一区二区| 在线观看www视频免费| 亚洲国产欧美日韩在线播放| 男人舔女人的私密视频| av天堂在线播放| 男人舔女人下体高潮全视频| 亚洲,欧美精品.| 变态另类丝袜制服| 丝袜美腿诱惑在线| 免费搜索国产男女视频| 午夜福利视频1000在线观看| 在线观看日韩欧美| 99久久精品国产亚洲精品| 欧美一级毛片孕妇| 亚洲第一电影网av| 天天一区二区日本电影三级| 999久久久精品免费观看国产| 久久久久久九九精品二区国产 | 成年版毛片免费区| 国产99白浆流出| av中文乱码字幕在线| 欧美在线黄色| 国产成年人精品一区二区| 精品久久久久久久毛片微露脸| cao死你这个sao货| 午夜精品在线福利| 97超级碰碰碰精品色视频在线观看| 欧美另类亚洲清纯唯美| 伦理电影免费视频| 精品国内亚洲2022精品成人| 无限看片的www在线观看| 黑人巨大精品欧美一区二区mp4| 日本免费一区二区三区高清不卡| 一级a爱片免费观看的视频| 国产精品免费一区二区三区在线| 一二三四社区在线视频社区8| 亚洲av日韩精品久久久久久密| 男女之事视频高清在线观看| 嫁个100分男人电影在线观看| 老司机午夜十八禁免费视频| 亚洲国产精品久久男人天堂| 窝窝影院91人妻| 女性被躁到高潮视频| 老汉色∧v一级毛片| 男女床上黄色一级片免费看| 51午夜福利影视在线观看| 美女高潮到喷水免费观看| 亚洲性夜色夜夜综合| 一个人观看的视频www高清免费观看 | 好男人电影高清在线观看| 18禁观看日本| 欧美三级亚洲精品| 国产精品综合久久久久久久免费| 国产亚洲av高清不卡| 日本免费一区二区三区高清不卡| 中文字幕人成人乱码亚洲影| 久久精品影院6| 99国产精品一区二区蜜桃av| 国产熟女午夜一区二区三区| 老司机福利观看| 丁香六月欧美| 国产精品99久久99久久久不卡| 成人av一区二区三区在线看| 国产精品久久久av美女十八| 十八禁网站免费在线| 两个人视频免费观看高清| 99riav亚洲国产免费| 国产97色在线日韩免费| 天堂影院成人在线观看| 色播在线永久视频| 国产亚洲精品久久久久久毛片| 午夜影院日韩av| 亚洲国产欧洲综合997久久, | 国产亚洲精品av在线| 日本成人三级电影网站| 午夜影院日韩av| 十八禁网站免费在线| 日韩av在线大香蕉| 国产成人一区二区三区免费视频网站| 美女扒开内裤让男人捅视频| 99精品在免费线老司机午夜| 日韩精品中文字幕看吧| 欧美+亚洲+日韩+国产| 日韩欧美一区视频在线观看| 90打野战视频偷拍视频| 久久亚洲真实| 精品无人区乱码1区二区| 最近最新中文字幕大全电影3 | 亚洲 国产 在线| 亚洲成人国产一区在线观看| 久久精品国产亚洲av高清一级| 国产极品粉嫩免费观看在线| 国产精品 欧美亚洲| 国产熟女xx| 身体一侧抽搐| 色综合亚洲欧美另类图片| 中文字幕另类日韩欧美亚洲嫩草| 91国产中文字幕| 美女扒开内裤让男人捅视频| 国产亚洲精品综合一区在线观看 | 又紧又爽又黄一区二区| 亚洲成人精品中文字幕电影| 国产黄a三级三级三级人| 日韩高清综合在线| 成熟少妇高潮喷水视频| 搡老熟女国产l中国老女人| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 久久 成人 亚洲| 亚洲美女黄片视频| 两个人视频免费观看高清| 午夜激情福利司机影院| 91老司机精品| 波多野结衣高清无吗| 色综合站精品国产| 久久九九热精品免费| 国产精品 欧美亚洲| 国产成+人综合+亚洲专区| 嫩草影视91久久| АⅤ资源中文在线天堂| 高清毛片免费观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 好看av亚洲va欧美ⅴa在| 天天躁夜夜躁狠狠躁躁| 天堂动漫精品| 桃红色精品国产亚洲av| 国产久久久一区二区三区| 日韩国内少妇激情av| 国产男靠女视频免费网站| 女性生殖器流出的白浆| 国产熟女午夜一区二区三区| 久久国产精品人妻蜜桃| 国产精品免费视频内射| 在线观看一区二区三区| 男女之事视频高清在线观看| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 成人av一区二区三区在线看| cao死你这个sao货| 观看免费一级毛片| 久久精品91蜜桃| 一区二区三区高清视频在线| 国产主播在线观看一区二区| 欧美激情高清一区二区三区| 三级毛片av免费| 国产av一区在线观看免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人av教育| 啦啦啦韩国在线观看视频| 999精品在线视频| 99热只有精品国产| a在线观看视频网站| 国产人伦9x9x在线观看| 少妇熟女aⅴ在线视频| 中文亚洲av片在线观看爽| 国产一区在线观看成人免费| 18禁美女被吸乳视频| 窝窝影院91人妻| 韩国精品一区二区三区| 欧美激情极品国产一区二区三区| 99在线视频只有这里精品首页| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 天堂动漫精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频| 亚洲电影在线观看av| 精华霜和精华液先用哪个| 欧美午夜高清在线| 69av精品久久久久久| 亚洲精品久久国产高清桃花| 精品久久久久久久久久久久久 | 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 久久久久国产一级毛片高清牌| 亚洲自偷自拍图片 自拍| 啦啦啦免费观看视频1| 欧美在线一区亚洲| 国产久久久一区二区三区| 黄色成人免费大全| 色综合亚洲欧美另类图片| 高清毛片免费观看视频网站| 久久热在线av| 亚洲欧美日韩无卡精品| 午夜精品在线福利| 激情在线观看视频在线高清| 黄色女人牲交| 禁无遮挡网站| xxx96com| 欧美一区二区精品小视频在线| 视频区欧美日本亚洲| aaaaa片日本免费| 欧美绝顶高潮抽搐喷水| av在线播放免费不卡| 久久亚洲真实| 91大片在线观看| 久久婷婷成人综合色麻豆| 亚洲中文av在线| 夜夜夜夜夜久久久久| 老司机深夜福利视频在线观看| 国产又色又爽无遮挡免费看| 久久精品成人免费网站| 精品一区二区三区av网在线观看| 国产精品综合久久久久久久免费| 90打野战视频偷拍视频| 在线av久久热| 午夜激情av网站| 亚洲av美国av| 一进一出抽搐gif免费好疼| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区 | 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 性欧美人与动物交配| 成年版毛片免费区| 99热只有精品国产| 国产麻豆成人av免费视频| 免费在线观看视频国产中文字幕亚洲| 国内揄拍国产精品人妻在线 | 久久伊人香网站| 国产一级毛片七仙女欲春2 | 精品第一国产精品| 91字幕亚洲| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站 | 俄罗斯特黄特色一大片| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女| 99精品欧美一区二区三区四区| 中文字幕人妻熟女乱码| 曰老女人黄片| 99在线人妻在线中文字幕| 国产国语露脸激情在线看| 手机成人av网站| 久久久水蜜桃国产精品网| 国产97色在线日韩免费| 黄色成人免费大全| 国产午夜精品久久久久久| 亚洲第一欧美日韩一区二区三区| 又紧又爽又黄一区二区| 亚洲精品国产精品久久久不卡| 国产单亲对白刺激| 中文亚洲av片在线观看爽| 久久久国产精品麻豆| 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 极品教师在线免费播放| 成人18禁在线播放| 久久久久久九九精品二区国产 | 黑丝袜美女国产一区| 日本三级黄在线观看| 国产99白浆流出| 免费观看人在逋| 久久热在线av| 亚洲美女黄片视频| 嫁个100分男人电影在线观看| 午夜日韩欧美国产| 久久精品国产亚洲av香蕉五月| 亚洲人成电影免费在线| 757午夜福利合集在线观看| 亚洲成av片中文字幕在线观看| 最新在线观看一区二区三区| 久热爱精品视频在线9| videosex国产| svipshipincom国产片| 好男人电影高清在线观看| 夜夜爽天天搞| 热re99久久国产66热| 男女做爰动态图高潮gif福利片| 一进一出抽搐动态| av免费在线观看网站| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 午夜视频精品福利| 日韩av在线大香蕉| 亚洲av中文字字幕乱码综合 | 性欧美人与动物交配| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 欧美一级a爱片免费观看看 | 国产野战对白在线观看| 久久性视频一级片| 超碰成人久久| 女生性感内裤真人,穿戴方法视频| 99热这里只有精品一区 | 国产精品九九99| 日本在线视频免费播放| 精品人妻1区二区| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 国产精品 欧美亚洲| 国产精品影院久久| 久久香蕉激情| 丝袜在线中文字幕| 99在线视频只有这里精品首页| 黑人巨大精品欧美一区二区mp4| 母亲3免费完整高清在线观看| 欧美激情久久久久久爽电影| 国产黄色小视频在线观看| 免费一级毛片在线播放高清视频| 久久婷婷人人爽人人干人人爱| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 欧美zozozo另类| 韩国av一区二区三区四区| 久久中文字幕人妻熟女| 国产精品野战在线观看| 90打野战视频偷拍视频| 一区二区三区国产精品乱码| 美女高潮到喷水免费观看| 国产激情偷乱视频一区二区| a级毛片a级免费在线| 淫妇啪啪啪对白视频| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 18禁观看日本| 成人手机av| 在线观看66精品国产| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 亚洲精品色激情综合| 久久伊人香网站| 国产又爽黄色视频| 在线看三级毛片| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片 | 自线自在国产av| 久久午夜亚洲精品久久| 麻豆成人av在线观看| 亚洲一码二码三码区别大吗| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 最新美女视频免费是黄的| 国产主播在线观看一区二区| 免费看日本二区| 国产亚洲精品第一综合不卡| 国产国语露脸激情在线看| 亚洲一区二区三区色噜噜| 又大又爽又粗| 国产精品99久久99久久久不卡| 亚洲精品中文字幕一二三四区| 黑人操中国人逼视频| 美女高潮到喷水免费观看| 夜夜躁狠狠躁天天躁| 国内少妇人妻偷人精品xxx网站 | 亚洲专区国产一区二区| av视频在线观看入口| 免费在线观看视频国产中文字幕亚洲| 淫秽高清视频在线观看| 一级毛片精品| 变态另类丝袜制服| 久久久久久久久免费视频了| 男女做爰动态图高潮gif福利片| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 日韩欧美国产一区二区入口| 可以在线观看的亚洲视频| 午夜视频精品福利| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 国产av又大| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 久久精品91蜜桃| 久久久国产成人免费| www.自偷自拍.com| 可以免费在线观看a视频的电影网站| 日韩 欧美 亚洲 中文字幕| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 日本一本二区三区精品| 久久中文看片网| 久久久久久久久免费视频了| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看| 99热只有精品国产| 精品久久久久久久久久免费视频| 免费在线观看完整版高清| 两个人看的免费小视频| 日本精品一区二区三区蜜桃| 午夜免费鲁丝| 变态另类丝袜制服| 一级毛片高清免费大全| or卡值多少钱| 一本大道久久a久久精品| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 白带黄色成豆腐渣| 视频在线观看一区二区三区| 久久香蕉精品热| tocl精华| 91字幕亚洲|