• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Equilibrium of liquid-liquid extraction of 2-phenylbutyric acid enantiomers:Experiment and model☆

    2018-05-25 11:26:12WeifengXuGuilinDaiKewenTangPanliangZhangBiquanXiongYuLiu

    Weifeng Xu,Guilin Dai,Kewen Tang*,Panliang Zhang*,Biquan Xiong,Yu Liu

    Department of Chemistry and Chemical Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China

    1.Introduction

    Chirality,as an intrinsic property of the “building blocks of life”,exists extensively within nature[1,2].On an account of their sensitivity to stereochemistry,the enantiomers usually show large differences in bioactivity.Therefore,chirality is continuously an attractive issue for its essential role in chemical industry and pharmaceutical industry.

    On account of the dramatic raise in applications of singleenantiomer of drugs in the past ten years,the development of new chiralseparation technologies keeps an active role in the areas offragrance,pharmaceutical,and field of special chemicals.Traditional methods of chiral separation include crystallization[3],chromatography[4],liquid membrane[5],and so forth.Given that there are certain advantages in some aspects such as efficiency,practicality,economy,etc.,these methods are increasingly more attractive;however,there still exists some shortcomings.When compared with aforementioned methods,liquid–liquid reactive extraction has been regarded as a promising method for enantiomers separation on account of higher feasibility economically and being easier to scale up with a wide range of applications.By the method of chiral solvent extraction,numerous investigations for the separation of optically active compound have been reported recently[6–27].There are abundant literatures available for enantioselective extraction;however,to our knowledge,only a few researches involve exploration both fundamentally and thoroughly about the reaction process and mechanism through a hybrid process of experimental research and mathematical modeling,which can be helpful for realizing the prediction and optimization of the extraction performance[10,11,13].

    In chiral extraction process,a selective extraction agent(selector)in the extract phase is needed,which reacts with the solutes of enantiomers.Enantioselectivity(α)is the key argument for chiral extraction.For example[19],foran enantioselectivity of1.05,190 theoreticalstages are required to obtain a 99%pure product(R/S=100),whileαincreases to a value of 1.20,the number of stages will be reduced to 30.Chiral selectors may be obtained from natural sources or from the synthetic building blocks.The common chiralselectors include tartaric acid derivatives[6,7,27],chiral crown ethers[8,9],cinchona alkaloids[11,14,15],copper–amino acid complexes[20,21],chiral micelles[22,23],and cyclodextrins(CDs)or their derivatives[7,24–26].Among these chiral selectors,β-CD has the advantage that its cavity will be suitable to include a wide range of chemical compounds especially for that of pharmaceutical interest.In the process of inclusion–complexation,the analytes should fit either completely or with their hydrophobic part into the β-CD cavity[28],entering through one of the two openings,primary and secondary with 6-hydroxyl and 2-,3-hydroxyl groups,respectively[29].

    The hydroxyl groups exist in the rim of the CDs can be easily modi fied by chemical reactions in order to obtain CD derivatives which are obtained by varying degree of substitution.The modi fied CDs can exhibit different properties than the native ones,which have a very wide range of applications for following advantages.On the one hand,the CDs can be applied to separate varieties of racemic enantiomers,and they can show a high selectivity of the enantiomers separation[26,30].On the other hand,the modi fied CDs can dissolve easily in water,which can increase the solubility of enantiomers in water.The increased solubility of enantiomers can improve the output of enantiomer production in industrial production.Additionally,the CDs are obtained from glucose,which are low-cost and environmental protective.

    2-Phenylbutyric acid(2-PBA)is a hydroxy acid,which is important for pharmaceutical process.To our best knowledge,studying for enantiomer separation of2-PBAis little and only capillary electrophoresis has been employed to the resolution ofit;while capillary electrophoresis method is mainly used for analysis.In this paper,enantioselective liquid–liquid extraction is introduced to separate 2-PBA enantiomers,due to its easy scaling up.Additionally,a mathematical model for the reactive extraction of racemic 2-PBA is established to realize the prediction and optimization of the extraction process.Hydrophilic β-cyclodextrin(β-CD)derivatives were used as the chiral selector.Important extraction factors are investigated by experiment and modeling,such as types of organic solvents,β-CD derivatives,pH,concentration of cyclodextrin and temperature.

    2.Experimental

    2.1.Materials

    The grades and suppliers of reagents are listed in Table 1.

    Table 1 Specifications for chemicals used

    2.2.Analytical method

    The determination of 2-PBA enantiomers concentrations in extraction phase was analyzed by HPLC(Agilent Technologies Corporation,Series 1260,USA).The quantitative analysis was performed by UV–Vis adsorption detector at the wavelength of 225 nm.An Inertsil ODS-3 C18column(250 mm formed by UV–Vis μm)was employed and the column temperature was maintained at 30.0°C.The mobile phase consisted of methanol and 0.025 mol·L-1HP-β-CD aqueous solution(pH=4.00,adjusted with triethylamine and glacial acetic acid),in which the volume ratio was 36:64.Other condition was flow rate of 1.0 ml·min-1.The retention time of(+)-2-PBA was less than that of(-)-2-PBA.This analytical method was adjusted according to the method of 2-phenylpropionic acid[31].

    2.3.Extraction experiments

    The aqueous phase containing 0.1 mol·L-1(HP-,HE-,CM-,or SBE-)β-CD was dissolved in 0.1 mol·L-1NaH2PO4/H3PO4buffer solution and the organic phase was obtained by dissolving 0.01 mol·L-1racemic 2-PBAin organic solvent.Each 3 mlofthe two phases were puttogether into a 10-mlplastic centrifuge tube and shaken suf ficiently(12 h)being kept in a water bath at a fixed temperature to reach equilibrium.Deposited after 2 h,the two phases would be separated.The HPLC was used to analyze the concentration of 2-PBA in the aqueous phase.Based on a mass balance,the concentration of(+)-and(-)-2-PBA in organic phase was determined.

    2.4.Mechanism and model

    2.4.1.Mechanism of reaction extraction

    The extraction mechanism is the basis of understanding the separation process and building the mathematical model.As we all know,reactions may take place either in the aqueous phase,the organic phase,or at the interface for the reactive extraction system[30].In this extraction system,β-CDs are insoluble in organic liquids due to their super hydrophilia;thus,the reactions may only occur either in the aqueous phase or at the interface.Additionally,the solutes of 2-PBA enantiomers can partly be dissolved in both the two phases.Therefore,a homogeneous reaction mechanism is assumed to research the present extraction system.

    Fig.1.Diagram ofthe mechanism ofreactive extractive of2-PBAenantiomers by HE-β-CD.(A i=(+)-2-PBA or(-)-2-PBA,CD=HE-β-CD.)

    Fig.1 shows the equilibrium of the reactive extraction system.Equilibrium of the system includes the physical partition of molecular and ionic 2-PBA between the two phases,the inclusion–complexation equilibrium between HE-β-CD and 2-PBA enantiomers and the acid–base dissociation equilibrium of 2-PBA.

    The extraction efficiency can be evaluated by distribution ratio(k)and enantioselectivity(α),which are de fined by the following Eqs.(1)to(3):

    where(CA+)o/(CA-)oand(CA+)w/(CA-)wrepresent the analytical concentrations of(+)-2-PBA/(-)-2-PBA in organic phase and aqueous phase,respectively.

    2.4.2.Basic equations

    The thermodynamic equilibrium of this extraction system can be modeled on the basis of the following equations.Eqs.(4)and(5)are the physical partition coefficients of molecular and ionic 2-PBA respectively,where,[]represents the equilibrium concentration of the corresponding species;the subscript of w and o represent the concentrations in aqueous and organic phases,respectively[30].

    The dissociation constant of 2-PBA is described as the following Eq.(6)and the value of Kais 4.34 which is obtained by Science if nder.

    The inclusion–complexation equilibrium constants of HE-β-CD with 2-PBA enantiomers in aqueous phase can be written as follows:

    The reactive extraction system is optimized aiming at enhancing the enantiomeric excess(ee),the fractions of solutes(φ)and performance factor(pf).The de finition of ee,φ,and pf are shown in Eqs.(9)–(11)[30].

    where[Ai]wrepresents the total concentration of the solute i in aqueous phase at equilibrium,and[Ai]represents the initial total concentrations of the solute i.

    3.Results and Discussion

    According to the results of experiment and the method of acquiring the physical partition coefficients and chemical equilibrium constant[30],the values of P0and Pi,K+and K-are obtained experimentally and displayed in Table 2.Employing these parameters,the model could be employed to simulate the separation process.

    Table 2 The values of physical partition coefficients(P0,P i)and chemical equilibrium constant(K+,K-)

    3.1.Organic solvents effect

    Investigation of the partition behavior of(+)-and(-)-2-PBA is performed in various organic/aqueous-phase systems(Table 3).As Table 3 shows,distribution ratio and enantioselectivity are affected obviously by the type of the organic solvent.Comparingwith other organic solvent,when 1,2-dichloroethane is used,the distribution ratios are suitable,and more importantly,the highest enantioselectivity of 2.096 is achieved.Therefore,1,2-dichloroethane is the optimal choice.

    Table 3 In flence of organic solvent type(Aqueous phase:[HE-β-CD]=0.1 mol·L-1,pH=3.00.Organic phase:[2-PBA]=0.01 mol·L-1;T=5.0 °C.)

    3.2.In fluence of β-CD derivatives

    Investigation of the in fluence of β-CD derivatives on the distribution ratio and enantioselectivity for2-PBAenantiomers is carried outand the corresponding results are depicted in Table 4.

    Table 4 In fluence of hydrophilic extractant type(Aqueous phase:pH=3.00.Organic phase:1,2-dichloroethane[2-PBA]=0.01 mol·L-1;T=5.0°C.)

    As Table 4 shows,the in fluence of β-CD derivatives on the distribution ratios and enantioselectivity is apparent.Comparing with other β-CD derivative,when HE-β-CD is used as the selector,the distribution ratios are suitable,and more importantly,the highest enantioselectivity of 2.096 is achieved.Therefore,HE-β-CD is selected as the best extractant.

    3.3.In fluence of pH value

    The state of 2-PBA in aqueous phase varies with the pH value of aqueous phase.According to the mechanism hypothesis,HE-β-CD can form a complex with molecular 2-PBA enantiomers but not with ionic 2-PBA enantiomers.Therefore,the partition behavior of 2-PBA enantiomers may be affected by the pH value of aqueous phase in a liquid–liquid reactive extraction system.Fig.2 shows the results of in fluence of pH values on the separation efficiency.The dots represent the experimental data and the lines represent the model simulation.As shown in Fig.2,the simulated results are consistent with the experimental results.The mean relative errors are 2.27%for k+,2.13%for k-,and 1.86%for α.

    As shown in Fig.2(A),k+and k-values are nearly not changed at pH≤4.00 and then increase rapidly with the further increase of pH value.The enantioselectivity shows a converse tendency(Fig.2(B)).This may be because of the fact that at low pH value(pH≤4.00),most of the 2-PBA are in their molecular form and HE-β-CD can selectively form inclusion complex with molecular 2-PBA.With the pH rising up,the molecular 2-PBA enantiomers start to be ionized and the nonselective partition behavior of these anions makes distribution ratios increased considerably and enantioselectivity decreased rapidly.Therefore,a low pH value(≤3.00)is needed for the extraction process.

    Fig.2.In fluence of pH on k(A)and α (B).([2-PBA]=0.01 mol·L-1,[HE-β-CD]=0.1 mol·L-1,T=5.0 °C.)

    3.4.HE-β-CD concentration in fluence

    The effect of the concentration of HE-β-CD on separation of 2-PBA enantiomers is researched with the concentration of HE-β-CD varying from 0 to 0.2 mol·L-1.A comparison between the experimental values and the model predictions on distribution ratio and enantioselectivity is also studied.Results show that the model predictions are consistent well with the experimental values as shown in Fig.3,and as shown by mean relative errors of 11.66%for k+,14.02%for k-,and 2.66%for α.

    Italso can be seen from Fig.3(A)that k+and k-are oflinear proportion to the concentration of HE-β-CD.Fig.3(B)reveals that the operational enantioselectivity increases rapidly when the concentration of HE-β-CD is under 0.1 mol·L-1and then keeps nearly unchanged.Since HE-β-CD can include 2-PBA enantiomers to form complexes,the increase of the quantity of HE-β-CD promotes the generation of the inclusion complexes,which results in the increase of distribution ratio.Meanwhile the recognition ability of HE-β-CD toward 2-PBA enantiomers could be enhanced with a relatively higher concentration.Therefore,the increase of HE-β-CD concentration can make the enantioselectivity for 2-PBA enantiomers increase.

    Fig.3.In fluence of HE-β-CD concentration on k(A)and α (B).([2-PBA]=0.01 mol·L-1,pH=3.00,T=5.0°C.)

    3.5.In fluence of temperature

    The effect of temperature on separation of 2-PBA enantiomers is investigated with a range of temperature from 5.0 °C to 35.0 °C.Fig.4 shows that the partition behavior is affected strongly by temperature.Both distribution ratios and enantioselectivity decrease with the temperature.The possible reason for this phenomenon is that the increase of temperature makes the host-guest interaction between HE-β-CD and 2-PBA enantiomers gradually weakened and the recognition ability of HE-β-CD is consequently reduced.In addition,the results are consistent with the van't Hoff model,indicating that the conformation and enantioselective interactions keep unchanged in the studied temperature range[32].

    3.6.Model predictions

    According to the above results,the modelestablished can predictthe separation efficiency of 2-PBA accurately.Therefore,the model can be employed to study how multifactor technical conditions affect the extraction efficiency in a single stage.

    Fig.4.Plots ofln k+,ln k-(A)and lnα (B)versus 1/T.([2-PBA]=0.01 mol·L-1,[HE-β-CD]=0.1 mol·L-1,pH=3.00.)

    Fig.5 depicts the tendency of the distribution ratios and enantioselctivity for 2-PBA enantiomers where they act as a function of pH and HE-β-CD concentration.As shown in Fig.5(A)and(B),a similar tendency could be observed in k+and k-when the pH value and HE-β-CD concentration are changed.The distribution ratios increase with the increase of pH and HE-β-CD concentration.What's more,a region with a high enantioselctivity will be obtained in which pH value is low and HE-β-CD concentration is high.

    Fig.6 describes the variation of the enantiomeric excess(ee)in aqueous phase for 2-PBA enantiomers where it acts as a function of pH and HE-β-CD concentration.The decrease of the pH value always makes the ee value increased.However,the variation of ee with HE-β-CD concentration was not a simplex.With the augment of the HE-β-CD concentration,the ee value has a general uptrend firstly,and then begins to decrease after reaching the maximum.This phenomenon indicates that increasing the HE-β-CD concentration could bring out a surge in enantioselectivity but not always in enantiomeric excess.Thus,the pH value should be kept low and the HE-β-CD concentration should remain a suitable level to obtain relatively high ee.

    It is difficult to apply Figs.5(C)and 6 to determine the optimized technical conditions for the resolution of 2-PBA enantiomers on account of the opposite tendency of the enantiomeric excess and enantioselectivity.Therefore,the performance factor(pfi)is recommended in this paper to further optimize this reactive extraction system,which is de fined as the Eq.(11).A high performance factor presents a higher purity and higher yield of the given enantiomer.

    Fig.5.Calculated k+(A),k-(B),and α(C)for 2-PBA enantiomers as a function of pH and HE-β-CD concentration.

    The effects of pH and HE-β-CD concentration on the performance factor are simulated and the results are revealed in Fig.7.The simulated results show thatpHand HE-β-CDconcentration affectthe performance factor obviously.As shown in Fig.7(A),pfichanges slowly when pH value is under 4.00,and then decreases rapidly with the pH value increased.In Fig.7(B),the rising of HE-β-CD concentration makes the pfiincreased firstly,and then decreased gradually.Thus,the lower pH and suitable HE-β-CD concentration should be kept aiming at large pfi.According to the simulation and optimization,the ideal experimental conditions are as follows:pH of 3.00,HE-β-CD concentration of 0.1 mol·L-1and temperature of 5.0 °C.

    Fig.6.Calculated ee w as a function of pH and HE-β-CD concentration.

    Fig.7.Calculated pf as a function of pH(A)and HE-β-CD concentration(B).([2-PBA]=0.01 mol·L-1,T=5.0 °C.)

    4.Conclusions

    Hydrophobic 2-PBA enantiomers can be enantioselectively extracted by hydrophilic selector β-CD derivatives.Through the physical partition equilibrium,chemical reaction equilibrium and mass balance,a mathematical model is built and this model can accurately predict the in fluence of experimental conditions on separation effects.The effect of single impact factor(e.g.,types of organic solvents and β-CD derivatives,concentration of the selector,pH,and temperature)on the separation efficiency was investigated experimentally and thatofmultifactor parameter on the separation efficiency was studied by model.Combining the experimental results and the simulated results,the optimized operation condition is obtained.Under the optimum conditions,the best enantioselectivity is obtained at 2.096.In order to make the 2-PBA enantiomers separated completely,the multistage extraction research will be performed in the future work.

    Nomenclature

    A+,-(±)-2-PBA

    A+-CD complex of(+)-2PBA with HE-β-CD

    A—CD complex of(+)-2PBA with HE-β-CD

    C analytical concentration

    CD cyclodextrin

    CM-β-CD carboxymethyl-β-cyclodextrin

    ELLE enantioselective liquid–liquid extraction

    ee enantiomeric excess

    HE-β-CD hydroxyethyl-β-cyclodextrin

    HP-β-CD hydroxypropyl-β-cyclodextrin

    K complexation equilibrium constants

    Kadissociation constant

    k distribution ratio

    Piphysical partition coefficient of ionic(+)-and(-)-2-PBA

    P0physical distribution coefficient of molecular(+)-and(-)-2-PBA

    2-PBA 2-phenylbutyric acid

    pf performance factor

    SBE-β-CD sulfobutylether-β-cyclodextrin

    T temperature

    α enantioselectivity

    [] equilibrium concentration

    Subscripts

    i index for+,-

    w aqueous phase

    o organic phase

    0 initial value

    + (+)-2-PBA

    - (-)-2-PBA

    References

    [1]I.W.Wainer,Drue stereochemistry,2nd ed.,Anal.Methods Pharmacol.,Marcel Dekker,New York,1993.

    [2]H.Y.Aboul-Enein,I.W.Wainer,The ImpactofStereochemistry on Drug Development and Use,Wiley,New York,1997.

    [3]G.T.Liu,K.Nagahama,Application of rapid expansion of supercritical solutions in the crystallization separation,Ind.Eng.Chem.Res.35(1996)4626–4634.

    [4]T.J.Ward,B.A.Baker,Chiral separations,Anal.Chem.80(2008)4363–4372.

    [5]C.A.M.Afonso,J.G.Crespo,Recent advances in chiral resolution through membranebased approaches,Angew.Chem.Int.Ed.43(2004)5293–5295.

    [6]V.Prelog,M.Kovakevic,M.Egli,Lipophilic tartaric acid esters as enantioselective ionophores,Angew.Chem.Int.Ed.Engl.28(1989)1147–1152.

    [7]K.W.Tang,J.M.Yi,Y.B.Liu,X.Y.Jiang,Y.Pan,Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction,Chem.Eng.Sci.64(2009)4081–4088.

    [8]M.Steensma,N.J.Kuipers,A.B.de Haan,G.Kwant,In fluence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether,J.Chem.Technol.Biotechnol.81(2006)588–597.

    [9]M.Pietraszkiewicz,M.Kozbia,O.Pietraszkiewicz,Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from D-mannose,J.Membr.Sci.138(1998)109–113.

    [10]J.Koska,C.A.Haynes,Modelling multiple chemical equilbria in chiral partition systems,Chem.Eng.Sci.56(2001)5853–5864.

    [11]B.Schuur,J.G.M.Winkelmam,H.J.Heeres,Equilibrium studies on enantioselective liquid-liquid amino acid extraction using a cinchona alkaloid extractant,Ind.Eng.Chem.Res.47(2008)10027–10033.

    [12]H.I.Kim,K.W.Lee,D.Mishra,K.M.Yi,J.H.Hong,M.K.Jun,H.K.Park,Separation of molybdenum and vanadium from oxalate leached solution of spent residue hydrodesulfurization(RHDS)catalyst by liquid–liquid extraction using amine extractant,J.Ind.Eng.Chem.21(2015)1265–1269.

    [13]N.Sunsandee,P.Ramakul,M.Hronec,U.Pancharoen,N.Leepipatpiboon,Mathematical model and experimental validation of the synergistic effect of selective enantioseparation of(S)-amlodipine from pharmaceutical wastewater using a HFSLM,J.Ind.Eng.Chem.20(2014)1612–1622.

    [14]A.J.Hallett,G.J.Kwant,J.G.de Vries,Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds,Chem.A Eur.J.15(2009)2111–2120.

    [15]B.Schuur,J.G.M.Winkelmam,H.J.Heeres,Equilibrium studies on enantioselective liquid-liquid amino acid extraction using a cinchona alkaloid extractant,Ind.Eng.Chem.Res.47(2008)10027–10033.

    [16]X.Chen,J.Wang,F.Jiao,Ef ficient enantioseparation of phenylsuccinic acid enantiomers by aqueous two-phase system-based biphasic recognition chiral extraction:phase behaviors and distribution experiments,Process Biochem.9(2015)1468–1478.

    [17]P.Zhang,J.Luo,K.Tang,J.Yi,C.Yang,Kinetics study on reactive extraction of d-p-hydroxyphenylglycine by BINAP–palladium complex in Lewis cell,Chem.Eng.Process:Process Intensif.93(2015)50–55.

    [18]S.E.Evans,P.Davies,A.Lubben,B.Kasprzyk-Hordern,Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction,solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry,Anal.Chim.Acta 882(2015)112–126.

    [19]A.Holbach,J.Godde,R.Mahendrarajah,N.Kockmann,Enantioseparation of chiral aromatic acids in process intensi fied liquid–liquid extraction columns,AIChE J.61(2015)266–276.

    [20]B.J.Verkuijl,A.J.Minnaard,J.G.de Vries,B.L.Feringa,Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes,J.Org.Chem.74(2009)6526–6533.

    [21]K.Tang,G.Wu,P.Zhang,C.Zhou,J.Liu,Experimental and model study on enantioselective extraction of phenylglycine enantiomers with BINAP-metal complexes,Ind.Eng.Chem.Res.51(2012)15233–15241.

    [22]M.Asztemborska,M.Mi?kiewicz,D.Sybilska,Separation of some chiral flavanones by micellar electrokinetic chromatography,Electrophoresis 24(2003)2527–2531.

    [23]C.Akbay,S.A.A.Rizvi,S.A.Shamsi,Simultaneous enantioseparation and tandem UV-MS detection of eight β-blockers in micellar electrokinetic chromatography using a chiral molecular micelle,Anal.Chem.77(2005)1672–1683.

    [24]S.Fanali,Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors,J.Chromatogr.A 875(2000)89–122.

    [25]K.Tang,H.Zhang,Y.Liu,Experimental and simulation on enantioselective extraction in centrifugal contactor separators,AIChE J.59(2013)2594–2602.

    [26]G.Wang,L.Yang,F.Wu,N.Deng,Carboxymethyl-β-cyclodextrin enhanced TiO2removal of acid red R and lead ions in suspended solutions,J.Chem.Technol.Biotechnol.89(2014)297–304.

    [27]Z.Ren,Y.Zeng,Y.Hua,Y.Cheng,Z.Guo,Enantioselective liquid-liquid extraction of racemic ibuprofen by L-tartatic acid derivatives,J.Chem.Eng.Data 59(2014)2517–2522.

    [28]J.Szejtli,Cyclodextrins and their Inclusion Complexes,Akademiai Kiado,Budapest,1982.

    [29]Y.Yamashoji,T.Ariga,S.Asano,M.Tanaka,Chiral recognition and enantiomeric separation of alanine β-naphthylamide by cyclodextrins,Anal.Chim.Acta 268(1992)39–47.

    [30]K.Tang,P.Zhang,C.Pan,H.Li,Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic-β-cyclodextrin derivatives,AIChE J.57(2011)3027–3036.

    [31]Y.Zheng,J.Yan,S.Tong,X.Li,C.Chu,High performance liquid chromatographic enantioseparation of 2-phenylpropionic acid chiral mobile phase additive,Chin.J.Pharm.Anal.33(2013)827–830.

    [32]T.O'Brien,L.Crocker,R.Thompson,K.Thompson,P.H.Toma,D.A.Conlon,B.Feibush,C.Moeder,G.Bicker,N.Grinberg,Mechanistic aspects of chiral discrimination on modi fied cellulose,Anal.Chem.69(1997)1999–2007.

    9色porny在线观看| 大话2 男鬼变身卡| 国产精品秋霞免费鲁丝片| 人人澡人人妻人| 一二三四在线观看免费中文在 | 最新的欧美精品一区二区| 亚洲国产av新网站| 国产综合精华液| 亚洲人与动物交配视频| kizo精华| av播播在线观看一区| 国产亚洲最大av| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡 | 一本大道久久a久久精品| 欧美成人午夜免费资源| 国产成人精品福利久久| av免费观看日本| 9色porny在线观看| 99热6这里只有精品| 午夜福利乱码中文字幕| 国产黄色免费在线视频| 国产精品三级大全| 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 91aial.com中文字幕在线观看| 多毛熟女@视频| 中文字幕精品免费在线观看视频 | 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 日本欧美视频一区| a级毛片在线看网站| 国产国拍精品亚洲av在线观看| 精品国产国语对白av| 熟妇人妻不卡中文字幕| 99精国产麻豆久久婷婷| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说| 在线观看免费视频网站a站| 亚洲一码二码三码区别大吗| 国产欧美另类精品又又久久亚洲欧美| 9热在线视频观看99| 夜夜爽夜夜爽视频| 久久久久久久久久久久大奶| 有码 亚洲区| 五月天丁香电影| 亚洲第一av免费看| 男的添女的下面高潮视频| 免费久久久久久久精品成人欧美视频 | 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕 | 婷婷色综合www| videos熟女内射| 欧美最新免费一区二区三区| 精品午夜福利在线看| 欧美 亚洲 国产 日韩一| 日日啪夜夜爽| 中文字幕人妻丝袜制服| 精品午夜福利在线看| 亚洲av免费高清在线观看| 一级爰片在线观看| 美女大奶头黄色视频| 日本欧美视频一区| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 如何舔出高潮| 九九在线视频观看精品| 又粗又硬又长又爽又黄的视频| 最后的刺客免费高清国语| av在线app专区| 大陆偷拍与自拍| 桃花免费在线播放| 欧美日韩av久久| 国产淫语在线视频| 大香蕉久久成人网| 毛片一级片免费看久久久久| 国产成人精品一,二区| 制服丝袜香蕉在线| 中国国产av一级| 97精品久久久久久久久久精品| 一区二区日韩欧美中文字幕 | 午夜91福利影院| 伊人久久国产一区二区| 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 欧美3d第一页| 色网站视频免费| 亚洲国产精品专区欧美| 国产老妇伦熟女老妇高清| 国产色婷婷99| 街头女战士在线观看网站| 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 日本-黄色视频高清免费观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩另类电影网站| 国产在线免费精品| 少妇的丰满在线观看| 老司机影院成人| 精品人妻在线不人妻| 这个男人来自地球电影免费观看 | av免费在线看不卡| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 国产精品一国产av| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 午夜日本视频在线| 国产1区2区3区精品| 十八禁高潮呻吟视频| 免费观看在线日韩| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃 | 国产片特级美女逼逼视频| 在线观看免费视频网站a站| 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 欧美亚洲日本最大视频资源| 最近中文字幕2019免费版| 中国三级夫妇交换| 欧美xxxx性猛交bbbb| 午夜福利,免费看| av福利片在线| 中文乱码字字幕精品一区二区三区| 成人午夜精彩视频在线观看| 26uuu在线亚洲综合色| 久久久久国产精品人妻一区二区| 亚洲,欧美,日韩| 视频区图区小说| 精品久久久精品久久久| 久久亚洲国产成人精品v| 久久99蜜桃精品久久| 久久 成人 亚洲| 涩涩av久久男人的天堂| 只有这里有精品99| 啦啦啦视频在线资源免费观看| 国产乱人偷精品视频| 满18在线观看网站| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 免费女性裸体啪啪无遮挡网站| 五月玫瑰六月丁香| 国产成人欧美| 人成视频在线观看免费观看| 91精品伊人久久大香线蕉| 少妇精品久久久久久久| 日本午夜av视频| 咕卡用的链子| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 亚洲精品一二三| 最新中文字幕久久久久| 少妇人妻精品综合一区二区| 国产男女超爽视频在线观看| 美女xxoo啪啪120秒动态图| 自线自在国产av| 满18在线观看网站| 91精品国产国语对白视频| 国产精品久久久av美女十八| 99香蕉大伊视频| 我要看黄色一级片免费的| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 另类精品久久| 亚洲国产精品一区二区三区在线| 亚洲 欧美一区二区三区| 韩国高清视频一区二区三区| 亚洲国产精品一区二区三区在线| 青春草亚洲视频在线观看| 午夜精品国产一区二区电影| 母亲3免费完整高清在线观看 | 一本久久精品| 99国产精品免费福利视频| 我的女老师完整版在线观看| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 99九九在线精品视频| 日韩一区二区视频免费看| 男人操女人黄网站| 午夜激情av网站| www.av在线官网国产| 各种免费的搞黄视频| 三级国产精品片| 成人亚洲欧美一区二区av| 男女高潮啪啪啪动态图| 国产色爽女视频免费观看| 亚洲av国产av综合av卡| 我要看黄色一级片免费的| 亚洲,欧美精品.| 亚洲国产av影院在线观看| 国产成人aa在线观看| 亚洲中文av在线| 国产激情久久老熟女| 欧美 日韩 精品 国产| 永久网站在线| av卡一久久| 久久久精品免费免费高清| 免费在线观看黄色视频的| 曰老女人黄片| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 亚洲精品自拍成人| tube8黄色片| 亚洲精品日韩在线中文字幕| 热99国产精品久久久久久7| 深夜精品福利| 国国产精品蜜臀av免费| 新久久久久国产一级毛片| 超色免费av| 午夜福利影视在线免费观看| 国产精品.久久久| 国产精品三级大全| 国产精品麻豆人妻色哟哟久久| 亚洲精品自拍成人| 女性被躁到高潮视频| 日韩,欧美,国产一区二区三区| 亚洲国产欧美在线一区| 日日啪夜夜爽| 少妇被粗大猛烈的视频| 韩国高清视频一区二区三区| 一级片免费观看大全| 久久精品久久精品一区二区三区| 国产成人午夜福利电影在线观看| av片东京热男人的天堂| 晚上一个人看的免费电影| 纵有疾风起免费观看全集完整版| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 亚洲综合色网址| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 日韩人妻精品一区2区三区| videossex国产| 人人妻人人爽人人添夜夜欢视频| 男女高潮啪啪啪动态图| 青春草视频在线免费观看| 亚洲欧洲国产日韩| 欧美成人精品欧美一级黄| 美女大奶头黄色视频| 精品国产国语对白av| 免费在线观看完整版高清| 国产精品人妻久久久影院| 三上悠亚av全集在线观看| 亚洲精品乱码久久久久久按摩| 最后的刺客免费高清国语| 91精品三级在线观看| 有码 亚洲区| 高清在线视频一区二区三区| 国产欧美日韩综合在线一区二区| 99热全是精品| 22中文网久久字幕| 热99国产精品久久久久久7| av有码第一页| 91在线精品国自产拍蜜月| av视频免费观看在线观看| 最近最新中文字幕免费大全7| 久热久热在线精品观看| av在线观看视频网站免费| 在现免费观看毛片| 日本免费在线观看一区| 好男人视频免费观看在线| 欧美人与善性xxx| 午夜久久久在线观看| 极品少妇高潮喷水抽搐| 欧美人与性动交α欧美软件 | 国产精品久久久久久av不卡| 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 老女人水多毛片| 欧美bdsm另类| 飞空精品影院首页| 男人操女人黄网站| 最近的中文字幕免费完整| 日本免费在线观看一区| 久久韩国三级中文字幕| 国产在线免费精品| 国精品久久久久久国模美| 亚洲精品一二三| 国产亚洲欧美精品永久| 国产色婷婷99| xxx大片免费视频| 99久久人妻综合| 日本色播在线视频| 欧美成人午夜精品| 2022亚洲国产成人精品| 亚洲精品第二区| 高清黄色对白视频在线免费看| 99九九在线精品视频| 成年人免费黄色播放视频| 男女国产视频网站| 成人午夜精彩视频在线观看| 有码 亚洲区| 国产亚洲av片在线观看秒播厂| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 久久免费观看电影| 大香蕉久久网| 亚洲欧美日韩卡通动漫| 九草在线视频观看| 中文字幕av电影在线播放| 午夜福利,免费看| 男女国产视频网站| 少妇被粗大的猛进出69影院 | 久久精品国产鲁丝片午夜精品| av免费观看日本| 青春草国产在线视频| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 国产福利在线免费观看视频| a级毛片黄视频| 免费观看在线日韩| 热99国产精品久久久久久7| 国产高清不卡午夜福利| 性色avwww在线观看| 久久久久久久久久久免费av| 精品少妇内射三级| 免费高清在线观看日韩| 欧美日韩国产mv在线观看视频| 成人免费观看视频高清| 亚洲成人手机| 久久精品人人爽人人爽视色| 久久午夜福利片| 少妇高潮的动态图| 91精品伊人久久大香线蕉| 久久久久国产网址| av国产精品久久久久影院| 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 成年人免费黄色播放视频| 人人妻人人添人人爽欧美一区卜| 免费看光身美女| 欧美性感艳星| 中国美白少妇内射xxxbb| 国产亚洲最大av| 国产av一区二区精品久久| 一边亲一边摸免费视频| 人妻 亚洲 视频| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| av又黄又爽大尺度在线免费看| 老女人水多毛片| 七月丁香在线播放| 国产精品久久久av美女十八| 久久久国产一区二区| 天天影视国产精品| 国产男女内射视频| 午夜福利乱码中文字幕| av一本久久久久| 国产午夜精品一二区理论片| 久久ye,这里只有精品| 久久毛片免费看一区二区三区| 多毛熟女@视频| 日韩欧美一区视频在线观看| av天堂久久9| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 国产毛片在线视频| 黄片播放在线免费| 黄色配什么色好看| 午夜福利视频精品| 精品国产露脸久久av麻豆| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 最近手机中文字幕大全| 国产成人精品无人区| 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 性色av一级| 日本av免费视频播放| 国产精品久久久久久精品古装| 欧美日韩视频精品一区| 久久久久久人妻| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 欧美老熟妇乱子伦牲交| 看免费av毛片| 国产男女超爽视频在线观看| 搡女人真爽免费视频火全软件| 国产欧美日韩一区二区三区在线| 少妇人妻久久综合中文| 国产色爽女视频免费观看| xxx大片免费视频| 久久狼人影院| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看 | 99久久精品国产国产毛片| 国产成人精品久久久久久| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 黄网站色视频无遮挡免费观看| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 亚洲天堂av无毛| 男人舔女人的私密视频| 一本色道久久久久久精品综合| 免费少妇av软件| 国产激情久久老熟女| 国产午夜精品一二区理论片| 丰满迷人的少妇在线观看| 深夜精品福利| 热re99久久国产66热| 国产精品一区二区在线观看99| 久久精品国产综合久久久 | 日韩一区二区三区影片| 日韩中字成人| 极品少妇高潮喷水抽搐| 九色成人免费人妻av| 国产午夜精品一二区理论片| xxxhd国产人妻xxx| 亚洲人成77777在线视频| 高清欧美精品videossex| 男女下面插进去视频免费观看 | 老熟女久久久| 七月丁香在线播放| 日韩精品免费视频一区二区三区 | 夜夜爽夜夜爽视频| 国产精品一区二区在线不卡| 国产一区二区激情短视频 | 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 欧美激情国产日韩精品一区| 99久久综合免费| 香蕉丝袜av| av女优亚洲男人天堂| 汤姆久久久久久久影院中文字幕| 久久久久久久大尺度免费视频| 亚洲综合色惰| 一区二区日韩欧美中文字幕 | 久久久精品免费免费高清| 国产日韩一区二区三区精品不卡| 黄色一级大片看看| 久久国内精品自在自线图片| 丝袜人妻中文字幕| 成年av动漫网址| 中国三级夫妇交换| av视频免费观看在线观看| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 热re99久久国产66热| 成年美女黄网站色视频大全免费| 一边摸一边做爽爽视频免费| 又大又黄又爽视频免费| 国产免费又黄又爽又色| 精品第一国产精品| 亚洲人成77777在线视频| 女性被躁到高潮视频| 亚洲精品久久久久久婷婷小说| 久热久热在线精品观看| 中国三级夫妇交换| 久久久欧美国产精品| 亚洲色图综合在线观看| 免费观看在线日韩| 国产精品国产三级国产专区5o| 欧美日韩精品成人综合77777| 国产日韩欧美亚洲二区| 久久久精品94久久精品| 黄色配什么色好看| 99久国产av精品国产电影| 最新的欧美精品一区二区| 久久久久久人人人人人| xxx大片免费视频| 蜜桃在线观看..| 看免费av毛片| 亚洲第一区二区三区不卡| 秋霞在线观看毛片| 精品国产一区二区久久| 成年动漫av网址| 国产成人av激情在线播放| 热re99久久精品国产66热6| 欧美人与性动交α欧美精品济南到 | 最近的中文字幕免费完整| 免费观看a级毛片全部| 国产在线一区二区三区精| 国产男女内射视频| 日韩,欧美,国产一区二区三区| 春色校园在线视频观看| 久久99精品国语久久久| 97在线人人人人妻| 亚洲欧洲精品一区二区精品久久久 | 高清欧美精品videossex| 午夜日本视频在线| 亚洲av在线观看美女高潮| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久久久99蜜臀 | 街头女战士在线观看网站| 久久精品国产鲁丝片午夜精品| 一级a做视频免费观看| 国产一区二区三区综合在线观看 | 超色免费av| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 少妇高潮的动态图| 丝袜脚勾引网站| 美女主播在线视频| 精品国产一区二区三区四区第35| xxxhd国产人妻xxx| 在线看a的网站| 欧美亚洲日本最大视频资源| 日韩三级伦理在线观看| 免费在线观看完整版高清| 日韩欧美精品免费久久| 欧美亚洲 丝袜 人妻 在线| 久久精品国产鲁丝片午夜精品| 国产精品三级大全| 国产精品.久久久| 丝袜脚勾引网站| 少妇被粗大猛烈的视频| 成年女人在线观看亚洲视频| 久久97久久精品| 国产福利在线免费观看视频| 久久久久久久大尺度免费视频| 啦啦啦在线观看免费高清www| 十八禁网站网址无遮挡| 五月天丁香电影| 国产熟女午夜一区二区三区| 亚洲三级黄色毛片| 亚洲精品av麻豆狂野| 亚洲精品aⅴ在线观看| 18禁动态无遮挡网站| 又粗又硬又长又爽又黄的视频| 久久久久精品人妻al黑| 国产片特级美女逼逼视频| 美女主播在线视频| 午夜福利乱码中文字幕| 丝袜美足系列| 汤姆久久久久久久影院中文字幕| 乱码一卡2卡4卡精品| 黑人欧美特级aaaaaa片| 国产熟女欧美一区二区| 超碰97精品在线观看| 精品午夜福利在线看| 捣出白浆h1v1| 曰老女人黄片| 草草在线视频免费看| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 这个男人来自地球电影免费观看 | 中文字幕免费在线视频6| 国产精品三级大全| 免费av不卡在线播放| 人妻系列 视频| 18禁裸乳无遮挡动漫免费视频| 99re6热这里在线精品视频| 国产精品熟女久久久久浪| 婷婷色综合大香蕉| 秋霞伦理黄片| 9191精品国产免费久久| 91国产中文字幕| 日本欧美视频一区| 国产1区2区3区精品| 91午夜精品亚洲一区二区三区| 亚洲精品一区蜜桃| 成人漫画全彩无遮挡| 成年美女黄网站色视频大全免费| 欧美日韩亚洲高清精品| 久久久精品94久久精品| 国产有黄有色有爽视频| 国产成人欧美| 色哟哟·www| 色网站视频免费| 热re99久久精品国产66热6| 国产男人的电影天堂91| 成人免费观看视频高清| 国产精品国产三级国产专区5o| 日韩三级伦理在线观看| 欧美激情极品国产一区二区三区 | 成人国产麻豆网| 97超碰精品成人国产| 国产精品久久久久成人av| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| 一本大道久久a久久精品| 五月伊人婷婷丁香| 欧美变态另类bdsm刘玥| 咕卡用的链子| 波多野结衣一区麻豆| 久热这里只有精品99| 精品久久久精品久久久| 一区在线观看完整版| 久久久精品免费免费高清| 国语对白做爰xxxⅹ性视频网站| 男人操女人黄网站| 国产av一区二区精品久久| 最近手机中文字幕大全| 亚洲av国产av综合av卡| tube8黄色片| 亚洲精品av麻豆狂野| 婷婷色麻豆天堂久久| 亚洲第一av免费看| av卡一久久| 香蕉国产在线看| 精品人妻在线不人妻| 亚洲精品国产av成人精品| 国产一区二区在线观看日韩| 18+在线观看网站| 老司机亚洲免费影院| 国产精品秋霞免费鲁丝片| 久久久久久久久久成人| 九色亚洲精品在线播放| 各种免费的搞黄视频| videosex国产| 婷婷色av中文字幕| 国国产精品蜜臀av免费| 亚洲第一区二区三区不卡|