• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomic layer deposition of Al2O3 on porous polypropylene hollow fibers for enhanced membrane performances☆

    2018-05-25 11:26:10XiaojuanJiaZexianLowHeChenSenXiongYongWang

    Xiaojuan Jia ,Zexian Low ,He Chen ,Sen Xiong ,Yong Wang ,*

    1 State Key Laboratory of Materials-Oriented Chemical Engineering,Jiangsu National Synergetic Innovation Center for Advanced Materials,and College of Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    2 Department of Chemical Engineering,Monash University,Clayton,Australia

    1.Introduction

    Polypropylene hollow fiber(PPHF)membranes have been used in ultra filtration(UF)and microfiltration(MF)for water treatment in a number of fields,due to their brilliant mechanical properties,low cost,good chemical resistance and thermal stability[1–4].Compared to flat sheet membranes,hollow fiber configuration are preferred due to its highly effective filtration area per unit volume,simple module fabrication,no requirement of feed and permeance and less prone to fouling or concentration polarization[5].Recent studies have concentrated on the hollow fiber form of PP membranes due to its aforementioned advantages[6,7].For example,PPHF membranes were applied in the pervaporation separation of water/ethanol mixtures and the separation of anionic dye aqueous solution,both exhibiting remarkable long-term performance stability and anti-fouling performance[8,9].

    However,PPHF membranes surface fouling remains an ongoing challenge due to the hydrophobicity and leads to decline of water permeance[10].A variety of strategies have been applied to modify surface properties of PPHF membranes to improve their anti-fouling properties[11–13].For instance,surface graft polymerization is applied to improve the anti-fouling and separation performances of the membranes without undermining their bulk properties[14–16].Surface graft polymerization requires the existence of reactive groups on the membrane surface,which is mainly generated from chemical treatments,such as plasma deposition,UV irradiation,and γ-ray irradiation[17–21].Unfortunately,these treatments require harsh pretreatment or complex synthesis procedure.In addition,the grafting reaction in liquid solution is difficult to control,which may lead to blockage of the membrane pores.More importantly,large volume oforganic wastewater was produced during these processes[22,23].Therefore,it is necessary to develop a green and simple processing alternative to enhance the permeability and anti-fouling property ofPPHF membrane.

    Atomic layer deposition(ALD)is usually applied to deposit conformal and ultrathin films by the sequential surface reactions with atomic level control on membranes to modify membrane surface property and separation performance[24–26].ALD can be operated at low temperature and is particularly appropriate for the porous polymer membranes modi fication without degrading the polymer[27–29].Li etal.employed ALD on track-etched polycarbonate(PCTE)membranes to tailor the membrane pore size by altering the ALD cycles[30].Jung et al.[31]applied to deposit Al2O3on polypropylene separators to significantly improve their wettability towards electrolytes and thermal stability of the safety batteries.Previous work reported that ALD was certified to be significantly effective method to modify the polymeric membranes.The membrane hydrophilicity of the most common membranes including polytetra fluoroethylene[32],polyvinylidene fluoride[33],and PP[34,35]were enhanced with subsequent ALD of metal oxide,with simultaneous improvement to the water permeance and solute retention.However,ALD technique has only been used to modify flat sheet polymeric membranes so far[32–35].The feasibility of the use of ALD technique to improve the performance of hollow fiber membrane configuration is highly interested.

    In this work,we applied ALD technique to deposit a thin layer of Al2O3on commercial porous PPHF membranes to improve their anti-fouling property,stability and separation performance.This is a proof-of-concept work to demonstrate the possibility of upgrading the performances of HF membranes by ALD.The ALD of Al2O3is the most extensively studied system in the ALD of different metal oxides,and it has been shown that ALD of Al2O3can be easily performed on different substrates,enabling us to have more references and comparisons in our efforts to upgrade PPHF membranes by ALD.Therefore,Al2O3is chosen as a model oxide to deposit on PPHF membranes,and other metal oxides are expected to be also applicable.To the best of our knowledge,this work denotes the first successful application of ALD technique.By controlling the ALD deposition parameters,we could retain the asymmetrical structure of the Al2O3-modi fied PPHF membranes.In addition,it is possible to prepare an appropriate Al2O3deposition layer on porous PPHF membranes with turning the thickness and morphology by controlling the deposition cycles.

    2.Experimental

    2.1.Materials

    PPHF membranes(outer diameter:0.38 mm,inner diameter:0.33 mm,wall thickness:25 μm,mean pore size:200 nm,Nanjing O'Happure Membranes Co.)were applied as substrates for Al2O3ALD in present work.Trimethylaluminum(TMA,Metalorganic Center,99.99%,Nanjing University)and Deionized water(H2O)were used as oxygen supply for the Al2O3ALD process,respectively.Ultrahigh purity N2(Tianhong Gas Company,99.99%)was applied as the precursors carrier and purging gas.Ethanol(99.7%,Yasheng Chemical Co.LTD)was used as received.Silicon wafers(SY100W-01,Seyang Electronics)were cleaned with ethanol and used to monitor the growth rate of Al2O3thickness during ALD process.Bovine serum albumin(BSA),(Mw=67 kDa,97%,GM Corporation)solution was employed to assess the discrimination and fouling resistance of both the pristine and the modi fied PPHF membranes.

    2.2.ALD of Al2O3 on PPHF membranes

    Both the pristine membranes and silicon wafers were fixed in the ALD reactor(Savannah S100,Cambridge Nano-Tech)under vacuum(~26.66 Pa).The metal precursor(TMA)and oxidant precursor(H2O)vapors were delivered into the reactor sequentially by the nitrogen gas.Exposure mode was introduced in this work.In a typical ALD cycle,pulse times of both precursors were 0.015 s.After each pulse of precursors,to guarantee abundant precursor adsorption and diffusion,5-s exposure time was used,and then the system was purged under N2for 30 s to wipe out the excess precursor as well as the byproducts in the system.The reaction was repeated for different ALD cycles to produce Al2O3-PPHF membrane of different skin thickness as indicated.

    2.3.Characterizations

    The thicknesses and refractive indices of Al2O3film on the Si wafer were used a variable-angle spectroscopic ellipsometer(VASE,J.A.Wollam Co.).To investigate the changes in chemical structure and to confirm investigate the successful deposition of Al2O3between the pristine and the Al2O3-deposited PPHF membranes,Fourier Transform Infrared(FTIR)spectra of the PPHF membranes were measured using FTIR spectrometer in attenuated total re flection(ATR)mode(Nicolet 8700).The spectra were calculated within the wavenumber range of 500–4000 cm-1.The Energy Dispersive X-ray Spectrometer(EDS)was used to detect the distribution of the cross-sectional and surface elemental quantification of the membranes(EMAX X-act).The thermal analyzer was implemented to analyze thermalgravimetric(TG)of the PPHF membrane(NETZSCH TG209F1).A heating rate was set at 10 °C·min-1from 20 to 600 °C in O2atmosphere.The surface morphology of the PPHF membranes was inspected under a field emission scanning microscope(FESEM,Hitachi S4800)operated at 5 kV.To avoid electron charging,Au/Pd thin layer was sputtering-coated on the sample surface prior to SEM observation.The electronic tensile tester was applied to measure the mechanical properties of the PPHF membranes(CMT-6203,Shenzhen Sans Test Machine Co.).The specimens were used in the length of 50 mm.A tensile rate of the machine was 20 mm·min-1.Static protein adsorption was performed to estimate the anti-fouling properties of the Al2O3-deposited membranes and the pristine membrane was used as reference.The protein adsorption quantity on the membrane surface was measured by the decreased the BSA concentration.The concentrations of the BSA solutions were calculated using an ultraviolet(UV)spectrometer on the absorbance at 280 nm(Thermo Fisher NanoDROP 2000C).The pristine and the modi fied PPHF membranes were separately put into a test tube that was filled with 7 ml of 0.5 g·L-1BSA phosphate buffer.Both ends of the PPHF membranes were not submerged into the solution.Then,the glass tube was incubated in aqueous bath at 25°C for 12 h.The adsorption quantity of BSA on the membrane surface was measured from the declined BSA concentration.The following equation was used to obtain the amount of the membranes surface absorption M(μg·cm-2)

    where V is the volume of BSA phosphate buffer(ml);Cpis the feed concentration of BSA solution,and Cfis the permeate concentration of BSA solution;A is the external surface area of membranes(cm2).

    2.4.Membrane performances

    The pure waterpermeance ofPPHF membranesand retention ofBSA were measured in a homemade apparatus at room temperature.The PPHF membranes with certain length were folded and their both ends were fixed in a transparent hose by epoxy resin,and the hose housing the PPHF membranes was connected to the homemade apparatus as testing module.The PPHF membranes were prewetted in ethanol for 1 min before the permeation test,then the membranes were compacted at 1 0.1MPa for 10 min to acquire a stable flux,before measuring the pure water permeance(PWP)at the same pressure.The following equation was used to obtain the 10PWP(L·m-2·MPa-1·h-1)of the membranes:

    where Q is the net water permeability(L);A is the external surface area(m2);ΔP is the transmembrane pressure(MPa);t is the operation time(h).

    The BSA solution was applied to measure the BSA retention of pristine and the modi fied PPHF membranes;0.5 g BSA was dissolved in 1 L phosphate buffer solution.The concentrations of BSA solution in both the feed and permeate were calculated by UV spectrometer.The rejection R(%)of BSA was de fined by following this equation:

    where Cp(g·L-1)is the feed concentration ofBSAsolution;Cf(g·L-1)is the permeate concentration of BSA solution.

    3.Results and Discussion

    3.1.Deposition of Al2O3 on the PPHF membranes

    The formation ofAl2O3layer on the PPHF membranes was measured by FTIR spectroscopy.In Fig.1,the peaks of PP(2800—2960 cm-1,and 1500—1402 cm-1)were observed in all samples before and after the Al2O3deposition.No detectable new peaks could be observed for the 50-cycle deposition on the membrane.However,a new absorption peak appeared around 650—700 cm-1after 100 or more deposition cycles,which can be attributed to the Al--O bond[36].It was viewed that the peak intensity increased with the numberofdeposition cycles,since the membrane with 400 deposition cycles demonstrated a considerably stronger peak compared to the samples with 100 and 200 deposition cycles,indicating that the quantity of Al2O3increased with the increment of ALD deposition cycles.In addition,the peak intensity of PP situated at 2800—2960 cm-1reduced after the Al2O3deposition,ascertaining the deposition of Al2O3on the surface of the membranes which diminished PP absorption peaks.

    Fig.1.(a)FTIR spectra of the pristine and Al2O3-PPHF membranes with varying ALD deposition cycles.(b)shows the enlarged wavenumbers located around the 600–700 cm-1.

    The EDS result shows the distribution of Al element on both sides of the membrane surfaces and indicates the selective coverage of Al2O3on the membrane surfaces.In Fig.2b and c,EDS mapping of the crosssectionalsamples veri fied thatalumina was also deposited in the interior of the membranes.Signals of Al element dated from the Al2O3-PPHF membrane were presented throughout the entire cross section with 200 deposition cycles,with the Alelementdensity decreasing gradually from the outersurface to the inner surface(Fig.2b).The result was confirmed from the EDS mapping of the outer and inner surface of PPHF(Fig.S1).The gradient distribution of Al2O3was due to the decreasing surface pores with increasing ALD cycles,resulting in the decreased diffusion of precursors through the membrane and into the inner regions of the membrane.

    Fig.3.TGA curves of the pristine and the Al2O3-PPHF membranes.Inset shows the mass change around 350—550 °C.

    TG analysis was applied to verify the Al2O3layer successful deposition on the PPHF membranes.The residual mass of the pristine membranes and the Al2O3-PPHF membranes were measured.As shown in Fig.3,the degradation of Al2O3-PPHF membranes occurred in three steps.In the first step,Al2O3-PPHF membranes barely displayed any mass change from 20 °C to 230 °C.In the second step,the membranes started to degrade at the temperature higher than 230°C until completion at420°C.In the third step,the Al2O3-PPHF exhibited minorchanges to residual mass,suggesting that the PP components were completely degraded before 600°C.The residual mass of the pristine PPHF membranes after pyrolysis at 600°C was nearly negligible while the membranes with 100 and 200 deposition cycles possessed a residual mass rate of 0.87%and 2.35%,respectively.The increased residual mass of the membranes subjected to ALD deposition cycles once again confirmed that Al2O3was successfully deposited onto the membranes.The per cycle of mean mass in the first 100 cycles,and 100—200 cycles were determined to be 0.0087%and 0.0148%,respectively.The lower mean mass uptake per cycle was due to the deposition of Al2O3in the inner region of the polymer matrix,which restricted the growth of the deposited Al2O3.Continuous deposition of Al2O3leads to surface deposition of Al2O3on the surface which can grow more rapidly than the Al2O3precursors in the polymer matrix[27,32].Furthermore,the TGA data revealed that both the pristine and Al2O3-PPHF membranes exhibited similar mass loss at 230°C.So the Al2O3layer retained the thermal stability of the membranes.

    Fig.2.Cross section of PPHF with 200 ALD cycles(a,b).Inset shows the distribution of Al element across the membrane.(c)EDS mapping of the region highlighted in(b).

    3.2.Tailorability of PPHF membranes morphology

    SEM was performed to inspect the outer surface morphology and pore structure of the pristine and the Al2O3-PPHF membranes.The outer surface of the pristine membranes exhibited a smooth net-like structure without any noticeable particulates(Fig.4a).Compared to the pristine membrane,after 50 deposition cycles of Al2O3(Fig.4b),there was no obvious change in the outer surface morphology.Nevertheless,as the number ofALDcycles was increased,some smallgranules appeared on the outer surface of the membranes(Fig.4c).When ALD of Al2O3increased to 100 cycles,Al2O3particulates with larger diameter were observed.The outer surface of the membrane was gradually covered by Al2O3nanoparticles and became coarser after 200 and 300 deposition cycles of Al2O3(Fig.4d and e).The pores of the membranes were almost completely blocked after 400 deposition cycles of Al2O3since no pores can be observed at the same magnification(Fig.4f),indicating the mean pore size of PPHF membranes can be controlled by changing the ALD cycles.In Fig.4,there were additional particulates on the outer surface of the Al2O3-PPHF membranes,implying that the growth of surface reaction mechanism followed the self-limiting of ALD technique[29].In addition to the pore sizes,the outer surface morphologies and the shape of pores were retained.It was previously observed that the Al2O3grew conformably along the pore wall during ALD[37,38].As shown in Fig.S2,the growth of Al2O3on silicon wafer was linearly and the calculated growth rate was~0.13 nm per cycle.Therefore,the outer surface pore size ofthe membranes can be precisely tailored by controlling the ALD cycles.

    3.3.Significantly upgrading of mechanical property of PPHF membranes

    The mechanical properties of membranes are one of the significant factors in membrane application processes.The membranes needed suf ficient mechanical strength to withstand membrane operating and cleaning conditions.Fig.5 shows the strain curves of pristine and the Al2O3-PPHF membranes.The ultimate stress was determined to be~2.0 MPa and ~1.9 MPa for PPHF membranes that underwent 100 and 200 ALD cycles,respectively,as compared to~1.7 MPa of the pristine membrane.Furthermore,the membranes exhibited significant increase in elongation at break(Table S1),the maximum elongation of 100 and 200 Al2O3-PPHF membranes were increased to~234.8%and~233.4%,respectively,which was superior to the pristine membrane(~37%).After Al2O3deposition,as we discussed before,there was a subsurface nucleation stage during the ALD process,the high reactivity TMA precursors can in filtrate into PPHF,locating in the defect sites and chain-end parts with--CH3[39].Subsequently,the absorbed TMA will react with water vapor and produce Al2O3nucleation clusters or react with polymer chains to form the C--Al--C bond[40].Thus,the mechanicalpropertiesofthe Al2O3-PPHFwere enhanced,and the ductility ofthe Al2O3-deposited membranes was highly increased[41].This result could potentially play a part in improving the strength of Al2O3-PPHF membranes.

    Fig.5.Mechanical properties of the pristine and the Al2O3-PPHF membranes subjected to 100 and 200 ALD.

    3.4.Enhanced separation performances of Al2O3-PPHF membranes

    Fig.6 presents the permeance and the BSA retention of the PPHF membranes with different ALD cycles.The permeance of the pristine membrane was about 2438 L·m-2·h-1·MPa-1,and the BSA retention was ~15.6%.Maximum permeance of 2849 L·m-2·h-1·MPa-1(increment of 17%)and one-fold increase in BSA rejection to 28%were attained after 50 ALD cycles.Interestingly,both the permeability and BSA retention were enhanced simultaneously with the increasing ALD cycles.However,higher deposition cycles(>150 cycles)resulted in a significant permeability loss.The permeance of Al2O3-PPHF membranes were governed by the pore size and the surface hydrophilicity[32].Our previous work indicated that the permeability of the porous membrane can be improved by increasing ALD cycles[33].However,further increasing the ALD cycles led to lower mean pore size of the Al2O3-PPHF membranes.Beyond 150 cycles,the reduction of the pore size offset the increase in membrane surface hydrophilicity,resulting in a lower permeance.On the other hand,the BSA retention increased with the ALD deposition cycles due to the smaller pore sizes.The BSA retention was increased to~86.1%after the 300 cycles of ALD.The results were consistent with that of the other works[30,33,35].

    Fig.4.SEM pictures of the pristine(a)and the Al2O3-deposited PPHF membranes with a deposition cycle number of(b–f)50,100,200,300,400.All pictures have the same scale bar as shown in(a).

    Fig.6.Permeance and BSA retention of the pristine membrane and Al2O3-PPHF membranes with varying ALD cycles.

    3.5.Improvement of fouling-resistance of the Al2O3-PPHF membranes

    The static protein adsorption was performed using BSA solution to estimate the anti-fouling property of Al2O3-PPHF membranes.Fig.7 shows the BSA adsorption of the Al2O3-PPHF membranes under increasing ALD cycles.The BSA adsorption of Al2O3-PPHF membranes decreased under increasing number of ALD cycle.Our previous work reported that the contact angle of Al2O3-PP flat membranes dropped to 70°after 400 cycles[35].BSA adsorption of 77 μg·cm-2was observed for the pristine membranes which can be contributed to the strong hydrophobic surface interaction of proteins.After ALD deposition of Al2O3,there was a progressive reduction in BSA adsorption with rising cycle numbers.A minimal BSA adsorption of 32 μg·cm-2was obtained at ALD cycle of 400,indicating the anti-fouling property of membranes was improved.Therefore,the anti-fouling property of PPHF membranes can be improved by increasing the deposition of Al2O3.

    Fig.7.Adsorption of BSA onto Al2O3-PPHF membranes with increasing ALD cycles.

    4.Conclusions

    In the present study,we have provided a green and simple method to upgrade the performances of hydrophobic hollow fiber membranes based on atomic layer deposition of metal oxides.Asymmetric pore structure with tailorable pore size is successfully fabricated on the PPHF membranes.The PPHF membranes surface has been modi fied by producing a uniform coating of Al2O3layer on the outer surface of membrane.The mechanical properties(tensile strength and rate of elongation)are increased after the Al2O3-deposited PPHF membranes.Especially,the break of elongation of the PPHF membranes is signi ficantly improved from~37%for the pristine membrane to~235%after 100 cycles ALD deposition.The membrane permeance and rejection can be tailored by controlling the ALD cycle.The water permeance is increased and then decreased while the BSA retention keeps increasing with rising ALD cycle numbers.That is,water permeance and rejection are simultaneously enhanced at moderate ALD cycle numbers.Modi fied the membrane surface by Al2O3deposition is endowed less adsorption of BSA.Based on the striking effects of Al2O3deposition on PPHF membranes,the oxide-coated polymer hollow fiber membranes exhibit enhanced separation performance and membrane stability,we anticipate that the ALD could be used to deposit other metal oxides with superior chemical stability,such as TiO2or ZrO2,on the PPHF or other hollow- fiber membranes to further enhance their separation performances and also to broaden their applications in different fields.

    Supplementary Material

    Supplementary data to this article can be found online athttps://doi.org/10.1016/j.cjche.2017.10.008.

    References

    [1]T.Gullinkala,Isabel Escobar,Study of the hydrophilic enhanced ultra filtration membrane,Environ.Prog.27(2)(2008)210–217.

    [2]H.Strathmann,Membrane separation processes:current relevance and future opportunities,AIChE J.47(5)(2001)1077–1087.

    [3]K.G.S.T.A.Beltsios,K.L.Stefanopoulos,Membrane Science and Applications.Handbook of Porous Solids,2002 2281–2433.

    [4]P.Vandezande,L.E.Gevers,I.F.Vankelecom,Solvent resistant nano filtration:separating on a molecular level,Chem.Soc.Rev.37(2)(2008)365–405.

    [5]J.Mulder,Basic Principles of Membrane Technology,Springer Science&Business Media,2012.

    [6]F.Yao,G.D.Fu,J.Zhao,E.T.Kang,K.G.Neoh,Antibacterial effect of surfacefunctionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization,J.Membr.Sci.319(1–2)(2008)149–157.

    [7]Z.Xu,J.Wang,L.Shen,D.Men,Y.Xu,Microporous polypropylene hollow fiber membrane:part I.Surface modi fication by the graft polymerization of acrylic acid,J.Membr.Sci.196(2)(2002)221–229.

    [8]S.Yu,Z.Chen,Q.Cheng,Z.Lü,M.Liu,C.Gao,Application of thin- film composite hollow fiber membrane to submerged nano filtration of anionic dye aqueous solutions,Sep.Purif.Technol.88(2012)121–129.

    [9]Z.Xu,Microporous polypropylene hollow fiber membranes part II.Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid)grafted membranes,J.Membr.Sci.214(1)(2003)71–81.

    [10]I.C.Escobar,E.M.Hoek,C.J.Gabelich,F.A.DiGiano,Committee report:recent advances and research needs in membrane fouling,Am.Water Work.Assoc.J.97(8)(2005)79.

    [11]F.Penacorada,A.Angelova,H.Kamusewitz,J.Reiche,L.Brehmer,Scanning force microscopy and wetting study of the surface modi fication of a polypropylene membrane by means of Langmuir-Blodgett film deposition,Langmuir 11(2)(1995)612–617.

    [12]C.G.P.H.Schro?n,M.C.Wijers,M.A.Cohen Stuart,A.van der Padt,K.van't Riet,Membrane modi fication to avoid wettability changes due to protein adsorption in an emulsion/membrane bioreactor,J.Membr.Sci.80(1)(1993)265–274.

    [13]H.Yu,Y.Xie,M.Hu,J.Wang,S.Wang,Z.Xu,Surface modi fication of polypropylene microporous membrane to improve its antifouling property in MBR:CO2plasma treatment,J.Membr.Sci.254(1–2)(2005)219–227.

    [14]K.Kato,E.Uchida,E.Kang,Y.Uyama,Y.Ikada,Polymer surface with graft chains,Prog.Polym.Sci.28(2)(2003)209–259.

    [15]B.Boutevin,J.J.Robin,N.Torres,J.Casteil,Graft copolymerization of styrene onto ozonized polyethylene,Macromol.Chem.Phys.203(1)(2002)245–252.

    [16]E.Ruckenstein,Z.Li,Surface modi fication and functionalization through the selfassembled monolayer and graft polymerization,Adv.Colloid Interf.Sci.113(1)(2005)43–63.

    [17]X ZK.,Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface:a novel approach,Langmuir 20(2004)1481–1488.

    [18]Y.Yang,Y.Li,Q.Li,L.Wan,Z.Xu,Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling,J.Membr.Sci.362(1–2)(2010)255–264.

    [19]R.Kou,Z.Xu,H.Deng,Z.Liu,P.Seta,Y.Xu,Surface modi fication of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside,Langmuir 19(17)(2003)6869–6875.

    [20]Y.Wang,J.Kim,K.Choo,Y.Lee,C.Lee,Hydrophilic modi fication of polypropylene microfiltration membranes by ozone-induced graft polymerization,J.Membr.Sci.169(2)(2000)269–276.

    [21]Z.Liu,Z.Xu,J.Wang,J.Wu,J.Fu,Surface modi fication of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone,Eur.Polym.J.40(9)(2004)2077–2087.

    [22]D.Garg,W.Lenk,S.Berwald,K.Lunkwitz,F.Simon,K.Eichhorn,Hydrophilization of microporous polypropylene Celgard?membranes by the chemical modi fication technique,J.Appl.Polym.Sci.60(12)(1996)2087–2104.

    [23]E.Gabriel,G.Gillberg,In situ modi fication ofmicroporous membranes,J.Appl.Polym.Sci.48(12)(1993)2081–2090.

    [24]S.M.George,Atomic layer deposition:an overview,Chem.Rev.110(2010)111–131.

    [25]B.Gong,G.N.Parsons,Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3atomic layer deposition,J.Mater.Chem.22(31)(2012)15672.

    [26]A.Niskanen,K.Arstila,M.Leskel?,M.Ritala,Radical enhanced atomic layer deposition of titanium dioxide,Chem.Vap.Depos.13(4)(2007)152–157.

    [27]C.A.Wilson RKG,S.M.George,Nucleation and growth during Al2O3atomic layer deposition on polymers,Chem.Mater.17(2005)5625–5634.

    [28]M.Kemell,E.F?rm,M.Ritala,M.Leskel?,Surface modi fication of thermoplastics by atomic layer deposition of Al2O3and TiO2thin films,Eur.Polym.J.44(11)(2008)3564–3570.

    [29]G.N.Parsons,S.E.Atanasov,E.C.Dandley,C.K.Devine,B.Gong,J.S.Jur,et al.,Mechanisms and reactions during atomic layer deposition on polymers,Coord.Chem.Rev.257(23–24)(2013)3323–3331.

    [30]F.Li,L.Li,X.Liao,Y.Wang,Precise pore size tuning and surface modi fications of polymeric membranes using the atomic layer deposition technique,J.Membr.Sci.385–386(2011)1–9.

    [31]Y.S.Jung,A.S.Cavanagh,L.Gedvilas,N.E.Widjonarko,I.D.Scott,S.Lee,et al.,Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes,Adv.Energy Mater.2(8)(2012)1022–1027.

    [32]Q.Xu,Y.Yang,X.Wang,Z.Wang,W.Jin,J.Huang,et al.,Atomic layer deposition of alumina on porous polytetra fluoroethylene membranes for enhanced hydrophilicity and separation performances,J.Membr.Sci.415–416(2012)435–443.

    [33]Q.Wang,X.Wang,Z.Wang,J.Huang,Y.Wang,PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2,J.Membr.Sci.442(2013)57–64.

    [34]Q.Xu,J.Yang,J.Dai,Y.Yang,X.Chen,Y.Wang,Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2for simultaneously improved permeability and selectivity,J.Membr.Sci.448(2013)215–222.

    [35]H.Chen,L.Kong,Y.Wang,Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition,J.Membr.Sci.487(2015)109–116.

    [36]A.Roy Chowdhuri,C.G.Takoudis,R.Klie,N.Browning,Metalorganic chemical vapor deposition ofaluminum oxide on Si:evidence of interface SiO2formation,Appl.Phys.Lett.80(22)(2002)4241–4243.

    [37]M.Groner,F.Fabreguette,J.Elam,S.George,Low-temperature Al2O3atomic layer deposition,Chem.Mater.16(4)(2004)639–645.

    [38]A.Ott,J.Klaus,J.Johnson,S.George,Al2O3thin film growth on Si(100)using binary reaction sequence chemistry,Thin Solid Films 292(1)(1997)135–144.

    [39]D.Y.Li,J.Hu,Z.X.Low,Z.X.Zhong,Y.Wang,Hydrophilic ePTFE membranes with highly enhanced water permeability and improved efficiency for multipollutant control,Ind.Eng.Chem.Res.55(10)(2016)2806–2812.

    [40]S.M.Lee,V.Ischenko,E.Pippel,A.Masic,O.Moutanabbir,P.Fratzl,et al.,An alternative route towards metal-polymer hybrid materials prepared by vapor-phase processing,Adv.Funct.Mater.21(16)(2011)3047–3055.

    [41]S.M.Lee,E.Pippel,U.Gosele,C.Dresbach,Y.Qin,C.V.Chandran,et al.,Greatly increased toughness of in filtrated spider silk,Science 324(5926)(2009)488–492.

    欧美成人午夜免费资源| 亚洲色图综合在线观看| 一级毛片电影观看| 亚洲欧洲精品一区二区精品久久久 | 777米奇影视久久| 多毛熟女@视频| 男女高潮啪啪啪动态图| 国产男女内射视频| 在线观看免费高清a一片| 一区二区日韩欧美中文字幕| 一个人免费看片子| 国产精品不卡视频一区二区| 亚洲国产日韩一区二区| 欧美日本中文国产一区发布| 亚洲成人av在线免费| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 大香蕉久久成人网| 免费播放大片免费观看视频在线观看| 国产精品亚洲av一区麻豆 | 男女高潮啪啪啪动态图| 一二三四中文在线观看免费高清| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区 | 五月开心婷婷网| 久久精品国产亚洲av高清一级| av在线观看视频网站免费| 精品国产一区二区久久| 精品午夜福利在线看| 亚洲av电影在线观看一区二区三区| 男男h啪啪无遮挡| 午夜激情av网站| 国产精品蜜桃在线观看| 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 看免费成人av毛片| 亚洲欧美一区二区三区黑人 | 韩国av在线不卡| 韩国精品一区二区三区| 午夜福利乱码中文字幕| 成人亚洲精品一区在线观看| 边亲边吃奶的免费视频| 99热国产这里只有精品6| 又粗又硬又长又爽又黄的视频| 人人妻人人添人人爽欧美一区卜| 亚洲欧美清纯卡通| 国产精品99久久99久久久不卡 | 国产成人精品一,二区| 免费在线观看完整版高清| 人体艺术视频欧美日本| 国产精品国产三级专区第一集| 成人国产麻豆网| 国产精品欧美亚洲77777| 91在线精品国自产拍蜜月| 王馨瑶露胸无遮挡在线观看| 亚洲欧美中文字幕日韩二区| 另类精品久久| 国产日韩欧美在线精品| 国产一区二区三区综合在线观看| 国产熟女欧美一区二区| 久久99一区二区三区| 大陆偷拍与自拍| 国产精品偷伦视频观看了| 精品一区二区免费观看| 国产男女内射视频| av在线播放精品| 高清欧美精品videossex| 国产亚洲一区二区精品| 国产爽快片一区二区三区| 国产亚洲一区二区精品| 精品亚洲成a人片在线观看| 免费看不卡的av| 午夜福利在线免费观看网站| 大话2 男鬼变身卡| 免费在线观看黄色视频的| 免费久久久久久久精品成人欧美视频| 在线观看免费高清a一片| 人妻少妇偷人精品九色| 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 色94色欧美一区二区| 久久免费观看电影| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看 | 欧美亚洲 丝袜 人妻 在线| 99久久中文字幕三级久久日本| 亚洲情色 制服丝袜| av不卡在线播放| 超碰97精品在线观看| 青春草视频在线免费观看| 看十八女毛片水多多多| 欧美日韩成人在线一区二区| 一本色道久久久久久精品综合| 日本爱情动作片www.在线观看| 老司机影院成人| 亚洲美女搞黄在线观看| 国产又色又爽无遮挡免| 99国产综合亚洲精品| 亚洲一区二区三区欧美精品| 亚洲成国产人片在线观看| av在线播放精品| 秋霞在线观看毛片| 日本91视频免费播放| 九草在线视频观看| 亚洲av中文av极速乱| av免费在线看不卡| 成人影院久久| 亚洲一区中文字幕在线| 极品少妇高潮喷水抽搐| 亚洲精品美女久久av网站| 国产黄色免费在线视频| 桃花免费在线播放| 深夜精品福利| 国产精品 国内视频| 爱豆传媒免费全集在线观看| 美女福利国产在线| 一区二区三区激情视频| 国产精品香港三级国产av潘金莲 | 亚洲精品第二区| 青春草视频在线免费观看| 熟女电影av网| 中文字幕人妻熟女乱码| 亚洲欧洲精品一区二区精品久久久 | 伦理电影大哥的女人| 大陆偷拍与自拍| 日本色播在线视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品视频女| 国产成人91sexporn| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 精品亚洲成a人片在线观看| 九草在线视频观看| 久久99精品国语久久久| 亚洲精品国产一区二区精华液| 一区二区三区乱码不卡18| 曰老女人黄片| 国产野战对白在线观看| 日韩熟女老妇一区二区性免费视频| 大话2 男鬼变身卡| 日本wwww免费看| 青青草视频在线视频观看| 亚洲一区中文字幕在线| 99久久人妻综合| 亚洲精品美女久久久久99蜜臀 | 国产亚洲av片在线观看秒播厂| 不卡视频在线观看欧美| 黄片无遮挡物在线观看| 美女国产视频在线观看| 久久97久久精品| 激情视频va一区二区三区| 久久婷婷青草| 亚洲欧美一区二区三区黑人 | 亚洲图色成人| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 免费av中文字幕在线| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 老司机影院毛片| av福利片在线| 亚洲国产精品一区三区| 最近2019中文字幕mv第一页| 精品一区二区三卡| 久久人妻熟女aⅴ| 日韩一卡2卡3卡4卡2021年| 久久97久久精品| 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av高清一级| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 亚洲图色成人| 国产精品.久久久| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 我要看黄色一级片免费的| 亚洲成人一二三区av| 尾随美女入室| 亚洲av国产av综合av卡| 中文字幕最新亚洲高清| 99热全是精品| 亚洲第一青青草原| 久久99精品国语久久久| 制服人妻中文乱码| 亚洲三区欧美一区| 久热这里只有精品99| 国产有黄有色有爽视频| 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 婷婷色av中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中国三级夫妇交换| 亚洲国产最新在线播放| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 十分钟在线观看高清视频www| 国产一区二区 视频在线| 一级黄片播放器| 成年动漫av网址| 国产成人精品久久久久久| 一本色道久久久久久精品综合| 日日摸夜夜添夜夜爱| 久久久久久久国产电影| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 亚洲内射少妇av| 日韩免费高清中文字幕av| 久久久国产欧美日韩av| av.在线天堂| 各种免费的搞黄视频| www日本在线高清视频| 欧美精品高潮呻吟av久久| 亚洲欧美精品自产自拍| 色吧在线观看| 在线观看三级黄色| 欧美国产精品va在线观看不卡| 国产xxxxx性猛交| 美女脱内裤让男人舔精品视频| 色吧在线观看| 在线 av 中文字幕| 人妻 亚洲 视频| 亚洲精品自拍成人| 一级毛片电影观看| 欧美成人午夜精品| 欧美人与善性xxx| 日韩伦理黄色片| 精品国产国语对白av| 男女午夜视频在线观看| 男女免费视频国产| 国产激情久久老熟女| 亚洲内射少妇av| 丝袜脚勾引网站| 成年人免费黄色播放视频| 成人毛片a级毛片在线播放| 亚洲av福利一区| 欧美日韩av久久| 赤兔流量卡办理| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 久久久精品94久久精品| 老司机亚洲免费影院| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久久久免| 免费少妇av软件| 看免费成人av毛片| 国产精品成人在线| 亚洲欧洲精品一区二区精品久久久 | 成人午夜精彩视频在线观看| 18禁国产床啪视频网站| 精品酒店卫生间| 国产精品无大码| 一区二区av电影网| 精品少妇内射三级| av在线老鸭窝| 伊人亚洲综合成人网| 免费久久久久久久精品成人欧美视频| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| av在线观看视频网站免费| 国精品久久久久久国模美| 高清在线视频一区二区三区| 精品国产露脸久久av麻豆| 美女国产视频在线观看| 99久国产av精品国产电影| 精品一品国产午夜福利视频| 久久国产精品大桥未久av| 两性夫妻黄色片| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 最近最新中文字幕大全免费视频 | 久久久欧美国产精品| 91国产中文字幕| 久久韩国三级中文字幕| 亚洲国产毛片av蜜桃av| 亚洲精品日韩在线中文字幕| 观看美女的网站| 日日啪夜夜爽| 日本-黄色视频高清免费观看| 夫妻午夜视频| 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 99热网站在线观看| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 叶爱在线成人免费视频播放| 欧美国产精品一级二级三级| 另类精品久久| 美女高潮到喷水免费观看| 日日撸夜夜添| 欧美国产精品va在线观看不卡| 久热这里只有精品99| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 在线看a的网站| 欧美少妇被猛烈插入视频| 韩国高清视频一区二区三区| 久久精品国产亚洲av涩爱| 成人国产麻豆网| 色婷婷久久久亚洲欧美| 亚洲第一青青草原| 精品一区二区免费观看| 欧美精品亚洲一区二区| 人妻一区二区av| 免费播放大片免费观看视频在线观看| 色婷婷久久久亚洲欧美| 亚洲,欧美,日韩| 日韩一卡2卡3卡4卡2021年| 国产精品嫩草影院av在线观看| 熟女av电影| 亚洲国产av新网站| 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 精品国产一区二区久久| 中文乱码字字幕精品一区二区三区| 久久久欧美国产精品| 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 波多野结衣一区麻豆| 国语对白做爰xxxⅹ性视频网站| 久久这里有精品视频免费| 日韩伦理黄色片| 免费在线观看视频国产中文字幕亚洲 | 在线免费观看不下载黄p国产| 十八禁网站网址无遮挡| 99热网站在线观看| 侵犯人妻中文字幕一二三四区| 国产在线免费精品| 大片电影免费在线观看免费| 妹子高潮喷水视频| 欧美日韩综合久久久久久| av一本久久久久| 国产在线一区二区三区精| 一级片免费观看大全| 日日爽夜夜爽网站| 精品视频人人做人人爽| 久久久久精品久久久久真实原创| 国产精品熟女久久久久浪| 欧美+日韩+精品| av又黄又爽大尺度在线免费看| 婷婷色av中文字幕| 亚洲欧美一区二区三区黑人 | 国产伦理片在线播放av一区| 亚洲国产av影院在线观看| 一二三四在线观看免费中文在| 日韩熟女老妇一区二区性免费视频| 黑人猛操日本美女一级片| 乱人伦中国视频| 欧美日韩成人在线一区二区| 九草在线视频观看| xxx大片免费视频| 精品国产超薄肉色丝袜足j| 99精国产麻豆久久婷婷| 成人18禁高潮啪啪吃奶动态图| 精品人妻一区二区三区麻豆| 免费高清在线观看视频在线观看| 天天躁日日躁夜夜躁夜夜| 蜜桃在线观看..| 国产一区二区在线观看av| 人妻系列 视频| 一级毛片黄色毛片免费观看视频| 国产精品女同一区二区软件| 国产一区有黄有色的免费视频| 青草久久国产| 99久国产av精品国产电影| 亚洲精品美女久久久久99蜜臀 | 91精品三级在线观看| 亚洲精品乱久久久久久| 日韩中文字幕欧美一区二区 | av不卡在线播放| 免费少妇av软件| 国产国语露脸激情在线看| 麻豆精品久久久久久蜜桃| 成年美女黄网站色视频大全免费| 亚洲色图综合在线观看| 国产午夜精品一二区理论片| 最近最新中文字幕免费大全7| 国产精品久久久久久精品古装| 老鸭窝网址在线观看| 在线观看免费高清a一片| 亚洲视频免费观看视频| 99久久中文字幕三级久久日本| 丝袜在线中文字幕| 成人毛片a级毛片在线播放| 午夜日韩欧美国产| 国产精品国产av在线观看| 久久精品国产自在天天线| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区av在线| 久久久久网色| 女性生殖器流出的白浆| 久久热在线av| 精品一品国产午夜福利视频| 少妇人妻久久综合中文| 啦啦啦啦在线视频资源| 美女大奶头黄色视频| 婷婷色综合www| 女人久久www免费人成看片| 黄片播放在线免费| 午夜免费观看性视频| 亚洲av男天堂| 欧美 日韩 精品 国产| freevideosex欧美| 亚洲四区av| 国产白丝娇喘喷水9色精品| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| 日韩av不卡免费在线播放| 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 久久久久久久久免费视频了| av视频免费观看在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 亚洲精品视频女| www日本在线高清视频| 99精国产麻豆久久婷婷| 高清不卡的av网站| 国产伦理片在线播放av一区| 夫妻午夜视频| 天天影视国产精品| 久久这里只有精品19| 飞空精品影院首页| 一区二区三区精品91| 最近2019中文字幕mv第一页| 高清黄色对白视频在线免费看| 天天躁日日躁夜夜躁夜夜| www.av在线官网国产| 校园人妻丝袜中文字幕| av视频免费观看在线观看| 久久久国产一区二区| 国产亚洲av片在线观看秒播厂| 国产极品粉嫩免费观看在线| 婷婷色av中文字幕| av在线观看视频网站免费| 国产 精品1| 久久99一区二区三区| 人妻人人澡人人爽人人| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 欧美激情 高清一区二区三区| 一边亲一边摸免费视频| 91成人精品电影| 国产一区二区在线观看av| 国产爽快片一区二区三区| 波多野结衣一区麻豆| 国精品久久久久久国模美| 国产精品久久久av美女十八| 亚洲av.av天堂| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 国产片特级美女逼逼视频| 熟女电影av网| av国产久精品久网站免费入址| av有码第一页| 国产1区2区3区精品| 99re6热这里在线精品视频| av天堂久久9| 午夜免费男女啪啪视频观看| 欧美中文综合在线视频| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 丰满饥渴人妻一区二区三| 亚洲av中文av极速乱| 午夜激情av网站| 久久人妻熟女aⅴ| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱| 亚洲欧洲日产国产| 国产xxxxx性猛交| 中文精品一卡2卡3卡4更新| 丝袜喷水一区| 99热网站在线观看| 亚洲国产精品国产精品| 亚洲伊人久久精品综合| 999久久久国产精品视频| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 制服诱惑二区| 国产一级毛片在线| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 满18在线观看网站| av不卡在线播放| 永久网站在线| 超碰成人久久| 寂寞人妻少妇视频99o| 婷婷色综合www| 熟女电影av网| 一本久久精品| 在线天堂最新版资源| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 免费观看无遮挡的男女| 黄色配什么色好看| 亚洲精品av麻豆狂野| 亚洲中文av在线| 美女福利国产在线| 亚洲成色77777| 波多野结衣一区麻豆| 免费看av在线观看网站| 日本av免费视频播放| 久久久久精品性色| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻一区二区| 国产黄色免费在线视频| 青春草国产在线视频| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 91国产中文字幕| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 波多野结衣av一区二区av| 国产男人的电影天堂91| 精品人妻在线不人妻| 成人影院久久| 伦精品一区二区三区| 我的亚洲天堂| 黄片小视频在线播放| 国产日韩一区二区三区精品不卡| 亚洲在久久综合| 国产成人a∨麻豆精品| 99精国产麻豆久久婷婷| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 一区在线观看完整版| 欧美成人午夜免费资源| 一级毛片 在线播放| 国产在线一区二区三区精| 一本色道久久久久久精品综合| 男人添女人高潮全过程视频| √禁漫天堂资源中文www| 久久亚洲国产成人精品v| 91在线精品国自产拍蜜月| 免费高清在线观看日韩| 一本大道久久a久久精品| 纵有疾风起免费观看全集完整版| 国产成人aa在线观看| 一区二区三区精品91| 亚洲精品国产av蜜桃| 国产一区二区在线观看av| 日本欧美视频一区| 欧美另类一区| 精品少妇黑人巨大在线播放| 99久久综合免费| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 国产精品成人在线| 亚洲精品国产av蜜桃| 各种免费的搞黄视频| 一区二区日韩欧美中文字幕| 青春草亚洲视频在线观看| 国产精品二区激情视频| 国产1区2区3区精品| 国产av码专区亚洲av| a级毛片黄视频| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 婷婷色综合大香蕉| 高清在线视频一区二区三区| 国产亚洲欧美精品永久| 亚洲精华国产精华液的使用体验| 色视频在线一区二区三区| 黄色一级大片看看| 人妻人人澡人人爽人人| 美女大奶头黄色视频| 成人二区视频| 国产成人91sexporn| 青春草视频在线免费观看| 精品第一国产精品| 国产免费现黄频在线看| 不卡av一区二区三区| 亚洲人成电影观看| 欧美 日韩 精品 国产| 女人精品久久久久毛片| 美女中出高潮动态图| 97在线视频观看| 91精品三级在线观看| 99九九在线精品视频| 最近最新中文字幕大全免费视频 | 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区久久| 精品视频人人做人人爽| 欧美少妇被猛烈插入视频| www.av在线官网国产| www日本在线高清视频| 久久精品亚洲av国产电影网| 亚洲国产精品国产精品| 亚洲内射少妇av| 亚洲精品美女久久久久99蜜臀 | 只有这里有精品99| 亚洲美女搞黄在线观看| 日韩av免费高清视频| 十八禁网站网址无遮挡| 日韩免费高清中文字幕av|