• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of the Precision Casting Pouring System of Ti-3Al-2.5V Titanium Alloy

    2018-05-24 04:00:39,,,,,
    精密成形工程 2018年3期
    關(guān)鍵詞:充型稀有金屬有色

    , , , ,,

    (1. Beijing Engineering Research Center of Advanced Precise Forming of Titanium Alloys,Beijing Institute of Aeronautical Materials, Beijing 100095, China; 2. BAIMTEC Material Co.,Ltd., Beijing 100094, China)

    1 Introduction

    Due to low density, excellent mechanical properties at ambient temperature, good corrosion resistance and composite compatibility, titanium and its alloys have been widely used in the field of military and civil applications for aerospace structures, biomaterial substitutes[1—4]. However, the relatively high costs of metallic titanium (including the raw materials as well as fabrications) largely limit their application[4—9]. In the process of manufacturing a product, the cost can be directly or indirectly affected by many factors, such as material selection, fabrication process, fabrication equipment, metallurgical quality, fabrication properties and utilization rate of alloys, etc. Consequently, the comprehensive consideration of the performance and the cost of titanium alloys is a very important choice for utilization[10—11].

    Among the various titanium alloys, Ti-3Al-2.5V alloy (ASTM Grade9[12]) is originally used for hydraulic and fuel structures in conventional airplanes, and now it has been widely used to fabricate medical and dental implants, sport equipment as well as other civil applicants. Ti-3Al-2.5V alloy has the intermediate properties(mechanical strength and corrosion resistance) between metallic titanium and the Ti-6Al-4V alloy[13]. It is classified as a near-α, α-β alloy or super-α titanium alloy,and is referred to as “half 6-4” or TA18[14—18]. The strength of Ti-3Al-2.5V alloy is 20%~50% higher than that of pure titanium, and the welding performance and cold forming performance are better than that of Ti-6Al-4V alloy under room temperature and high temperature conditions[19]. Therefore, the use of Ti-3Al-2.5V alloy is a good choice for non-bearing parts, such as a cover.

    For the fabrication process of titanium alloy, investment (precision) casting is by far the most fully developed net-shape technology compared to Powder Metallurgy (PM), superplastic forming and precision forging[2,14,21], due to the utilization rate of precision casting alloy as high as 70%~90%[20]in the forming process. In contrast, the problem with the employment of PM is the presence of residual chlorides, which make the materials practically unwieldable. The precision casting of Ti-6Al-4V and other titanium alloys was reported in the literature, but little work has been performed on the castings of Ti-3Al-2.5V alloy. Previous studies showed that more than 95% of the Ti-3Al-2.5V alloys were forged into tubes[6,15,18,22—27]. Additionally,the traditional experiment and error methods usually lead to high cost and long reproduction cycle. In order to effectively solve this problem, numerical simulation has been used to study the mold filling and solidification in precision casting of titanium alloy[9,11,28—36], because it can predict the defect formation, optimize the casting pouring system, and reduce the cost by shortening the reproduction cycle.

    In this paper, Ti-3Al-2.5V titanium alloy with four different pouring systems under gravity field and vertical centrifugal field are studied by numerical simulation,while the mechanical properties and shrinkage defects of the castings are experimentally measured.

    2 Experimental procedures

    The cover castings were chosen as the research object. Typical schematic illustration of the cover is shown in Fig.1.

    Fig.1 Schematic illustration of the cover

    2.1 Numerical simulations

    The mold filling and solidification of Ti-3Al-2.5V alloy with four different pouring systems were simulated by a software ProCast. The detailed configurations and geometrical characteristics of four pouring systems are shown in Fig.2. Among the four pouring designs, (a) the top-bottom pouring is a combination of top-gating system and bottom-gating system; (b) the ingates are located at the side of the products in the spiral pouring system; (c) the ingates of the products are located directly in the pouring without any runner bars in the radial pouring system; (d) the tree pouring is composed of three branches, each branch contains four products. The first three pouring systems were numerically calculated in vertical centrifugal field and the last one in gravity field, respectively. The simulated pouring temperature was 1720 ℃, the mold preheating temperature was about 200 ℃ and the pouring time was 3 second.

    Fig.2 Configurations and geometrical characteristics of four experimental pouring systems

    2.2 Experimental Details

    The experimental materials including commercial pure Ti and an Al-V intermediate alloy were melted in an Induction Skull Melting (ISM) furnace, which can melt 20 kg titanium alloy at one time. The experimental process was carried out in the vacuum environment.Details of the casting process are shown in Tab.1. The mechanical specimens annealed with the same lot castings were machined according to ASTM E8 standard.The hardness specimens cut from the castings and the chemical samples were also annealing treated. X-ray radiography method was used to examine the shrinkage defects for all the finished castings.

    Tab.1 Parameters of the experimental and simulated pouring systems

    3 Results and discussion

    3.1 Numerical simulation

    Among the four pouring systems of the cover, topbottom pouring system (a) and tree pouring system (d)represented more optimal designs according to the computer-predicted shrinkage, respectively, as shown in Fig.3.It is obvious that the shrinkage mainly appears in the four thick area of the large end face and four thick ribs of small ports for all four different pouring systems. The shrinkage in top-bottom pouring system shows the largest number and area than that in the other pouring systems.

    Fig.3 Simulation results of shrinkage in four pouring systems

    The mold filling process of top-bottom pouring system in the gravity field is shown in Fig.4, and the red liquid represents metal flowing through the runner from the pouring into the mold cavity, while the green liquid on behalf of the cooled metal. Due to the gravity, fluid flows along the wall from the gate into the cavity (Fig.4a). With the pouring continues, the metal liquid continues to fill the mold in the fan-shaped form, and the last filling area is in the runner on both sides. Apparently, there is some surface turbulence in the process of mold filling. Splash and folding-over of the melt are observed when the liquid metal enters the mold cavity (Fig.4c and d).

    Fig.4 The four moments to show the mold filling process of the top-bottom pouring

    In contrast to the top-bottom pouring system, the spiral and radial static pouring systems (Fig.5a and 5b)have a common weakness of metal liquid turbulence.Due to the limited space in the radial pouring system, it is difficult for the subsequent coating and cleaning shell,and the temperature field of the products is affected by neighboring heat radiation effect besides the mold filling process[37]. The metal liquid turbulence increases the proportion of scab and sweat in the deep groove on the products.

    Fig.5 Mold filling process of the electric power tool with

    A satisfied filling result was obtained in the tree pouring system under the centrifugal force field (Fig.6).Because of the centrifugal effects, mold filling is different from static mold filling, free surface of liquid is circular arc during filling process and the melt of titanium alloy sticks to one side of the wall to fill the cavity in the centrifugal field. The centrifugal force can enhance the mold filling ability of liquid melt and help the metal liquid remove entrapped gas pores. Generally,the influence of gravity field upon the fluid flow is negligible in the centrifugal casting[3,33,38]. The fluid fills along the runner channels and stuffs the cavity layer by layer, and the final stuffing place is the small port of the casting. It avoids more shrinkage defects appearing in the big end surface where subsequently machined four holes, because the final fusion area (i.e. independent liquid zone) is prone to shrinkage.

    3.2 Mechanical properties

    After pouring, the chemical composition of the casting parts in top-bottom pouring system and tree pouring system were tested, shown in Tab.2. It can be seen that the chemical composition of static casting(top-bottom pouring) fluctuates obviously (the content scope of oxygen). The composition segregation leads to inhomogeneity of microstructure, and even unstable mechanical properties.

    Fig.7 shows the mechanical properties (a)σbandσ0.2(b)δ5andΨof the parts in top-bottom pouring static system and tree pouring centrifugal system.Compared to the historical production data (tensile strength: 700~830 MPa; elongation: 13%~16%), it is obvious that the values of the tensile strength in tree pouring are higher than that of top-bottom pouring system.

    Fig.8 shows the values of Vickers hardness in top-bottom pouring static system and tree pouring centrifugal system. The hardness test specimen and the testing surface of the parts are shown in

    Fig.8a. Compared with the historical production data (about 230~270) of Ti-3Al-2.5V parts after annealed in different batches, the hardness values of the two systems within the scope of the historical production data. The value of hardness in bottom pouring is similar to that of tree pouring, but the value of hardness in top pouring is relatively low. In the mold filling process of top pouring system, the area of hardness test specimen finally filled is prone to shrinkage, leading to a relatively low hardness value.

    Fig.6 Filling sequence of tree pouring system under the centrifugal force field

    Tab.2 Chemical composition of Ti-3Al-2.5V parts (wt.%).

    Fig.7 Mechanical properties of top-bottom and tree pouring systems

    Fig.8 Vickers hardness of top-bottom and tree pouring system

    3.3 Shrinkage

    The shrinkage distribution of the top-bottom pouring and the tree pouring system were compared with that of computer-predicted, shown in Fig.9 and Fig.10. The predicted shrinkage level coincided wellwith the experimental observations. The shrinkage defects are near to the four thicker areas in the big end surface and are easily exposed to the surface after machining. The shrinkage defects in the top-bottom pouring system are larger than that in the tree pouring system.

    Fig.9 Experimental castings and X-ray radio photographs of top-bottom pouring system

    Fig.10 Experimental castings and X-ray radio photographs of tree pouring

    In short, it indicates that the numerical simulation can be used as an efficient tool to aid in casting design and shrinkage control. Based on the comprehensive evaluation of various performances, the tree pouring(centrifugal casting) system seems more ideal. But the shrinkage in the big end surface has the risk of exposure after machining, and it needs to be get rid of by further process optimization.

    4 Conclusions

    In summary, the mold filling and solidification of Ti-3Al-2.5V alloy with four different pouring systems were studied by means of numerical simulation. The mechanical properties and shrinkage defects of the castings were examined by actual experiments. According to the experimental results, we can conclude that.

    1) The chemical composition of static (top-bottom)pouring system is not stable, and oxygen content range is very large, which can result in uneven alloy microstructures, and even unstable mechanical properties.

    2) The different casting systems have little influence on the hardness or the mechanical properties of Ti-3Al-2.5V casting alloy.

    3) The predicted shrinkage level coincided well with the results of X-ray radio photographs. The defects of static (top-bottom) pouring system are bigger than that of centrifugal (tree) pouring system. So the numerical simulation is a good method to predict the shrinkage defect distribution effectively.

    References:

    [1] 劉婉穎, 朱毅科, 林元華, 等. 熱處理對TC4鈦合金顯微組織和力學性能的影響[J]. 材料導報 B: 研究篇,2013, 27(9): 108—111.LIU Wan-ying, ZHU Yi-ke, LIN Yuan-hua. et al. Influence of Heat Treatment on Microstructure and Mechanical Properties of TC4 Titanium Alloy[J]. Materials Review B, 2013, 27(9): 108—111.

    [2] POLISHETTY Ashwin, GOLDBERG Moshe, LITTLEFAIR Guy, et al. A Preliminary Assessment of Machinability of Titanium Alloy Ti-6Al-4V during Thin Wall Machining Using Trochoidal Milling[J]. Procedia Engineering, 2014, 97: 357—364.

    [3] LI Chang-yun, WANG Hai-yan, WU Shi-ping, et al.Reserach on Mould Filling and Solidification of Titanium Alloy in Vertical Centrifugal Casting[J]. Rare Metal Materials and Engineering, 2010, 39(3): 388—392.

    [4] CHENG W W, LIN J H C, JU C P. Bismuth Effect on Castability and Mechanical Properties of Ti-6Al-4V Alloy Cast in Copper Mold[J]. Materials Letters, 2003, 57:2591—2596.

    [5] BOYER R R. An Overview on the Use of Titanium in the Aerospace Industry[J]. Metal Materials and Engineering A, 1996, 213: 103—114.

    [6] BOLZONIE L, RUIZ-NAVAS M, GORDO E. Influence of Sintering Parameters on the Properties of Power Metallurgy Ti-3Al-2.5V Alloy[J]. Materials Characterization,2013, 84: 48—57.

    [7] GROVE T, K?HLER J, DENKENA B. Residual Stress in Milled β-Annealed Ti6Al4V[C]. Procedia CIRP, 2014.

    [8] FENG Xin, QIU Jian-ke, MA Ying-jie, et al. Influence of Processing Conditions on Microstructure and Mechanical Properties of Large Thin-Wall Centrifugal Ti-6Al-4V Casting[J]. Journal of Materials Science & Technology,2016, 32: 362—371.

    [9] CHU Yu-dong, CHANG Hui, HUANG Dong, et al. Numerical Simulation of Centrifugal Casting Process of ZTC4 Ti Alloy Case[J]. Special Casting & Nonferrous Alloys, 2012, 32: 133—137.

    [10] GREEN E A, COULON J F. Cost Considerations in Using Titanium[C]. AIAA Commercial Aircraft Design and Operation Meeting, 1967.

    [11] 肖樹龍, 陳玉勇, 朱洪艷, 等. 大型復雜薄壁鈦合金鑄件熔模精密鑄造研究現(xiàn)狀與進展[J]. 稀有金屬材料與工程, 2006, 35(5): 678—681.XIAO Shu-long, CHEN Yu-yong, ZHU Hong-yan, et al.Recent Advances on Precision Casting of Large Thin Wall Complex Castings of Titanium Alloys[J]. Rare Metal Materials and Engineering, 2006, 35(5): 678—681.

    [12] JAVIDRAD F, FARGHADANI H, HEDARI M. The MPAW of Ti-3Al-2.5V Thin Sheets and Its Effects on Mechanical and Microstructural Properties[J]. Journal of Materials Engineering and Performance, 2014, 23: 666—672.

    [13] 趙瑞斌, 張亮, 王紅, 等. 低成本制備 Ti-3Al-2V 合金精密鑄件的可行性研究[J]. 鈦工業(yè)進展, 2016, 33(1):15—18.ZHAO Rui-bin, ZHANG Liang, WANG Hong, et al.Study on Feasibility of Low Cost Ti-3Al-2.5V Alloy Precision Casting[J]. Titanium Industry Progress, 2016, 33(1):15—18.

    [14] JOVANOVI? M T, TADI? S, ZEC S, et al. The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti-6Al-4V Alloy[J]. Materials and Design, 2006, 27:192—199.

    [15] BOLZONI L, RUIZ-NAVAS E M, GORDO E. Influence of Vacuum Hot-pressing Temperature on the Microstructure and Mechanical Properties of Ti-3Al-2.5V Alloy Obtained by Blended Elemental Master Alloy Additions Powders[J]. Materials Chemistry and Physics, 2012, 137:608—606.

    [16] 張旺峰, 王玉會, 李艷, 等. 高強度 TA18合金管材性能評價與控制方法研究[J]. 稀有金屬材料與工程, 2012,41(7): 1239—1242.ZHANG Wang-feng, WANG Yu-hui, LI Yan, et al. Performance Evaluation and Control Methods of High Strength TA18 Alloy Tube[J]. Rare Metal Materials and Engineering, 2012, 41(7): 1239—1242.

    [17] 楊英麗, 張樹啟, 張鵬省. Ti-3Al-2.5V合金的熱穩(wěn)定性研究[J]. 鈦工業(yè)進展, 2000(5): 33—35.YANG Ying-li, ZHANG Shu-qi, ZHANG Peng-xing.Research on the Thermal Stability of Ti-3Al-2.5V Alloy[J]. Titanium Industry Progress, 2000(5): 33—35.

    [18] 謝群良, 汪建林. 工藝對 Ti-3Al-2.5V鈦合金無縫管的表面和性能影響[J]. 上海鋼研, 2002(2): 9—12.XIE Qun-liang, WANG Jian-lin. The Effect of Process on the Surface and Property of Ti-3Al-2.5V Seamless Tube[J]. Shonghai Steel Iron Research, 2002(2): 9—12.

    [19] 張旺峰, 李艷, 王玉會, 等. Ti-3Al-2.5V鈦合金管材研究進展[J]. 材料導報 A: 綜述篇, 2011, 25(12): 133—134.ZHANG Wang-feng, LI Yan, WANG Yu-hui, et al. Research Progress in Ti-3Al-2.5V Alloy Tube[J]. Materials Review A, 2011, 25(12): 133—134.

    [20] 盧新昌. 鈦及鈦合金熔模的感應凝殼鑄造法[J]. 鑄造,2005, 54(5): 425—428.LU Xin-chang. Induction Skull Casting for Titanium and Titanium Alloy Casting[J]. Foundry, 2005, 54(5): 425—428.

    [21] MARKOVSKY P E. Improvement of Structure and Mechanical Properties of Cast Titanium Alloys Using Rapid Heat Treatment[J]. Materials Science and Engineering A,1995, 190: 9—12.

    [22] 齊元昊, 楊亞社, 南莉, 等. 高強Ti-3Al-2.5V合金管材的組織與性能[J]. 特種鑄造及有色合金, 2011, 31(11):1062—1065.QI Yuan-hao, YANG Ya-she, NAN Li, et al. Microstructure and Properties of High Strength Ti-3Al-2.5V Ti Alloy Pipe[J]. Special Casting & Nonferrous Alloys, 2011,31(11): 1062—1065.

    [23] 楊建朝, 席錦會, 楊亞社, 等. 航空航天用 TA18鈦合金管材的研發(fā)及應用[J]. 鈦工業(yè)進展, 2014, 31(4): 6—10.YANG Jian-chao, XI Jin-hui, YANG Ya-she, et al. Research and Application of TA18 Titanium Alloy Tube in Aerospace Industry[J]. Titanium Industry Progress, 2014,31(4): 6—10.

    [24] 南莉, 楊亞社, 齊元昊, 等. 航空用高強 TA18鈦合金管材的軋制工藝[J]. 稀有金屬材料與工程, 2013, 42(1):166—170.NAN Li, YANG Ya-she, QI Yuan-hao, et al. Rolling Process of High-Strength TA18 Titanium Alloy Tubes for Aviation[J]. Rare Metal Materials and Engineering, 2013,42(1): 166—170.

    [25] BOLZONI L, RUIZ-NAVAS E M, GORDO E. Investigation of the Factors Influencing the Tensile Behaviours of PM Ti-3Al-2.5V Alloy[J]. Materials and Engineering A,2014, 609: 266—272.

    [26] JIANG Zhi-qiang, ZHAN Mei, YANG He, et al. Deformation Behavior of Medium-strength TA18 High-pressure Tubes During NC Bending with Different Bending Radii[J]. Chinese Journal of Aeronautics, 2011, 24:657—664.

    [27] LI H, YANG H, SONG F F, et al. Springback Characterization and Behaviors of High-strength Ti-3Al-2.5V Tube in Cold Rotary Draw Bending[J]. Journal of Materials Processing Technology, 2012, 212: 1973—1987.

    [28] 王曉林, 趙志龍, 馬余選, 等. 大型復雜 ZTC4合金鑄件的充型凝固過程模擬[J]. 特種鑄造及有色合金, 2011,31(6): 517—520.WANG Xiao-lin, ZHAO Zhi-long, MA Yu-xuan, et al.Numerical Simulation of Filling and Solidification of Large Complex ZTC4 Alloy Castings[J]. Special Casting& Nonferrous Alloys, 2011, 31(6): 517—520.

    [29] 王歡, 王紅紅, 周建新, 等. 復雜鈦合金鑄件立式離心鑄造過程的數(shù)值模擬[J]. 特種鑄造及有色合金, 2015,35(2): 178—181.WANG Huan, WANG Hong-hong, ZHOU Jian-xin, et al.Numerical Simulation of Vertical Centrifugal Casting Process for Complex Ti Alloy Casting[J]. Special Casting& Nonferrous Alloys, 2015, 35(2): 178—181.

    [30] 史成龍, 崔新鵬. 某細長結(jié)構(gòu)Ti-6Al-4V鈦合金件精密鑄造工藝模擬[J]. 特種鑄造及有色合金, 2016, 36(2):182—185.SHI Cheng-long, CUI Xin-peng. Simulation of Investment Castings for Typical Titanium Alloy (Ti-6Al-4V)Parts with Slender Structure[J]. Special Casting & Nonferrous Alloys, 2016, 36(2): 182—185.

    [31] WU Meng-huai, AUGTHUN Michael, WAGNER Ingo,et al. Numerical Simulation of the Casting Process of Titanium Tooth Crowns and Bridges[J]. Journal of Materials Science: Materials in Medicine, 2001, 12: 485—490.

    [32] WU Meng-huai, WAGNER Ingo, SAHM P R, et al. Numerical Simulation of the Casting Process of Titanium Removable Partial Denture Frameworks[J]. Journal of Materials Science: Materials in Medicine, 2002, 13:301—306.

    [33] WU Shi-ping, LIU Dong-rong, GUO Jing-jie, et al. Numerical Simulation of Microsturcture Evolution of Ti-6Al-4V Alloy in Vertical Centrifugal Casting[J]. Materials Science and Engineering A, 2006, 426: 240—249.

    [34] 賈麗敏. TC4合金立式離心充型凝固行為研究[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2010.JIA Li-min. Behaviors of Mold-Filling and Solidification for Vertical Centrifugally Cast TC4 Alloys[D]. Harbin:Harbin Institute of Technology, 2010.

    [35] JIA Li-min, MING Da, LI Min, et al. Casting Defects of Ti-6Al-4V Alloy in Vertical Centrifugal Casting Processes with Graphite Molds[J]. Metals and Materials International, 2012, 18(1): 55—61.

    [36] 劉劍, 楊屹, 盧東. 基于 ProCAST真空條件下鈦合金熔模鑄造的探究[J]. 鑄造, 2008, 57(11): 1155—1158.LIU Jian, YANG Yi, LU Dong. Titanium Alloy Investment Casting Under Vacuum Circumstance Based on ProCAST[J]. Foundry, 2008, 57(11): 1155—1158.

    [37] FU P X, KANG X H, MA Y C, et al. Centrifugal Casting of TiAl Exhaust Valves[J]. Intermetallics, 2008, 16:130—138.

    [38] 袁芳. 離心力場下鈦合金充型流動及鑄造缺陷的研[D].哈爾濱: 哈爾濱工業(yè)大學, 2006.YUAN Fang. Study on Mold Filling and Defect of Casting of Titanium Alloys Under Centrifugal Force Field[D].Harbin: Harbin Institute of Technology, 2006.

    猜你喜歡
    充型稀有金屬有色
    基于Flow-3D的風電輪轂澆注系統(tǒng)設(shè)計及優(yōu)化
    大型行星架鑄鋼件澆注系統(tǒng)設(shè)計
    大型鑄鍛件(2021年3期)2021-04-30 05:13:12
    稀有金屬鉬資源回收現(xiàn)狀及進展
    模擬仿真在壓鑄模具中的具體應用
    2018年9~10月稀有金屬報價
    2018年3~4月稀有金屬報價
    涼爽有色
    Coco薇(2017年8期)2017-08-03 02:06:57
    大型鋁合金發(fā)動機殼體低壓鑄造充型速度研究
    三十載風華正茂 永不朽有色情懷
    中文字幕人妻丝袜一区二区| 亚洲国产欧美人成| 无遮挡黄片免费观看| 久久国产精品影院| 韩国av一区二区三区四区| 欧美中文综合在线视频| 国产精品美女特级片免费视频播放器| 少妇裸体淫交视频免费看高清| 国产精品,欧美在线| 无遮挡黄片免费观看| 国产免费一级a男人的天堂| 熟妇人妻久久中文字幕3abv| 制服人妻中文乱码| xxxwww97欧美| 毛片女人毛片| 日本a在线网址| 免费高清视频大片| 免费电影在线观看免费观看| 国产精品影院久久| 精品一区二区三区人妻视频| 老司机在亚洲福利影院| 国产伦在线观看视频一区| 国产在线精品亚洲第一网站| 久久草成人影院| a在线观看视频网站| 最近视频中文字幕2019在线8| 色综合亚洲欧美另类图片| 男人舔奶头视频| 国产免费男女视频| 亚洲欧美日韩高清在线视频| 日韩欧美在线二视频| 99热6这里只有精品| 性色av乱码一区二区三区2| 99热只有精品国产| 无遮挡黄片免费观看| 国产男靠女视频免费网站| 亚洲av五月六月丁香网| 亚洲人成网站高清观看| 国产欧美日韩精品亚洲av| 国产色婷婷99| 99久久精品国产亚洲精品| 精品欧美国产一区二区三| 噜噜噜噜噜久久久久久91| 91麻豆精品激情在线观看国产| 亚洲美女视频黄频| 一a级毛片在线观看| 久久久久久久久久黄片| 亚洲av免费在线观看| 亚洲熟妇熟女久久| 国产欧美日韩精品亚洲av| 88av欧美| 日韩欧美三级三区| eeuss影院久久| 国产三级中文精品| 亚洲成人久久性| 中文亚洲av片在线观看爽| 黄色成人免费大全| 岛国在线观看网站| 亚洲午夜理论影院| 在线国产一区二区在线| 久久久精品大字幕| 午夜久久久久精精品| 老司机午夜福利在线观看视频| 在线观看午夜福利视频| 日韩av在线大香蕉| 母亲3免费完整高清在线观看| 男女之事视频高清在线观看| 麻豆国产97在线/欧美| 久久久成人免费电影| 在线视频色国产色| 午夜福利18| 无遮挡黄片免费观看| av中文乱码字幕在线| 成人国产一区最新在线观看| 一进一出抽搐gif免费好疼| 亚洲中文字幕一区二区三区有码在线看| 三级男女做爰猛烈吃奶摸视频| 少妇熟女aⅴ在线视频| 精品久久久久久久人妻蜜臀av| 久久国产精品人妻蜜桃| 亚洲国产中文字幕在线视频| 99久久精品国产亚洲精品| 好男人在线观看高清免费视频| 欧美激情在线99| 淫秽高清视频在线观看| 深夜精品福利| 在线免费观看的www视频| 他把我摸到了高潮在线观看| 午夜免费观看网址| 国产一区在线观看成人免费| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区三区四区免费观看 | 国产成人av激情在线播放| 精品日产1卡2卡| 国产亚洲欧美98| 亚洲第一欧美日韩一区二区三区| 51国产日韩欧美| 美女cb高潮喷水在线观看| 久久天躁狠狠躁夜夜2o2o| 舔av片在线| 90打野战视频偷拍视频| 亚洲狠狠婷婷综合久久图片| 黄色视频,在线免费观看| 亚洲av第一区精品v没综合| 丝袜美腿在线中文| 国产精品 国内视频| 一个人观看的视频www高清免费观看| 欧美日韩乱码在线| 香蕉丝袜av| 日韩欧美免费精品| 51午夜福利影视在线观看| 观看美女的网站| 一个人免费在线观看电影| 一个人观看的视频www高清免费观看| 老鸭窝网址在线观看| 亚洲精华国产精华精| 欧美xxxx黑人xx丫x性爽| 久久久久国内视频| 色播亚洲综合网| 香蕉丝袜av| 免费看十八禁软件| 精品熟女少妇八av免费久了| 亚洲国产色片| 51国产日韩欧美| 老司机午夜福利在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲男人的天堂狠狠| 亚洲天堂国产精品一区在线| 两个人看的免费小视频| 制服人妻中文乱码| 欧美大码av| 夜夜躁狠狠躁天天躁| 午夜精品一区二区三区免费看| 老熟妇乱子伦视频在线观看| 日本免费一区二区三区高清不卡| 亚洲欧美日韩卡通动漫| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 欧美一级毛片孕妇| 国产午夜福利久久久久久| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 全区人妻精品视频| 在线观看美女被高潮喷水网站 | 中文在线观看免费www的网站| 一级黄色大片毛片| 丰满乱子伦码专区| 久久伊人香网站| 国内精品美女久久久久久| 亚洲熟妇中文字幕五十中出| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 国产精品,欧美在线| 国产美女午夜福利| 国产亚洲精品一区二区www| 欧美bdsm另类| 国产亚洲精品久久久com| 午夜视频国产福利| 久久久成人免费电影| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 亚洲av美国av| 女人被狂操c到高潮| 黄色成人免费大全| 欧美性猛交╳xxx乱大交人| 色av中文字幕| 两个人的视频大全免费| av视频在线观看入口| 九色国产91popny在线| 久久久久久九九精品二区国产| 欧美性猛交╳xxx乱大交人| 日韩欧美在线二视频| 三级国产精品欧美在线观看| 国产黄色小视频在线观看| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| 免费人成视频x8x8入口观看| 欧美高清成人免费视频www| 一a级毛片在线观看| 日韩亚洲欧美综合| 欧美激情久久久久久爽电影| 国产欧美日韩精品亚洲av| 国产精品亚洲av一区麻豆| 亚洲av二区三区四区| 国产精品三级大全| 精品人妻一区二区三区麻豆 | 男人的好看免费观看在线视频| 真人做人爱边吃奶动态| 一区福利在线观看| 少妇人妻精品综合一区二区 | 日韩人妻高清精品专区| 日韩欧美精品免费久久 | 婷婷精品国产亚洲av在线| 女人十人毛片免费观看3o分钟| 久久国产精品人妻蜜桃| 欧美bdsm另类| 久久久久性生活片| 不卡一级毛片| 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av| 男女下面进入的视频免费午夜| 精品一区二区三区视频在线 | 国产亚洲av嫩草精品影院| 91在线观看av| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 国产高清视频在线播放一区| 精品久久久久久久末码| 国产探花极品一区二区| 久久久久久久午夜电影| 99热这里只有是精品50| 男女做爰动态图高潮gif福利片| 熟女人妻精品中文字幕| 成人特级黄色片久久久久久久| 叶爱在线成人免费视频播放| 啦啦啦韩国在线观看视频| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 日本熟妇午夜| 亚洲无线在线观看| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 欧美中文日本在线观看视频| 在线观看av片永久免费下载| 成人无遮挡网站| 91九色精品人成在线观看| 97超视频在线观看视频| 色综合欧美亚洲国产小说| 悠悠久久av| 99国产精品一区二区蜜桃av| 一本综合久久免费| 久久香蕉国产精品| 日本一本二区三区精品| 国产精品av视频在线免费观看| 美女 人体艺术 gogo| 一级黄色大片毛片| 91久久精品国产一区二区成人 | 国产成年人精品一区二区| 老司机午夜福利在线观看视频| 身体一侧抽搐| 午夜免费激情av| 国产亚洲精品一区二区www| 日本精品一区二区三区蜜桃| 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 午夜福利在线观看吧| 一本综合久久免费| 噜噜噜噜噜久久久久久91| 久久国产精品人妻蜜桃| 国产伦精品一区二区三区视频9 | 午夜福利在线在线| tocl精华| 一区二区三区激情视频| 一区二区三区免费毛片| 色老头精品视频在线观看| 久久久久久大精品| 一级毛片女人18水好多| 88av欧美| 观看免费一级毛片| 免费av毛片视频| 国产单亲对白刺激| 免费看a级黄色片| 亚洲欧美日韩高清专用| 亚洲中文字幕日韩| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| 国产高清有码在线观看视频| 欧美+日韩+精品| 亚洲精品国产精品久久久不卡| 级片在线观看| 久久亚洲精品不卡| 色av中文字幕| 五月伊人婷婷丁香| 成年女人毛片免费观看观看9| 悠悠久久av| 午夜老司机福利剧场| 搞女人的毛片| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 长腿黑丝高跟| 国产色婷婷99| 国产高清视频在线观看网站| 99久久成人亚洲精品观看| 国产野战对白在线观看| 国产视频内射| 99国产极品粉嫩在线观看| 亚洲成av人片免费观看| 一个人免费在线观看的高清视频| 免费人成在线观看视频色| 亚洲激情在线av| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 首页视频小说图片口味搜索| 国产三级中文精品| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 欧美成人a在线观看| 国产伦在线观看视频一区| 国产一区二区亚洲精品在线观看| 欧美大码av| 午夜a级毛片| xxxwww97欧美| av中文乱码字幕在线| 成人av在线播放网站| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 精品福利观看| 搡老妇女老女人老熟妇| 国产探花极品一区二区| 国产精品女同一区二区软件 | 中文字幕人妻熟人妻熟丝袜美 | 99热精品在线国产| 美女黄网站色视频| 久久国产精品人妻蜜桃| 97超视频在线观看视频| 级片在线观看| 久久中文看片网| 国产成人啪精品午夜网站| 亚洲国产精品999在线| 在线看三级毛片| 91字幕亚洲| 欧美色视频一区免费| 一区二区三区激情视频| 色播亚洲综合网| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 成人永久免费在线观看视频| 天美传媒精品一区二区| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添小说| 国产成年人精品一区二区| 天堂影院成人在线观看| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 日韩 欧美 亚洲 中文字幕| 女人被狂操c到高潮| 精品人妻1区二区| 中文字幕精品亚洲无线码一区| 99久久久亚洲精品蜜臀av| 欧美成狂野欧美在线观看| 精品不卡国产一区二区三区| 免费看十八禁软件| 国产精品久久久久久久电影 | 三级国产精品欧美在线观看| 99在线视频只有这里精品首页| 午夜福利在线观看免费完整高清在 | 亚洲最大成人手机在线| av在线蜜桃| 1024手机看黄色片| 欧美一区二区精品小视频在线| 俺也久久电影网| 一个人看视频在线观看www免费 | 国产成+人综合+亚洲专区| 午夜福利免费观看在线| 91九色精品人成在线观看| 天天添夜夜摸| 欧美绝顶高潮抽搐喷水| 欧美在线一区亚洲| 亚洲av二区三区四区| 夜夜爽天天搞| 在线观看66精品国产| 亚洲精华国产精华精| 国产精品1区2区在线观看.| 老鸭窝网址在线观看| 成年版毛片免费区| 日韩欧美精品免费久久 | 亚洲av美国av| 99热精品在线国产| a级毛片a级免费在线| 日本一本二区三区精品| 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 久久香蕉国产精品| 久久精品国产综合久久久| 舔av片在线| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 99久久99久久久精品蜜桃| 乱人视频在线观看| 亚洲欧美日韩东京热| 亚洲七黄色美女视频| 岛国在线观看网站| 成人无遮挡网站| 九九在线视频观看精品| 久久九九热精品免费| 999久久久精品免费观看国产| 国产精品嫩草影院av在线观看 | 丁香六月欧美| 国产精品爽爽va在线观看网站| 看免费av毛片| 亚洲av日韩精品久久久久久密| 亚洲av中文字字幕乱码综合| 深爱激情五月婷婷| 欧美日韩瑟瑟在线播放| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女| 亚洲av免费高清在线观看| 悠悠久久av| bbb黄色大片| 人人妻,人人澡人人爽秒播| 免费观看的影片在线观看| 欧美乱色亚洲激情| 有码 亚洲区| 国产在线精品亚洲第一网站| 麻豆国产97在线/欧美| 中文字幕高清在线视频| 我要搜黄色片| 网址你懂的国产日韩在线| 日本 欧美在线| 亚洲成人免费电影在线观看| 精品熟女少妇八av免费久了| 国产乱人视频| 一本久久中文字幕| 一区二区三区激情视频| 麻豆国产av国片精品| 好男人电影高清在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲自拍偷在线| 午夜福利成人在线免费观看| 色吧在线观看| 国产精品电影一区二区三区| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 中亚洲国语对白在线视频| 欧美三级亚洲精品| 三级毛片av免费| 国产午夜精品久久久久久一区二区三区 | 成人永久免费在线观看视频| 夜夜爽天天搞| 不卡一级毛片| 国内精品久久久久久久电影| 搡老岳熟女国产| 久久伊人香网站| 美女高潮喷水抽搐中文字幕| 人人妻人人看人人澡| 国产黄色小视频在线观看| 国产乱人伦免费视频| 在线观看午夜福利视频| 久久久久久九九精品二区国产| 免费在线观看亚洲国产| www日本黄色视频网| 欧美国产日韩亚洲一区| 久久精品影院6| 免费av观看视频| а√天堂www在线а√下载| 少妇高潮的动态图| 禁无遮挡网站| 成人国产一区最新在线观看| 少妇的丰满在线观看| 99久久精品热视频| 成人一区二区视频在线观看| 日本免费a在线| 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 亚洲精品亚洲一区二区| 成人亚洲精品av一区二区| 久久中文看片网| 国产激情偷乱视频一区二区| 狠狠狠狠99中文字幕| 黄色成人免费大全| 成人性生交大片免费视频hd| 美女大奶头视频| 国产av一区在线观看免费| 久久久久久久久久黄片| 91在线观看av| 国产精品久久视频播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 亚洲国产精品sss在线观看| 在线播放国产精品三级| 国产亚洲欧美在线一区二区| 亚洲欧美日韩东京热| 18禁裸乳无遮挡免费网站照片| ponron亚洲| 少妇的丰满在线观看| 国内揄拍国产精品人妻在线| 九色国产91popny在线| 欧美性猛交黑人性爽| 一个人看视频在线观看www免费 | av天堂在线播放| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 成人永久免费在线观看视频| 俺也久久电影网| 97碰自拍视频| 亚洲久久久久久中文字幕| 十八禁网站免费在线| 国产熟女xx| 亚洲五月天丁香| 12—13女人毛片做爰片一| 欧美中文日本在线观看视频| 精品乱码久久久久久99久播| 国产熟女xx| 国模一区二区三区四区视频| 又粗又爽又猛毛片免费看| 色av中文字幕| 亚洲熟妇熟女久久| 国内精品一区二区在线观看| 男人和女人高潮做爰伦理| 国产野战对白在线观看| 国产又黄又爽又无遮挡在线| 国产精品日韩av在线免费观看| 757午夜福利合集在线观看| 给我免费播放毛片高清在线观看| 欧美日本亚洲视频在线播放| 99久久成人亚洲精品观看| 国产精品日韩av在线免费观看| 岛国在线观看网站| 别揉我奶头~嗯~啊~动态视频| 丁香欧美五月| 夜夜躁狠狠躁天天躁| 午夜亚洲福利在线播放| 欧美日韩黄片免| 国产97色在线日韩免费| 18禁国产床啪视频网站| 国产熟女xx| a在线观看视频网站| 婷婷精品国产亚洲av在线| www.熟女人妻精品国产| 亚洲av电影在线进入| 老熟妇乱子伦视频在线观看| 熟女人妻精品中文字幕| 搡女人真爽免费视频火全软件 | 美女高潮喷水抽搐中文字幕| 久久精品亚洲精品国产色婷小说| 免费观看的影片在线观看| 午夜福利18| 国产高清三级在线| 观看美女的网站| 欧美日韩黄片免| 久久草成人影院| 免费高清视频大片| 婷婷亚洲欧美| 国产美女午夜福利| 99久久精品热视频| 在线播放无遮挡| 俺也久久电影网| 国产午夜精品久久久久久一区二区三区 | 精品不卡国产一区二区三区| 久久久久性生活片| 丰满人妻一区二区三区视频av | 国产一区二区激情短视频| 免费无遮挡裸体视频| 国产精品美女特级片免费视频播放器| 最新中文字幕久久久久| 麻豆一二三区av精品| 免费搜索国产男女视频| 此物有八面人人有两片| 天堂影院成人在线观看| 超碰av人人做人人爽久久 | 嫩草影院入口| av天堂在线播放| 久久人妻av系列| 偷拍熟女少妇极品色| 欧美三级亚洲精品| 99久久综合精品五月天人人| 国产一区二区在线av高清观看| 网址你懂的国产日韩在线| 美女 人体艺术 gogo| 久久久久久久久大av| 欧美乱码精品一区二区三区| 久久性视频一级片| 成人三级黄色视频| 啦啦啦韩国在线观看视频| 夜夜爽天天搞| 午夜免费成人在线视频| 亚洲av成人精品一区久久| 最近最新中文字幕大全免费视频| 日本免费一区二区三区高清不卡| 高清在线国产一区| 超碰av人人做人人爽久久 | 成人无遮挡网站| 亚洲乱码一区二区免费版| 国产色婷婷99| 欧美黑人巨大hd| 国产男靠女视频免费网站| 久久久精品大字幕| 久久久久久久精品吃奶| 波多野结衣高清无吗| 国产色爽女视频免费观看| 日日干狠狠操夜夜爽| 91字幕亚洲| 最新美女视频免费是黄的| 日日干狠狠操夜夜爽| 97碰自拍视频| 国产在线精品亚洲第一网站| 69av精品久久久久久| 国产精品影院久久| 精品一区二区三区av网在线观看| 免费人成视频x8x8入口观看| 国产av在哪里看| 怎么达到女性高潮| 中亚洲国语对白在线视频| 久久国产乱子伦精品免费另类| 国产激情欧美一区二区| 最后的刺客免费高清国语| 成人三级黄色视频| 真人做人爱边吃奶动态| 午夜福利视频1000在线观看| 少妇丰满av| 国产熟女xx| 成人av在线播放网站| 午夜免费观看网址| 成人高潮视频无遮挡免费网站| bbb黄色大片| 99热只有精品国产| 老熟妇乱子伦视频在线观看| e午夜精品久久久久久久| 九色成人免费人妻av| 国产视频一区二区在线看|