• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor☆

    2018-05-25 11:26:07XiaoxiaDuanXinFengChaoYangZaishaMao

    Xiaoxia Duan ,Xin Feng ,*,Chao Yang ,*,Zaisha Mao

    1 Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    Semi-batch stirred reactors are often encountered in chemical and pharmaceutical industries;the particular reagent is added into the reactor with a feed-pipe.The scale of segregation of the feeding stream is reduced under the bulk inertial motion,followed with the stretch,deformation and engulfment of feed elements[1].At last,molecular diffusion reduces the intensity of segregation down to zero when the reagents achieve the molecular-scale homogeneity[2,3].For the mixing-sensitive multiple chemical reactions,if the characteristic reaction time is shorter than the time required for bringing homogeneity at molecular scale,micro-mixing can signi ficantly in fluence the product quality and selectivity[4].Mixing effects get more critical in reactor scale-up because the chemical reactions are scale-independent,while the local mixing time is sensitive to scale and position when the power per unit volume remains constant[2].Therefore,the studies of flow,mixing and chemical reaction that simultaneously occur in the stirred tank are significant to the design,optimization and scale-up of reactors.

    In the CFD modeling of turbulent chemical reacting flow,the key problem is to select an appropriate micro-mixing model that can describe the local concentration information to close the chemical source term.Different mixing models have been developed and the most commonly used models include the engulfment model[5,6]and the probability density function methods,e.g. finite-node PDF[7,8],multipletime-scale turbulent mixer model[9–11],and DQMOM-IEM model[12].The DQMOM-IEM micro-mixing model is first presented by Fox[12]and has been successfully implemented to model the precipitation process[13–16]and parallel reaction scheme[17–19],combustion[20,21],etc.This method,compared with the transport-PDF method,is easily incorporated into existing CFD codes and does not introduce statistical errors[22].

    Those successful applications validate that the DQMOM-IEM model can be used to simulate the reacting flow in the confined impinging jet reactor(CIJR)[14,15,17–19],plug- flow reactor[13],tubular reactor[23,24],etc.However,this model has not been used to model turbulent reacting flow in the stirred-tank reactors.The simulations of turbulent reacting flow are of great differences between semi-batch stirred tank and CIJR both in geometry and operating conditions,which are given as follows:(1)size of geometries:the diameters of stirred tank are often hundreds of times larger than the inlet diameters of CIJR that are a few millimeters[14,15,17–19].Furthermore,the interactions between the rotating impeller and stationary baffles produce complicated 3D- flow field,so the principal length scales and time scales of turbulent mixing process cover a wide range;(2)ratio between different feed streams:CIJR is carried out in a continuous operation,the flow ratesoftwo feed streams are often equal[17–19],butforthe semi-batch stirred-tank reactors,the feed volume is only 2%of the bulk flow which originally exists in the tank[5,10];Besides,the characteristics of feed ratio in fluence the initial concentrations if the quantities of all reagents are chemically equal[5,10];(3)feed time:the residence time of CIJR is far less than the feed times tfof semi-batch stirred tank.tfis often on the scale of several minutes which also makes the unsteady simulation time very long.All of these differences increase the difficulty ofsimulating turbulent reacting flow in stirred tanks.

    The aim of this work is to employ the DQMOM-IEM model to predict the mixing effects on the course of parallel competing chemical reactions carried out in a semi-batch single-phase stirred-tank reactor.The simulation results are compared with the experimental data reported by Baldyga and Makowski[10].Some numerical strategies are adopted to solve the problems present in simulation of stirred tanks with complex geometry and differentoperations.In addition,the mixture fraction variance can be used to describe the degree of the local micromixing[25],so the state variable is used to mark the characteristics of reaction region in the semi-batch stirred-tank reactors.

    2.Details of DQMOM-IEM Micro-mixing Model

    DQMOM-IEM is a presumed probability density function model.This approach assumes that the joint composition PDF f?(ψ;x,t)can be approximately expressed as the sum of a finite number of multidimensional delta functions[26]:

    where Neis the total number of environments,pn(x,t)is the probability or volume fraction of environment n,(x,t)is value of scalar α in environment n,Nsis the number of scalars,and ψ is the composition vector.

    For the presumed PDF method,the non-reacting mixture fraction scalarand dimensionlessreaction progress variable are usefulto describe the mixing process between multiple non-premixed feed streams.

    Considering the following second-order parallel competitive reaction system used in this work:

    One stream contains reactant A with the initial concentration cA0,the other stream carries the pre-mixture B(cB0)and C(cC0)in the tank.

    The mixture fraction is related to the local concentrations of reactants A,B and C,(i.e.,cA,cBand cC)de fined by[10]

    The mixture fraction ranges from 0 to 1.ξ=1 is for the pure stream with concentration cA0.ξ=0 is for the pre-mixture inside the reactor.

    The stoichiometric mixture fractions ξs1and ξs2are de fined respectively[12]

    For the reaction system,the chemical species concentrations have to be expressed as the mixture fraction coupled with the reaction progress variable Y.The dimensionless reaction progress variables Y1and Y2for reactions(2)and(3)are de fined

    According to the de finitions of Eq.(6),the reaction progress variables are normalized by the stoichiometric concentrations cA0ξs1and cA0ξs2.Furthermore,Y1and Y2are equal to 0 in the inlet and initial conditions.

    Thus,chemical species concentrations can be expressed in terms of one mixture fraction variable ξ and two reaction progress variables(Y1and Y2).

    As the micro-mixing testreactions,the firstreaction is instantaneous and the second reaction(side reaction)is a finite-rate reaction.When the feed stream of limited reactant A meets the other stream containing the premixed B and C,reactant A and B cannot coexist at the same spatial location.Thus,the first reaction progress variable Y1can be evaluated by the limiting value Y1∞as Eq.(8).

    where 0≤Y2≤ξ/ξs2because the reaction progress variable is nonnegative.

    If the two-environment DQMOM-IEM is employed to this reaction system, five transportation equations need to be solved.

    1)The transport equation for the probability of environment 1(p1):

    where the turbulent diffusivity ΓTis de fined as Eq.(10):

    where Cμ=0.09,turbulent Schmidt number ScT=0.7,k is the turbulent kinetic energy and ε is the rate of energy dissipation.

    Furthermore,the sum of probabilities is unity.Thus,the probability of the second environment can be calculated by p2=1-p1.

    2)The transport equations for the weighted mixture fraction in environments 1(p1ξ1)and 2(p2ξ2):

    where the firstand second termson the righthand ofthe transportequations are the micro-mixing terms and correction terms,respectively.The micro-mixing rate is de fined as:

    where the micro-mixing rate constant C?is a function of the local Reynolds number,the detailed formulation can be referred to Liu and Fox[17].

    3)The transport equations for the weighted reaction progress variable of the side chemical reaction in environments 1(p1Y21)and 2(p2Y22):

    where the chemical source terms S2∞(ξ1,Y21)and S2∞(ξ2,Y22)are:

    with

    and the limiting value of the first chemical reaction progress variable in environments 1()and 2():

    The reactant concentrations(cAn,cBn,cCn)and product concentrations(cRn,cSn)in the n th environments can be predicted by solving the transport equations of mixture fraction and reaction progress variables.Afterwards,the mean concentrations can be calculated using Eq.(21):

    3.Numerical Simulation

    3.1.Stirred tank and reaction system

    As shown in Fig.1,the stirred tank used forsimulation in this work is the same as that used by Baldyga and Makowski[10].This vessel is equipped with a standard six-bladed Rushton turbine.

    The reaction system for characterizing mixing efficiency is hydrolysis of ethyl chloroacetate in competition with neutralization of sodium hydroxide.The reaction rate constant k1=1.3 × 108m3·mol-1·s-1and k2=0.023 m3·mol-1·s-1at 20 °C.

    Fig.1.Details of the stirred tank.

    The NaOH solution with a concentration of 2000 mol·m-3is slowly fed into the stirred tank reactor which initially contains the premixture of HCl and CH2ClCOOC2H5,both with a concentration of 40 mol·m-3.The injection volume VA0is equal to 4.16 × 10-4m3,and the initial volume of stirred tank VBC,0is 0.02079 m3.Four different feed times are 8,10,15 and 20 min,respectively.The inner diameter of feedpipe is d=1 mm.The heightofthe feed point,located atthe middle plane between two adjacent baffles,is equal to the impeller clearance off the tank bottom and the radial position r=0.09 m.The segregation index XSis used to quantify the product distribution and calculated according to the volume-average concentrationafter the experiment[10].

    whereandare equal and de fined as:

    3.2.Simulation strategy

    Numerical simulation is performed with the CFD commercial software ANSYS Fluent.The origin of three-dimensional coordinate is set at the center of the stirred tank bottom.The feed-pipe is created and the inlet is set as the velocity inlet boundary condition.The semibatch stirred tank is operated at a long feed time,so the velocity outlet is set at the bottom of the stirred tank to maintain the liquid level through draining out the equivalent amount working material.The computational domain which contains the whole tank geometry is divided into two sub-domains.The inner zone encompasses the rotating Rushton impeller and the multiple reference frames(MRF)approach is applied to model the motion of impeller.The remaining part of the tank is solved with the stationary reference frame equations.The boundariesbetween the rotating domain and the stationary domain are located at r=0.075 m and 0.06 m≤z≤0.14 m.The whole domain is discretized with tetrahedral and hexahedral grids using the GAMBIT mesh generation tool.The equisize skew is smaller than 0.75 to ensure good grid quality.The grids are re fined around the feed-pipe exit and the impeller where the variables have large gradient.

    First,the flow field is solved with the Reynolds stress model(RSM)at steady-state.The RSM,which builds the model equations for the unclosed Reynolds stress and accounts for the anisotropy of turbulence,also belongs to RANS method.The previous simulation results[5–6]indicate that the RSM is relatively superior to the standard k–ε model on the prediction of turbulent flow field.Although LES approach better predicts the turbulent kinetic energy around the impeller than the RSM[27],the RSM method makes the computational cost more acceptable.For the sake of compromise between simulation accuracy and total computing time,the RSM approach is adopted to simulate the turbulent flow field in this work.The SIMPLEC algorithm is used to couple pressure and velocity.The second-order upwind scheme is adopted for the spatial discretization of transport equations.Then,the two-environment DQMOM-IEM micro-mixing model is loaded into the ANSYS Fluent through the user-de fined functions(UDFs).Based on the Fluent platform,the program written in the C programming language realizes the customization.The transport equations for five additional user-de fined scalars used in the DQMOM-IEM model are:

    Those scalars are solved time-dependently with the second-order implicit time difference format.

    The initialboundary conditions atthe velocity inletwhere reactant A is fed are:

    and those for the computational domain inside the tank are:

    Due to the long feed time,variable timestep approach is adopted to save the unsteady simulation time.The time step is set to 10-4s at the beginning of the simulation to overcome the numerical difficulties.

    4.Results and Discussion

    4.1.Veri fication of DQMOM-IEM procedure

    Although the DQMOM-IEMmodelhas been used successfully for the simulation of turbulent reacting flow in the CIJR etc.,the procedure created in this work has to be veri fied before exploring the applicability of the DQMOM-IEM model in stirred tank reactor.The effect of mixing on the selectivity of parallel competitive reactions carried out in the CIJR is simulated with the two-environment DQMOM-IEMmodel.The detailed descriptions about geometry and operating parameters can be referred to Liu and Fox[17].The chemicalreaction sources added in the transport equationsofweighted reaction progressvariable and the computational boundaries are set according to the reaction system employed in CIJR[17].As shown in Figs.2 and 3,the predicted results about the mixture fraction variance 〈ξ'2〉and the segregation index X are in agreement with the experiment data[17]and the simulation results obtained with the same model by Liu and Fox[17],which confirm the validity of the DQMOM-IEM procedure.

    4.2.Grid independence test

    Fig.2.Profiles of〈ξ'2〉along the feedpipe axis predicted with differentmethods(Rej=400,dj=0.5 mm).

    Fig.3.EffectofReynolds number Rej on the segregation index X(dj=0.5 mm,t r=4.8 ms).

    Except the veri fication of the DQMOM-IEM procedure,it is also essential to analyze the sensitivity of the simulation results of turbulent flow field on the grid number.The turbulent flow field simulations are carried out with five different grids to achieve grid independence results.Grid 1 to grid 5 consist of 366381,601492,808938,1072953 and 1439368 cells,respectively.Fig.4 shows the axial profiles of dimensionless velocities components and turbulent kinetic energy at r=0.063 m.The results indicate that the turbulent kinetic energy is more difficult to achieve the grid independent in comparison with the velocities components.According to the numerical predictions,grid 4 is finally used for the simulations in this work.

    4.3.Contour of volume fraction for environment

    The ratio between reactor volume and feed volume is large for the semi-batch stirred-tank reactor.The feed stream consisting of reactant A slowly enters into the reactor from the feed inlet.Thus,the geometry and feeding characteristics of stirred tank determine the distribution of volume fraction of environment.

    In Fig.5,contour plotofthe volume fraction ofenvironment1(p1)for the case N=214 r·min-1,tf=8 min is presented.At the beginning of the time-dependent simulation,the reactor is occupied by environment 2 except the velocity inlet.During the feeding period,environment 1 gradually enters into the reactor.The large gradient of p1decreases rapidly for a few seconds after the beginning of feeding and the system reaches the quasi-steady state due to the long feed time.As seen in Fig.5,environment 1 concentrates in the zone surrounding the feed-pipe exit and its volume fraction remains relatively small in the other region.

    Fig.4.Comparison of simulation results or five different grids(N=214 r·min-1,r=0.063 m).(a)Dimensionless axial velocity.(b)Dimensionless radial velocity.(c)Dimensionless tangential velocity.(d)Dimensionless turbulent kinetic energy.

    Fig.5.Contour plot of volume fraction of environment 1(N=214 r·min-1,t f=8 min).

    4.4.Distributions of mixture fraction variance

    By solving the transport equations of the probability of different environment(pn)and its weighted mixture fraction(pnξn),we can compute the mean mixture fraction 〈ξ〉and its variance 〈ξ′2〉according to Eqs.(29)and(30)[17]:

    The mean mixture fraction 〈ξ〉is a non-reacting scalar which indicates the level of the macro-mixing and the mixture fraction variance〈ξ′2〉can be used as a measure for the small-scale segregation of the fluid[11].For the perfect mixing,the variance is zero.If the segregation is complete,it is equalto one.Fig.6 shows the segregation zone marked with different values of the variance ratio 〈ξ′2〉/〈ξ′2〉maxbetween 〈ξ′2〉and its maximum 〈ξ′2〉maxin the whole tank.With the increase of〈ξ′2〉/〈ξ′2〉max,the highlighted zone extremely shrinks and concentrates on the region close to the exit of feed-pipe.This result agrees with the conclusions by Vicum et al.[11]and Duan et al.[28].

    4.5.Distributions of reactant concentrations

    Initially,environment 1 contains pure reactant A.It is injected into the stirred-tank reactor from the beginning of time-dependent micromixing simulation.Environment 2 is originally filled with the mixture of reactants B and C.The interaction between environment 1 and environment 2 causes the compositional change,so the chemical reactions occur in both environments.Fig.7 shows the concentration distributions of reactants B and C in environments 1 and 2(at N=214 r·min-1,tf=8 min),respectively.The micro-mixing test reactions are fastand the feed position is in the discharge region ofthe Rushton impeller.Thus,reactants B and C are consumed almost in the vicinity of the feed-pipe exit.As shown in Fig.7,the consumption zone of reactant C is more concentrated than that of reactant B on the region where the value of the mixture fraction variance is high.This also indicates that the side reaction mainly occurs in the large segregation zone[28].Furthermore,the reaction zone extends to the tank walldue to the strong radial discharge flow.The characteristics of concentration distributions re flect the flow pattern generated by the standard Rushton turbine.

    4.6.Effect of agitation speed and feed time on segregation index

    The effect of agitation speed on the reaction process for two cases(feed time tf=20 min and tf=15 min,respectively)are reported in Figs.8 and 9 in terms of the segregation index XSwhich represents the selectivity of by-product.For the parallel competitive reactions given by Eqs.(22)and(23),the acid–base neutralization reaction occurs only and the yield of the undesired product tends to zero in the well mixed condition,because there is a great disparity between the reaction rate constants k1and k2.However,in the complete segregation,the initial reactant concentrations determine the distribution of products.According to experimental parameters listed in Section 3.1,the segregation index is 0.5 that is also the upper limit.

    The segregation indexes predicted by the DQMOM-IEM micromixing model are compared with the experimental data and the numerical simulation results in literature[10].Model I is the multipletime-scale turbulent mixing model and Model III neglects the concentration fluctuations.As shown in Figs.8 and 9,the predicted segregation index decreases with the increase of agitation speed because the micro-mixing performance is intensi fied by the enhanced turbulence level.

    There is apparent difference between the predicted results with Model III and micro-mixing model(either DQMOM-IEM model or multiple-time-scale turbulentmixing model).This indicates that the effect of micro-mixing on the course of parallel competing chemical reactions is significant.The suitable closure models have to be used to calculate the non-linear chemical source term and describe the subgrid mixing.

    In addition,the predicted results with Model I are really in good agreementwith the experimentdata as well.Itis a presumed PDF method and the beta PDF is employed to represent the mixture fraction PDF.For the non-premixed turbulent flows with multiple feed streams,the mixture fraction PDF is poorly approximated by a beta PDF[12].In this work,the semi-batch stirred tank is predicted and there is only one feed stream.For this binary mixing,the mixture fraction PDF is wellapproximated by a beta PDF[12].In orderto selectthe mostappropriate modelto simulate differentcases,the comprehensive comparison aboutthe predicted ability between the DQMOM-IEMmodeland multitime-scale turbulent mixing model should be conducted in more CFD studies.

    Altering the feed time at N=214 r·min-1,the predicted results are plotted in Fig.10 and have the same trend with experimentdata.For the fixed volume of reactant A,the feed velocity is inversely proportional to the feed time.Atthe relatively low feed velocity,the feed stream is more easily dispersed into the mainstream which is bene ficial to maximize the yield of the desired product.

    The visualization of reaction plume at the end of the feeding is also presented with the mean concentration of reactant A in Fig.11.As it can be seen,the volume of zone marked with 〈cA〉>0.0001 mol·m-3at the feed time tf=20 min is also smaller than it at tf=8 min and the reaction zone is more close to the feed point with the increase of feed time.These visualized results also prove that the injected reactant A can be more easily dispersed and consumed by the reactants B and C at low feed velocity.

    Fig.7.Contour plots of reactant concentrations in different environments(N=214 r·min-1,t f=8 min,in the y=0 plane).(a)Concentration of reactant B in environment 1.(b)Concentration of reactant C in environment 1.(c)Concentration of reactant B in environment 2.(d)Concentration of reactant C in environment 2.

    Fig.8.Effect of agitation speed on X S at t f=20 min.

    5.Conclusions

    Fig.9.Effect of agitation speed on X S at t f=15 min.

    Fig.10.Effect of feed time on X S at N=214 r·min-1.

    In this work,the two-environment DQMOM-IEM model coupled with CFD is implemented to predict and quantify the effects of mixing on the distributions of products in a semi-batch stirredtank reactor.The segregation index of parallel competitive chemical reactions decreases with the increase of feed time.The higher the agitation speed is,the lower the yield of by-product.In the semibatch stirred tank,the reaction zone mainly concentrates on the region close to the feed-pipe exit where the mixture fraction variance is large.The concentration distributions of reagents and the visualization of reaction plume can be presented with the twoenvironment DQMOM-IEM micro-mixing model,which cannot be achieved by the empirical and theoretical models solved in the Lagrangian framework.Although the simulation results agree with the experimental data,it is essential to investigate the predictive behavior of DQMOM-IEM micro-mixing model used for stirred tanks in other geometry parameters and operating conditions in the further works.

    Nomenclature

    C impeller off-bottom clearance,m

    ciconcentration of specie i,mol·m-3

    cinconcentration of specie i in environment n,mol·m-3

    〈ci〉 mean concentration of specie i,mol·m-3

    D impeller diameter,m

    djdiameter of the impinging jets,m

    H height of stirred tank,m

    k turbulent kinetic energy,m2·s-2

    N agitation speed,r·min-1

    p probability

    RejReynolds number in the CIJR

    r radial distance from Z-axis,m

    T stirred tank diameter,m

    t time,s

    tffeed time,s

    trcharacteristic reaction time,ms

    X,XSsegregation index

    x spatial position vector

    Y reaction progress

    z axial distance from tank bottom,m

    γ micro-mixing rate,s-1

    ε rate of energy dissipation,m2·s-3

    ν kinematic viscosity,m2·s-1

    ξ mixture fraction

    ξ1mixture fraction in environment 1

    ξ2mixture fraction in environment 2

    Fig.11.Visualization of reaction plume with 〈c A〉>0.0001 mol·m-3 at the end of the feeding.(a)N=214 r·min-1,t f=8 min.(b)N=214 r·min-1,t f=20 min.

    Subscripts

    A,B,C,R,S chemical species

    j direction

    0 initial value

    References

    [1]J.Baldyga,J.R.Bourne,A fluid mechanical approach to turbulent mixing and chemical reaction part II micromixing in the light of turbulence theory,Chem.Eng.Commun.28(4–6)(1984)243–258.

    [2]E.L.Paul,V.A.Atiemo-Obeng,S.M.Kresta,Handbook of Industrial Mixing:Science and Practice,John Wiley&Sons,USA,2004.

    [3]P.V.Danckwerts,The effect of incomplete mixing on homogeneous reactions,Chem.Eng.Sci.8(1–2)(1958)93–102.

    [4]J.C.Cheng,X.Feng,D.Cheng,C.Yang,Retrospect and perspective of micro-mixing studies in stirred tanks,Chin.J.Chem.Eng.20(1)(2012)178–190.

    [5]O.Akiti,P.M.Armenante,Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors,AIChE J.50(3)(2004)566–577.

    [6]Y.Han,J.J.Wang,X.P.Gu,L.F.Feng,Numerical simulation on micromixing of viscous lf uids in a stirred-tank reactor,Chem.Eng.Sci.74(0)(2012)9–17.

    [7]D.L.Marchisio,A.A.Barresi,CFD simulation of mixing and reaction:the relevance of the micro-mixing model,Chem.Eng.Sci.58(16)(2003)3579–3587.

    [8]Z.Wang,Q.H.Zhang,C.Yang,Z.S.Mao,X.Q.Shen,Simulation of barium sulfate precipitation using CFD and FM-PDF modeling in a continuous stirred tank,Chem.Eng.Technol.30(12)(2007)1642–1649.

    [9]J.Baldyga,M.Henczka,L.Makowski,Effect of mixing on parallel chemical reactions in a continuous- flow stirred-tank reactor,Chem.Eng.Res.Des.79(8)(2001)895–900.

    [10]J.Baldyga,L.Makowski,CFD modeling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank,Chem.Eng.Technol.27(3)(2004)225–231.

    [11]L.Vicum,S.Ottiger,M.Mazzotti,L.Makowski,J.Baldyga,Multi-scale modeling of a reactive mixing process in a semibatch stirred tank,Chem.Eng.Sci.59(8–9)(2004)1767–1781.

    [12]R.O.Fox,Computational Models for Turbulent Reacting Flows,Cambridge University Press,Cambridge,2003.

    [13]L.Wang,R.O.Fox,Comparison of micromixing models for CFD simulation of nanoparticle formation,AIChE J.50(9)(2004)2217–2232.

    [14]E.Gavi,L.Rivautella,D.L.Marchisio,M.Vanni,A.A.Barresi,G.Baldi,CFD modelling of nano-particle precipitation in confined impinging jet reactors,Chem.Eng.Res.Des.85(5)(2007)735–744.

    [15]E.Gavi,D.L.Marchisio,A.A.Barresi,On the importance of mixing for the production of nanoparticles,J.Dispers.Sci.Technol.29(4)(2008)548–554.

    [16]J.Sierra-Pallares,D.L.Marchisio,M.T.Parra-Santos,J.García-Serna,F.Castro,M.J.Cocero,A computational fluid dynamics study of supercritical antisolvent precipitation:mixing effects on particle size,AIChE J.58(2)(2012)385–398.

    [17]Y.Liu,R.O.Fox,CFD predictions for chemical processing in a confined impinging-jets reactor,AIChE J.52(2)(2006)731–744.

    [18]E.Gavi,D.L.Marchisio,A.A.Barresi,CFD modelling and scale-up of confined impinging jet reactors,Chem.Eng.Sci.62(8)(2007)2228–2241.

    [19]D.L.Marchisio,Large eddy simulation of mixing and reaction in a confined impinging jets reactor,Comput.Chem.Eng.33(2)(2009)408–420.

    [20]V.Raman,H.Pitsch,R.O.Fox,Eulerian transported probability density function subfilter model for large-eddy simulations of turbulent combustion,Combust.Theor.Model.10(3)(2006)439–548.

    [21]R.Yadav,A.Kushari,V.Eswaran,A.K.Verma,A numerical investigation of the Eulerian PDF transport approach for modeling of turbulent non-premixed pilot stabilized flames,Combust.Flame 160(3)(2013)618–634.

    [22]J.Lee,Y.Kim,Transported PDF approach and direct-quadrature method of moment for modeling turbulent piloted jet flames,J.Mech.Sci.Technol.25(1)(2011)3259–3265.

    [23]J.Akroyd,A.J.Smith,L.R.McGlashan,M.Kraft,Comparison of the stochastic fields method and DQMOM-IEM as turbulent reaction closures,Chem.Eng.Sci.65(20)(2010)5429–5441.

    [24]J.Akroyd,A.J.Smith,L.R.McGlashan,M.Kraft,Numerical investigation of DQMOMIEM as a turbulent reaction closure,Chem.Eng.Sci.65(6)(2010)1915–1924.

    [25]R.O.Fox,CFD models for analysis and design of chemical reactors,Adv.Chem.Eng.31(2006)231–305.

    [26]R.O.Fox,On the relationship between Lagrangian micro-mixing models and computational fluid dynamics,Chem.Eng.Process.37(6)(1998)521–535.

    [27]B.N.Murthy,J.B.Joshi,Assessment of standard k–ε,RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs,Chem.Eng.Sci.63(22)(2008)5468–5495.

    [28]X.X.Duan,X.Feng,C.Yang,Z.S.Mao,Numerical simulation of micro-mixing in stirred reactors using the engulfment model coupled with CFD,Chem.Eng.Sci.140(2)(2016)179–188.

    免费av不卡在线播放| 国产成人精品久久久久久| 久久国产精品大桥未久av| 永久免费av网站大全| 免费播放大片免费观看视频在线观看| 国产视频首页在线观看| a 毛片基地| 高清在线视频一区二区三区| 国产免费现黄频在线看| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| 观看av在线不卡| 九九久久精品国产亚洲av麻豆| 亚洲av电影在线观看一区二区三区| 午夜91福利影院| 久热久热在线精品观看| 国产成人一区二区在线| 国产午夜精品久久久久久一区二区三区| 国产国拍精品亚洲av在线观看| 18禁在线无遮挡免费观看视频| 妹子高潮喷水视频| 久久久精品免费免费高清| 夫妻性生交免费视频一级片| 九九久久精品国产亚洲av麻豆| av国产精品久久久久影院| 韩国av在线不卡| 青春草视频在线免费观看| 亚洲成色77777| 欧美精品一区二区免费开放| 啦啦啦在线观看免费高清www| 一区二区三区免费毛片| 亚洲图色成人| 最近中文字幕2019免费版| 日韩中字成人| 午夜福利视频精品| av线在线观看网站| 大陆偷拍与自拍| 国产国语露脸激情在线看| 男女国产视频网站| 在线观看www视频免费| 人妻 亚洲 视频| 日本-黄色视频高清免费观看| 草草在线视频免费看| 久久97久久精品| 啦啦啦啦在线视频资源| 在线精品无人区一区二区三| 日本色播在线视频| 精品少妇久久久久久888优播| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 欧美丝袜亚洲另类| 国产在线免费精品| 日本wwww免费看| 一二三四中文在线观看免费高清| 老熟女久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲一级一片aⅴ在线观看| 亚洲成人手机| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 黑人猛操日本美女一级片| 在线 av 中文字幕| 国产av一区二区精品久久| 22中文网久久字幕| 一级二级三级毛片免费看| 亚洲精品第二区| 另类亚洲欧美激情| 制服诱惑二区| 嫩草影院入口| 国产一区有黄有色的免费视频| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 曰老女人黄片| 国产精品不卡视频一区二区| 日本色播在线视频| 最后的刺客免费高清国语| av线在线观看网站| 男女免费视频国产| 国产片内射在线| 少妇人妻精品综合一区二区| 人人妻人人爽人人添夜夜欢视频| 久久精品久久久久久噜噜老黄| 高清不卡的av网站| av在线app专区| 色网站视频免费| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 国产色爽女视频免费观看| 欧美三级亚洲精品| 精品久久国产蜜桃| 日本黄色片子视频| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 丝袜美足系列| 成年av动漫网址| 女性生殖器流出的白浆| 久久久久视频综合| 国产日韩欧美视频二区| 国产白丝娇喘喷水9色精品| 国产精品秋霞免费鲁丝片| 国产精品一二三区在线看| 免费黄频网站在线观看国产| 男女免费视频国产| 国产精品人妻久久久影院| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 欧美亚洲 丝袜 人妻 在线| 国产综合精华液| 纯流量卡能插随身wifi吗| 久久久国产精品麻豆| 亚洲av成人精品一二三区| 在线观看免费高清a一片| 91成人精品电影| 大话2 男鬼变身卡| 国产成人av激情在线播放 | 日韩人妻高清精品专区| 欧美日韩av久久| 久久这里有精品视频免费| 午夜日本视频在线| 美女福利国产在线| 在线观看免费视频网站a站| 亚洲精品乱码久久久久久按摩| 亚洲av电影在线观看一区二区三区| 久热久热在线精品观看| 欧美三级亚洲精品| 青青草视频在线视频观看| 国产精品蜜桃在线观看| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 久久久精品区二区三区| 久久久久久久久久久免费av| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 亚洲经典国产精华液单| 97在线视频观看| 国产亚洲一区二区精品| 人体艺术视频欧美日本| 黑人猛操日本美女一级片| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 97超视频在线观看视频| 久久久精品区二区三区| 久久人妻熟女aⅴ| 国产亚洲午夜精品一区二区久久| 天堂俺去俺来也www色官网| 九草在线视频观看| 久久久国产一区二区| 97精品久久久久久久久久精品| 不卡视频在线观看欧美| 亚洲av福利一区| 最近2019中文字幕mv第一页| 国产毛片在线视频| 久久久久久伊人网av| 男人爽女人下面视频在线观看| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 亚洲精品第二区| 伦理电影大哥的女人| 97超视频在线观看视频| 国产精品一二三区在线看| 亚洲中文av在线| 一区二区av电影网| 丝袜脚勾引网站| 人人妻人人爽人人添夜夜欢视频| 777米奇影视久久| 一级黄片播放器| 国产在线免费精品| 成人影院久久| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看 | 熟女电影av网| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美在线精品| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 考比视频在线观看| 美女国产视频在线观看| 国产精品国产三级国产专区5o| 精品少妇黑人巨大在线播放| 日韩三级伦理在线观看| 三上悠亚av全集在线观看| 夜夜看夜夜爽夜夜摸| 日本猛色少妇xxxxx猛交久久| 熟女人妻精品中文字幕| 国产在线视频一区二区| 国产成人精品婷婷| 欧美成人午夜免费资源| 国产精品偷伦视频观看了| av卡一久久| 亚洲丝袜综合中文字幕| 国产国语露脸激情在线看| 美女国产高潮福利片在线看| 大香蕉久久网| 97在线视频观看| 18禁动态无遮挡网站| 中文字幕人妻丝袜制服| 一区二区三区四区激情视频| av专区在线播放| 亚洲美女黄色视频免费看| 色视频在线一区二区三区| 日日啪夜夜爽| 国产熟女午夜一区二区三区 | 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 精品一品国产午夜福利视频| 我的女老师完整版在线观看| 最近的中文字幕免费完整| 伦理电影大哥的女人| 一级a做视频免费观看| 晚上一个人看的免费电影| 人妻夜夜爽99麻豆av| 国产高清有码在线观看视频| 国产午夜精品一二区理论片| 在线观看三级黄色| 老熟女久久久| 成人黄色视频免费在线看| 一本一本综合久久| 岛国毛片在线播放| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 亚洲第一区二区三区不卡| 人人澡人人妻人| 一个人免费看片子| 少妇人妻 视频| 最近的中文字幕免费完整| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 丝袜喷水一区| 亚洲精品自拍成人| 久久综合国产亚洲精品| 午夜视频国产福利| 精品久久久久久久久亚洲| 黄片播放在线免费| 国产午夜精品一二区理论片| 国产亚洲欧美精品永久| av在线app专区| 国产午夜精品久久久久久一区二区三区| 大香蕉97超碰在线| 九草在线视频观看| 日韩强制内射视频| 精品亚洲成国产av| 免费播放大片免费观看视频在线观看| 欧美3d第一页| 天天躁夜夜躁狠狠久久av| 精品少妇内射三级| 亚洲国产日韩一区二区| 99九九线精品视频在线观看视频| 国产av一区二区精品久久| 亚洲av.av天堂| 亚洲精品中文字幕在线视频| 超色免费av| 亚洲精品国产av成人精品| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕制服av| freevideosex欧美| 热99国产精品久久久久久7| 成人免费观看视频高清| 国产高清国产精品国产三级| 国产色婷婷99| 亚洲av.av天堂| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕 | 嘟嘟电影网在线观看| 久久热精品热| 中文乱码字字幕精品一区二区三区| av有码第一页| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 国产片内射在线| 午夜影院在线不卡| 青春草亚洲视频在线观看| 日本91视频免费播放| 日韩中字成人| 香蕉精品网在线| 男女啪啪激烈高潮av片| 精品一区二区三区视频在线| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 麻豆成人av视频| 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 哪个播放器可以免费观看大片| 黄色视频在线播放观看不卡| 久久精品人人爽人人爽视色| 国产av国产精品国产| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| 亚洲国产精品国产精品| 国产欧美日韩综合在线一区二区| 如何舔出高潮| 欧美日韩精品成人综合77777| 国产精品国产三级国产专区5o| 亚洲精品aⅴ在线观看| 国模一区二区三区四区视频| 黑丝袜美女国产一区| 亚洲欧美日韩卡通动漫| 十八禁网站网址无遮挡| 日本av手机在线免费观看| 免费看不卡的av| 亚洲av福利一区| 精品亚洲成a人片在线观看| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 我的老师免费观看完整版| av国产久精品久网站免费入址| www.av在线官网国产| 久久午夜综合久久蜜桃| 日韩成人伦理影院| 国产高清国产精品国产三级| 在线播放无遮挡| 97在线视频观看| 日韩电影二区| 国产国拍精品亚洲av在线观看| 在线观看人妻少妇| 色吧在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲怡红院男人天堂| 国产精品蜜桃在线观看| 久久精品国产自在天天线| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 国产精品熟女久久久久浪| 亚洲成人av在线免费| 美女福利国产在线| 波野结衣二区三区在线| 一级毛片我不卡| 日韩熟女老妇一区二区性免费视频| 免费观看性生交大片5| 欧美激情 高清一区二区三区| a级毛片免费高清观看在线播放| 国产色婷婷99| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 18禁在线播放成人免费| 亚洲,欧美,日韩| 国产视频首页在线观看| 尾随美女入室| 日本爱情动作片www.在线观看| 尾随美女入室| xxxhd国产人妻xxx| 欧美日本中文国产一区发布| 亚洲欧美日韩卡通动漫| 黄色一级大片看看| 在线观看免费高清a一片| 大香蕉久久网| videossex国产| 夫妻性生交免费视频一级片| 一本久久精品| 国产免费福利视频在线观看| 久久久久精品性色| 国产黄色免费在线视频| 性色av一级| 蜜臀久久99精品久久宅男| 一边摸一边做爽爽视频免费| 久久99精品国语久久久| 免费看av在线观看网站| 国产熟女午夜一区二区三区 | 爱豆传媒免费全集在线观看| 亚洲三级黄色毛片| 一级毛片电影观看| 亚洲精华国产精华液的使用体验| 成人18禁高潮啪啪吃奶动态图 | 亚洲内射少妇av| 一级毛片aaaaaa免费看小| 九色成人免费人妻av| 成人综合一区亚洲| 九色成人免费人妻av| 久久婷婷青草| 久久久久人妻精品一区果冻| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天躁夜夜躁狠狠久久av| 欧美精品亚洲一区二区| 国产极品天堂在线| 妹子高潮喷水视频| 又大又黄又爽视频免费| av在线app专区| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 国产亚洲午夜精品一区二区久久| 赤兔流量卡办理| 国产一区亚洲一区在线观看| 如何舔出高潮| 亚洲国产日韩一区二区| 国产亚洲av片在线观看秒播厂| 美女大奶头黄色视频| 亚洲国产精品一区三区| 三上悠亚av全集在线观看| 肉色欧美久久久久久久蜜桃| 精品久久久久久久久av| 少妇熟女欧美另类| 99国产综合亚洲精品| 97在线视频观看| 精品亚洲乱码少妇综合久久| 久久久午夜欧美精品| 最后的刺客免费高清国语| 91精品三级在线观看| 色哟哟·www| 久久精品国产a三级三级三级| 大香蕉久久成人网| 日韩亚洲欧美综合| 日韩熟女老妇一区二区性免费视频| 中国国产av一级| 黄色欧美视频在线观看| 精品国产一区二区久久| a级毛色黄片| 男的添女的下面高潮视频| 欧美日韩国产mv在线观看视频| 欧美+日韩+精品| 免费久久久久久久精品成人欧美视频 | 日本午夜av视频| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 久久久久人妻精品一区果冻| 久久精品熟女亚洲av麻豆精品| 欧美日韩一区二区视频在线观看视频在线| 夜夜看夜夜爽夜夜摸| 观看美女的网站| 国产69精品久久久久777片| 久久久国产精品麻豆| 18禁在线播放成人免费| 午夜影院在线不卡| 亚洲精品亚洲一区二区| 亚洲五月色婷婷综合| 最近中文字幕2019免费版| 国产男女内射视频| 嘟嘟电影网在线观看| 亚洲中文av在线| 日韩伦理黄色片| 国产午夜精品久久久久久一区二区三区| 免费观看性生交大片5| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 在线观看免费视频网站a站| www.色视频.com| 精品卡一卡二卡四卡免费| 亚洲欧美成人精品一区二区| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 国产精品成人在线| 狂野欧美白嫩少妇大欣赏| 久久人妻熟女aⅴ| 一区二区三区免费毛片| 人人妻人人澡人人爽人人夜夜| 国产成人精品婷婷| 免费黄频网站在线观看国产| 制服诱惑二区| 午夜91福利影院| 一级爰片在线观看| 一区二区av电影网| 丝袜在线中文字幕| 欧美日韩成人在线一区二区| 精品人妻熟女av久视频| 制服丝袜香蕉在线| 丰满少妇做爰视频| 久久精品人人爽人人爽视色| 高清不卡的av网站| 国产探花极品一区二区| 丰满迷人的少妇在线观看| 久久这里有精品视频免费| 国产成人精品婷婷| 久久国产精品男人的天堂亚洲 | 国产熟女午夜一区二区三区 | 女人久久www免费人成看片| 国产一区亚洲一区在线观看| av线在线观看网站| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 成人亚洲精品一区在线观看| 在线观看国产h片| 久久婷婷青草| 爱豆传媒免费全集在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩伦理黄色片| 女的被弄到高潮叫床怎么办| 午夜av观看不卡| 久久精品久久久久久久性| 亚洲精品亚洲一区二区| 国产亚洲精品久久久com| 免费av不卡在线播放| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 国产成人精品婷婷| 黑人巨大精品欧美一区二区蜜桃 | 成人黄色视频免费在线看| 啦啦啦啦在线视频资源| 91国产中文字幕| 日韩一区二区三区影片| 亚洲精品自拍成人| 99热6这里只有精品| 亚洲av国产av综合av卡| 国产黄色视频一区二区在线观看| 美女大奶头黄色视频| 国产精品一区www在线观看| 永久免费av网站大全| 亚洲国产色片| 永久免费av网站大全| 亚洲国产色片| 美女大奶头黄色视频| 亚洲欧美一区二区三区国产| 久久免费观看电影| 欧美精品亚洲一区二区| 一级,二级,三级黄色视频| 少妇人妻精品综合一区二区| 亚洲av国产av综合av卡| 久久99热6这里只有精品| 久久99蜜桃精品久久| 久久99热6这里只有精品| 丰满饥渴人妻一区二区三| 人成视频在线观看免费观看| av女优亚洲男人天堂| 91久久精品电影网| 午夜激情av网站| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 男女免费视频国产| 美女国产高潮福利片在线看| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 韩国av在线不卡| freevideosex欧美| 国产视频内射| 又大又黄又爽视频免费| 一个人免费看片子| 少妇的逼好多水| 秋霞伦理黄片| 亚洲内射少妇av| 另类亚洲欧美激情| 成人漫画全彩无遮挡| 国产毛片在线视频| 国产高清有码在线观看视频| 国产成人精品福利久久| 亚洲高清免费不卡视频| 你懂的网址亚洲精品在线观看| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 丝袜在线中文字幕| 亚洲怡红院男人天堂| 国产成人精品一,二区| 午夜久久久在线观看| 日韩视频在线欧美| 高清av免费在线| 两个人免费观看高清视频| av天堂久久9| 久久精品国产亚洲av涩爱| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 寂寞人妻少妇视频99o| 欧美日韩av久久| 2022亚洲国产成人精品| 欧美3d第一页| 日韩精品有码人妻一区| 丁香六月天网| 2018国产大陆天天弄谢| 在线播放无遮挡| 国产高清有码在线观看视频| 波野结衣二区三区在线| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 日本黄色片子视频| 成人国产麻豆网| 极品少妇高潮喷水抽搐| 高清av免费在线| 国产伦理片在线播放av一区| av在线播放精品| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 在线观看人妻少妇| 免费观看性生交大片5| 久久久久久久久久人人人人人人| 大香蕉97超碰在线| 在线观看免费视频网站a站| 成人毛片a级毛片在线播放| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 精品久久国产蜜桃| 久久鲁丝午夜福利片| 国产精品久久久久成人av| 2022亚洲国产成人精品| 国产精品蜜桃在线观看| 美女主播在线视频| 久久精品国产亚洲av天美| 成人国产av品久久久| 亚洲av福利一区| 国产精品人妻久久久久久| 黄色毛片三级朝国网站| 亚洲av日韩在线播放| 久久99热6这里只有精品| 视频区图区小说| 黄色欧美视频在线观看| 青青草视频在线视频观看| 黑丝袜美女国产一区| 欧美日韩av久久| 亚洲美女黄色视频免费看| 久久久久久久国产电影| 精品国产一区二区久久| 亚洲精品国产av蜜桃| 日韩大片免费观看网站| 国产免费又黄又爽又色| 中国国产av一级| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图 | 国产av精品麻豆| 久久国产亚洲av麻豆专区| 亚洲第一区二区三区不卡|