• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring the relationship between the cloud-top and tropopause height in boreal summer over the Tibetan Plateau and its adjacent region

    2018-05-24 01:41:46SHIChunHuCHANGShuJieGUODongXUJinJunndZHANGChenXin

    SHI Chun-Hu, CHANG Shu-Jie,, GUO Dong, XU Jin-Jun nd ZHANG Chen-Xin

    aKey Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China; bSouth China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang, China

    1. Introduction

    Deep convection with a cloud-top height above 14 km is de fined as ‘overshooting convection’, because the tropical tropopause layer (TTL) can extend from 14 km to about 18 km (Sherwood and Dessler 2000). According to the de finition, overshooting convection has an important effect on stratosphere–troposphere exchange (STE). Overshooting convection occurs more frequently over the Intertropical Convergence Zone (ITCZ) and South Pacific Convergence Zone (Alcala and Dessler 2002). Moreover, 3% of thick clouds can penetrate the TTL (Dessler, Palm, and Spinhirne 2006). In addition, some scholars have studied the STE,which may accompany overshooting convection, during the cut-off low and mesoscale convective complex periods over East Asia (Chen, Lü, and Chen 2014; Li and Bian 2015; Li, Bian, and Fan 2015; Shi, Cai, and Guo 2017; Shi et al. 2014).

    Cloud-top above the tropopause (CTAT) events in the low latitudes are often associated with strongly developed deep convective systems (Wang and Dessler 2012), which can easily achieve STE. However, ordinary convection needs the help of large-scale circulation to complete STE,because the out flow area of the cloud anvil is usually below the tropopause. The large-scale circulation of the Asian summer monsoon can collect water vapor transported by convection and strengthen the upward transport of the atmospheric composition (Gettelman et al. 2004; Park et al. 2007). Also, the Asian monsoon region contributes 75%of the global troposphere-to-stratosphere transport (TST)of water vapor in summer (Dessler and Sherwood 2004;Gettelman et al. 2004). Subsequently, Tian et al. (2011),Bian et al. (2012), Bian, Fan, and Yan (2013), Yan et al. (2015),and Shi, Zhang, and Guo (2017) have further con firmed the effect of large-scale circulation from observations of water vapor and ozone in the upper troposphere and lower stratosphere over the Tibetan Plateau. Amongst other factors,STE is also related to the change in ozone and tropopause temperature (Xie, Tian, and Chipper field 2008; Xie et al.2014).

    Although CTAT is an important index for STE, little is known about the characteristics of CTAT over the Tibetan Plateau and its adjacent region. Consequently, in the current study, we analyze the relationship between cloud-top and tropopause height to con firm the CTAT frequency over the Tibetan Plateau and its adjacent region in summer.Section 2 describes the datasets and methods. Section 3 presents the summertime characteristics of CTAT in the boreal tropics and subtropics. Section 4 reports the cloudtop distribution over the Tibetan Plateau and its adjacent region in summer. Section 5 provides conclusions and discussion.

    2. Data and methods

    2.1. Data

    The cloud-top height data used in this study are from the Level 2 products of CALIPSO (Cloud–Aerosol Lidar and Infrared Path finder Satellite Observations) between 2008 and 2012. CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization) is a two-wavelength polarization-sensitive light detection and ranging instrument that provides high-resolution vertical pro files of aerosols and clouds.CALIOP uses three receiver channels: one measuring the 1064-nm backscattered intensity, and another two measuring the orthogonally polarized components of the 532-nm backscattered intensity (Stephens et al. 2002).

    The tropopause information given in the CALIPSO cloud-layer data product is based on the Goddard Earth Observing System Model Version 5 (GEOS5) (Suarez et al.2008). The zonal wind and potential vorticity data, whose horizontal resolution is 1° × 1°, are from ERA-Interim (Dee et al. 2011). The relative vorticity and divergence, used to calculate the stream function and velocity potential, are also from ERA-Interim.

    2.2. Methods

    The thermodynamic tropopause is from GEOS5. The dynamic tropopause, de fined as 2–4 potential vorticity units (PVU; 1 PVU = 10?6m2s?1K kg?1), is from ERA-Interim.

    The top layer, with ‘Integrated_Attenuated_Backscatter_532’ greater than 0.01 sr?1km?1, is recognized as the cloud top (Biondi et al. 2012; Dessler 2009). A CTAT event is identified when the height of the cloud top is 500 m greater than the GEOS5 thermodynamic tropopause height.

    The cloud-top height and CTAT are recognized every 500 m vertically. In the horizontal direction, the observation pro files are analyzed in each 4° × 2° longitude and latitude grid, which means there are roughly 2000–3500 pro files in each grid in most areas to the south of 55°N.The frequency of occurrence for CTAT is then de fined as the ratio of the number of pro files where CTAT happens to the total pro file number in each grid.

    All CTAT results are at nighttime, because the frequency patterns are similar in daytime as they are at nighttime(Figure 1), but are more reliable at nighttime (Dessler 2009). CTAT frequency patterns are bimodal both in daytime and at nighttime (Figure 1). The peaks are located at 10°–20°N and near 50°–60°N (Figure 1). In other words,the difference in CTAT frequency between daytime and nighttime is in magnitude rather than pattern. Particularly,the CTAT peak in the ITCZ is underestimated in daytime,which may be related to the solar background noise during CALIPSO’s daytime detection. Thus, detection at nighttime is more reliable (Dessler 2009).

    Stream functionψand velocity potentialχcan be used to separate horizontal general circulation into rotational and divergent components. The rotational flow,Vψ=k× ?ψ, moves along the contours of the stream function; and the divergent wind,Vχ= ??χ, moves along the gradient of velocity potential.

    Figure 1. Total frequency of zonal-mean CTAT (daytime in red and nighttime in black; units: %) in boreal summer (June–July–August) 2008–2012 from CALIPSO.

    Consider the continuous equation in the cylindrical coordinate system:HereVr,Vθ, andωare radial velocity, tangential velocity,and vertical velocity, respectively. In the Asian summer monsoon region, we assume the rotational flow (tangential velocity) is uniform, and the radial velocity in the ideal cylindrical coordinates is close to the divergence wind. Thus, the horizontal divergence is mainly caused by the divergent wind and the divergence of the tangential velocity is ignored approximately. If the vertical velocityωis assumed to be reduced from 1ωat 200 hPa toα ωat 150 hPa (0 <α< 1), then the vertical velocity at 200 hPa can then be obtained as follows:

    Figure 2. Thermodynamic tropopause height (pink contours; units: km) from GEOS5, stream function (units: 107 m2 s?1) at 200 hPa (black)from ERA-Interim, and area-weighted CTAT total frequency (shading; units: %) from CALIPSO in boreal summer (June–July–August)2008–2012.

    3. Summer CTAT characteristics in the boreal tropics and subtropics

    Figure 3. Stream function (contours; units: 107 m2 s?1) and velocity potential (shading; units: 106 m2 s?1) at 200 hPa in boreal summer(June–July–August) 2008–2012 from ERA-Interim.

    CTAT has the largest probability of occurrence in the ITCZ,according to the total vertical cumulative frequency of CTAT in boreal summer (Figure 2). Furthermore, the zonal distribution of CTAT frequency is uneven and there are three regions with maximum CTAT frequency. The largest region is the Asian summer monsoon region, with the maximum frequency of CTAT reaching 22%, extending from the Indian Peninsula to the east of the Philippines(Park et al. 2007). Another two regions are in Central America, with the frequency reaching 20%, and in western Africa, with the frequency reaching 16%. The regional contributions of the total CTAT frequency in the Asian summer monsoon region, Central America, and western Africa to the total CTAT frequency of the Northern Hemisphere are 49.0%, 13.5%, and 12.4%, respectively (Table 1). Moreover,the largest velocity potential is in a similar area to the Asian summer monsoon region, corresponding to the location of the largest CTAT frequency (Figure 3).

    The CTAT characteristics in the Asian summer monsoon region are related to the regional circulation. The thermodynamic tropopause height inside the Asian summer monsoon anticyclone (ASMA) is generally above 16.5 km,and even reaches 17 km in some places where the tropopause is the highest in the world (Figure 2). The average ascending motion area coincides with the maximum CTAT frequency (Figures 2 and 3). Since the speed and material concentration (water vapor and aerosol) of transport controlling the TST are both large in the southeastern Tibetan Plateau, the regional contribution to the global TST will be much greater than 50%.

    The maximum CTAT frequency in the Asian monsoon region is not fully consistent with the center of the ASMA(Figure 2) for interactions between the large-scale circulation and deep convection in the southeastern Tibetan Plateau. Gettelman et al. (2004) argued that the large-scale circulation can collect an atmospheric composition transported by deep convection and enhance the TST. James et al. (2008) proved that transport by large-scale circulation is more effective than that by convection at 100 hPa.Therefore, atmospheric compositions with high concentrations can be transferred from convection centers over the Bay of Bengal at and below 200 hPa to the ASMA center at 100 hPa (Park et al. 2007).

    Table 1. Regional contributions of total CTAT frequency in the Northern Hemisphere in summer (June–July–August) 2008–2012 from CALIPSO.

    4. Unique distribution of cloud-top height near the Tibetan Plateau region in summer

    The frequency of CTAT occurrence over the Tibetan Plateau and its adjacent region is very special in terms of its intensity and position (Figure 4). CTAT occurs more frequently in the south of the Tibetan Plateau (>4%/500 m) than in the zonal mean (no more than 2%/500 m). The frequency of CTAT is centered on the climatic tropopause height in low latitudes. The zonal-mean maximum CTAT frequency extends northward from the equator to 20°N, but the maximum CTAT frequency near the Tibetan Plateau is located within 0°–30°N.

    Figure 4. (a) Zonal-mean CTAT frequency (shading; units: %/500 m) and tropopause height (red line) in boreal summer (June–July–August) 2008–2012. (b) As in (a) but for the 70°–100°E mean, with topography along 85°E in black.

    Figure 5. (a) Zonal-mean frequency of relative cloud top (shading; units: %/500 m), potential vorticity (pink; units: PVU), zonal wind(black; units: m s?1), and zonal-mean tropopause height (red) in boreal summer (June–July–August) 2008–2012. (b) As in (a) but for the 70°–100°E mean, with topography along 85°E in black. (c, d) As in (a) but for the 180°W–50°E and 110°–80°W mean, respectively.

    To understand the regional characteristics of CTAT events, we analyze the distribution of cloud-top height,because the occurrence of CTAT is closely related to the height of the cloud top. We compare the vertical structure of the frequency of cloud-top height over the Tibetan Plateau and its adjacent region (70°–100°E; Figure 5(b)), outside the Asian summer monsoon circulation(180°W–50°E; Figure 5(c)), in Central America (110°–80°W;Figure 5(d)), and the zonal average, which is mainly along the tropopause height, especially in the tropics (Figure 5(a)).

    The relationship between the positions of the cloud top and the tropopause over the Tibetan Plateau and its adjacent region (Figure 5(b)) is very different from that outside the Asian summer monsoon region (Figure 5(c)) and in Central America (Figure 5d). Due to the control of the ASMA, the easterly jet and westerly jet lie on the south side and over the Tibetan Plateau (Figure 5(b)), respectively.The maximum winds in the two jet cores are greater than 30 m s?1, and the position of the easterly jet core is higher than that of the westerly jet core. Furthermore, the height of the thermodynamic tropopause between these two jets is nearly 17 km higher than the two jets. The maximum cloud-top frequency of greater than 10%/500 m is along the tropopause (16.5 km) in the easterly jet core. Moreover,the height and value of the maximum frequency in the easterly jet core are both greater than those in the other regions. Here, warm and moist water vapor from the Indian Ocean is transported upwards by the Asian summer monsoon circulation system on the south side of the Tibetan Plateau, which is the most active region of deep convection(Wu, Qie, and Yuan 2013). The position of the cloud-top frequency greater than 3%/500 m is suppressed below the westerly jet (11 km), which is far from the thermodynamic tropopause but close to the dynamic tropopause (2 PVU).Compared to the other regions at the same latitude (Figure 5(c) and (d)), the location of the maximum cloud-top frequency is lower (referencing the height of the thermodynamic tropopause), and the maximum frequency is larger and close to 5%/500 m (Figure 5(b)), which agrees with the TRMM observations reported by Wu, Qie, and Yuan (2013).Near the westerly jet, the heights of the thermodynamic tropopause and dynamic tropopause (2–4 PVU contours)are quite different. The dynamic tropopause can represent the tropopause folding near the strong westerly jet better than the thermodynamic tropopause. Furthermore,tropopause folding usually accompanies stratospheric intrusion and dry air from the stratosphere can restrain cloud formation. Therefore, the dynamic tropopause is more appropriate than the thermodynamic tropopause for understanding the distribution of the cloud top over the Tibetan Plateau. Different from the situation near the Tibetan Plateau, the maximum cloud-top frequency of about 4%/500 m is always along the thermodynamic tropopause height outside the Asian summer monsoon region(Figure 5c), especially in the low latitudes of 0°–20°N and mid–high latitudes of 40°–60°N. In the subtropical upper troposphere, the maximum cloud-top frequency is less than 1%/500 m.

    5. Conclusion

    This study analyzes the distribution characteristics of cloud-top and tropopause height in the tropics and subtropics based on CALIPSO satellite data and GEOS5 reanalysis data in boreal summer. The results can be summarized as follows:

    The maximum values of vertical cumulative CTAT frequency are concentrated in three tropical regions: the Asian summer monsoon region, Central America, and western Africa. The contributions of the area-weighted CTAT frequency in the three regions to the Northern Hemisphere are 49.0%, 13.5%, and 12.4%, respectively. Moreover, the global contribution of TST in the Asian monsoon region can be far greater than 50%, according to the analysis of the continuous equation, velocity potential, and divergent wind in ERA-Interim data.

    The Asian summer monsoon circulation system controls the cloud-top distribution. On the south side of the Tibetan Plateau, the maximum cloud-top frequency of more than 10% per 500 m vertically is most likely to appear in the core of the easterly jet near the tropopause height(16.5 km). Over the Tibetan Plateau, the maximum cloudtop frequency of greater than 3% per 500 m vertically is suppressed below 11 km, far away from thermodynamic tropopause height but close to the dynamic tropopause height of 2 PVU. In addition, the dynamic tropopause is more appropriate than the thermodynamic tropopause for understanding the cloud-top distribution over the Tibetan Plateau.

    Acknowledgments

    The authors would like to thank NASA and ECMWF for the data providing.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by National Key Research and Development Program of China [grant number 2017YFC1501802]; the National Natural Science Foundation of China [grant number 41375047], [grant number 91537213], and[grant number 41675039].

    References

    Alcala, C. M., and A. E. Dessler. 2002. “Observations of Deep Convection in the Tropics Using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar.”Journal of Geophysical Research Atmospheres107. doi:10.1029/2002JD002457.

    Bian, J. C., L. L. Pan, L. Paulik, H. V?mel, H. B. Chen, and D. Lu. 2012.“In Situ Water Vapor and Ozone Measurements in Lhasa and Kunming during the Asian Summer Monsoon.”Geophysical Research Letters39: L19808. doi:10.1029/2012GL052996.

    Bian, J. C., Q. Fan, and R. Yan. 2013. “Summertime Stratosphere-Troposphere Exchange over the Tibetan Plateau and Its Climatic Impact.”Advances in Meteorological Science and Technology3 (2): 22–28.

    Biondi, R., W. J. Randel, S. P. Ho, T. Neubert, and S. Syndergaard.2012. “Thermal Structure of Intense Convective Clouds Derived from GPS Radio Occultations.”Atmospheric Chemistry and Physics12 (12): 5309–5318.

    Chen, D., D. R. Lü, and Z. Y. Chen. 2014. “Simulation of the Stratosphere-Troposphere Exchange Process in a Typical Cold Vortex over Northeast China.”Science China Earth Sciences57(7): 1452–1463.

    Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S.Kobayashi, U. Andrae, et al. 2011. “The ERA-Interim Reanalysis:Con figuration and Performance of the Data Assimilation System.”Quarterly Journal of the Royal Meteorological Society137: 553–597. doi:10.1002/qj.828.

    Dessler, A. E. 2009. “Clouds and Water Vapor in the Northern Hemisphere Summertime Stratosphere.”Journal of Geophysical Research114. doi:10.1029/2009JD012075.

    Dessler, A. E., and S. C. Sherwood. 2004. “The Effect of Convection on the Summertime Extratropical Lower Stratosphere.”Journal of Geophysical Research109: D23301.

    Dessler, A. E., S. P. Palm, and J. J. Spinhirne. 2006. “Tropical Cloud-Top Height Distributions Revealed by the Ice, Cloud and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS).”Journal of Geophysical Research111 (D12):4792.

    Gettelman, A., D. K. Kinnison, T. J. Dunkerton, and G. P. Brasseur.2004. “Impact of Monsoon Circulations on the Upper Troposphere and Lower Stratosphere.”Geophys Res109.doi:10.1029/2004JD004878.

    James, R., M. Bonazzola, B. Legras, K. Surbled, and S. Fueglistaler.2008. “Water Vapor Transport and Dehydration above Convective Out flow during Asian Monsoon.”Geophysical Research Letters35: 1531. doi:10.1029/2008GL035441.

    Li, D., and J. Bian. 2015. “Observation of a Summer Tropopause Fold by Ozonesonde at Changchun, China: Comparison with Reanalysis and Model Simulation.”Advances in Atmospheric Sciences32 (10): 1354–1364.

    Li, D., J. Bian, and Q. Fan. 2015. “A Deep Stratospheric Intrusion Associated with an Intense Cut-off Low Event over East Asia.”Science China Earth Sciences58 (1): 116–128.

    Pan, L. L., and L. A. Munchak. 2011. “Relationship of Cloud Top to the Tropopause and Jet Structure from CALIPSO Data.”Journal of Geophysical Research116: 929. doi:10.1029/2010JD015462.

    Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J.H. Jiang. 2007. “Transport above the Asian Summer Monsoon Anticyclone Inferred from Aura Microwave Limb Sounder Tracers.”Journal of Geophysical Research112.doi:10.1029/2006JD008294.

    Sherwood, S. C., and A. E. Dessler. 2000. “On the Control of Stratospheric Humidity.”Geophysical Research Letters27 (16):2513–2516.

    Shi, C., H. Li, B. Zheng, D. Guo, and R. Q. Liu. 2014. “Stratosphere-Troposphere Exchange Corresponding to a Deep Convection in Warm Sector and Abnormal Subtropical Front Induced by a Cutoff Low over East Asia.”Chinese Geophys.57 (1): 21–30.doi:10.6038/cjg20140103.

    Shi, C. H., W. Cai, and D. Guo. 2017. “Composition and Thermal Structure of the Upper Troposphere and Lower Stratosphere in a Penetrating Mesoscale Convective Complex Determined by Satellite Observations and Model Simulations.”Advances in Meteorology. doi:10.1155/2017/6404796.

    Shi, C. H., C. Zhang, and D. Guo. 2017. “Comparison of Electrochemical Concentration Cell Ozonesonde and Microwave Limb Sounder Satellite Remote Sensing Ozone Pro files for the Center of the South Asian High.”Remote Sensing9 (10): 1012. doi:10.3390/rs9101012.

    Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z.Wang, A. J. Illingworth, et al. 2002. “The CloudSat mission and the A-Train.”Bulletin of the American Meteorological Society83:1771–1790. doi:10.1175/BAMS-83-12-1771.

    Suarez, M. J., M. M. Rienecker, R. Todling, J. Bacmeister, L. Takacs,H. C. Liu, W. Gu, et al. 2008. “The GEOS‐5 Data Assimilation System Documentation of Versions 5.0.1, 5.1.0, and 5.2.0.”NASA Technical Report27: 97. TM‐2008–104606.

    Tian, W., H. Tian, S. Dhomse, and W. Feng. 2011. “A Study of Upper Troposphere and Lower Stratosphere Water Vapor above the Tibetan Plateau Using AIRS and MLS Data.”Atmospheric Science Letters12 (2): 233–239. doi:10.1002/asl.319.

    Wang, T., and A. E. Dessler. 2012. “Analysis of Cirrus in the Tropical Tropopause Layer from CALIPSO and MLS Data-a Water Perspective.”Journal of Geophysical Research117: D04211.doi:10.1029/2011JD016442.

    Wu, X. K., X. S. Qie, and T. Yuan. 2013. “Regional Distribution and Diurnal Variation of Deep Convective Systems over the Asian Monsoon Region.”Science China Earth Sciences56: 843–854.doi:10.1007/s11430-012-4551-8.

    Xie, F., W. Tian, and M. P. Chipper field. 2008. “Radiative Effect of Ozone Change on Stratosphere-Troposphere Exchange.”Journal of Geophysical Research113: D00B09.doi:10.1029/2008JD009829.

    Xie, F., J. P. Li, W. S. Tian, Y. J. Li, and J. Feng. 2014. “Indo-Pacific Warm Pool Area Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature Variations.”Scientific Reports4: 4552. doi:10.1038/srep04552.

    Yan, X. L., X. D. Zheng, X. J. Zhou, H. V?mel, J. Y. Song, W. Li, Y. H.Ma, and Y. Zhang. 2015. “Validation of Aura Microwave Limb Sounder Water Vapor and Ozone Pro files over the Tibetan Plateau and Its Adjacent Region during Boreal Summer.”Science China Earth Sciences58: 589–603. doi:10.1007/s11430-014-5014-1.

    少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放| 免费一级毛片在线播放高清视频 | 成年女人毛片免费观看观看9 | 男的添女的下面高潮视频| 人人妻人人澡人人爽人人夜夜| 国产免费又黄又爽又色| 国产成人系列免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久成人aⅴ小说| 亚洲成人国产一区在线观看 | 18禁裸乳无遮挡动漫免费视频| 亚洲国产av影院在线观看| 人妻一区二区av| 国产一卡二卡三卡精品| 亚洲第一青青草原| 最近中文字幕2019免费版| 纵有疾风起免费观看全集完整版| 熟女av电影| 五月开心婷婷网| 国产av精品麻豆| 色精品久久人妻99蜜桃| e午夜精品久久久久久久| 黑人猛操日本美女一级片| 午夜久久久在线观看| 国产国语露脸激情在线看| 又大又爽又粗| 国产精品三级大全| 欧美乱码精品一区二区三区| 亚洲伊人色综图| 啦啦啦 在线观看视频| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 国产亚洲精品第一综合不卡| www.av在线官网国产| 欧美成狂野欧美在线观看| 国产片内射在线| 欧美日韩av久久| 国产成人系列免费观看| 男女边摸边吃奶| 美女扒开内裤让男人捅视频| 黄网站色视频无遮挡免费观看| 久久精品aⅴ一区二区三区四区| 天堂中文最新版在线下载| 视频区图区小说| av国产精品久久久久影院| a级毛片黄视频| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 操出白浆在线播放| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 熟女av电影| 国产黄频视频在线观看| av天堂久久9| 亚洲午夜精品一区,二区,三区| 免费少妇av软件| 黄频高清免费视频| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 国产91精品成人一区二区三区 | 色94色欧美一区二区| 久久这里只有精品19| 日日夜夜操网爽| 国产成人欧美| 天天添夜夜摸| 啦啦啦在线观看免费高清www| 精品久久久精品久久久| 欧美av亚洲av综合av国产av| 电影成人av| 欧美国产精品一级二级三级| 美女国产高潮福利片在线看| 亚洲精品一二三| 色精品久久人妻99蜜桃| 制服人妻中文乱码| 国产高清视频在线播放一区 | 别揉我奶头~嗯~啊~动态视频 | 亚洲 国产 在线| 国产精品.久久久| 女警被强在线播放| 在线 av 中文字幕| 欧美黄色片欧美黄色片| 国产精品国产三级专区第一集| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 免费高清在线观看日韩| 少妇人妻久久综合中文| 777久久人妻少妇嫩草av网站| 欧美黑人精品巨大| 欧美精品一区二区免费开放| 国产av国产精品国产| 蜜桃国产av成人99| 亚洲av电影在线进入| 中文字幕人妻熟女乱码| 超碰成人久久| 国产不卡av网站在线观看| 国产成人精品久久二区二区91| 亚洲精品国产一区二区精华液| 九色亚洲精品在线播放| 午夜福利,免费看| 免费人妻精品一区二区三区视频| 亚洲成人手机| 国产淫语在线视频| 香蕉国产在线看| 久久青草综合色| 国产爽快片一区二区三区| 五月开心婷婷网| 久久99精品国语久久久| 国产成人啪精品午夜网站| www日本在线高清视频| 热re99久久精品国产66热6| 亚洲成人国产一区在线观看 | 男女午夜视频在线观看| 精品免费久久久久久久清纯 | 99国产精品免费福利视频| 麻豆国产av国片精品| 国产1区2区3区精品| 亚洲图色成人| 免费女性裸体啪啪无遮挡网站| 91麻豆av在线| 久久国产精品影院| 国产三级黄色录像| 国产激情久久老熟女| 久久人人爽人人片av| 免费在线观看完整版高清| 成人黄色视频免费在线看| 精品高清国产在线一区| 午夜福利乱码中文字幕| 国产成人影院久久av| 久久久久国产一级毛片高清牌| 久久久久网色| 人妻一区二区av| 一区二区av电影网| 欧美 亚洲 国产 日韩一| 久久久精品免费免费高清| 大香蕉久久成人网| 亚洲欧美一区二区三区久久| 超碰97精品在线观看| 免费黄频网站在线观看国产| 久久这里只有精品19| 久久久久精品国产欧美久久久 | 18在线观看网站| 高清av免费在线| 国语对白做爰xxxⅹ性视频网站| 狠狠精品人妻久久久久久综合| 人妻一区二区av| 又大又爽又粗| 一级毛片电影观看| 色婷婷久久久亚洲欧美| 女人高潮潮喷娇喘18禁视频| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 免费不卡黄色视频| 国产精品偷伦视频观看了| 亚洲伊人久久精品综合| 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 天天影视国产精品| 精品国产一区二区三区久久久樱花| 婷婷色麻豆天堂久久| 亚洲国产av新网站| 女人精品久久久久毛片| 2018国产大陆天天弄谢| 午夜久久久在线观看| 一区二区三区四区激情视频| 两个人看的免费小视频| 黄色a级毛片大全视频| 青青草视频在线视频观看| 啦啦啦在线免费观看视频4| 黄片播放在线免费| 男女国产视频网站| 男男h啪啪无遮挡| 七月丁香在线播放| 亚洲av电影在线观看一区二区三区| 91九色精品人成在线观看| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 亚洲国产精品999| 日本wwww免费看| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 亚洲av电影在线进入| 夫妻午夜视频| 欧美亚洲日本最大视频资源| 日韩av不卡免费在线播放| 高清不卡的av网站| 日韩欧美一区视频在线观看| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 热re99久久国产66热| 亚洲欧美中文字幕日韩二区| 美女视频免费永久观看网站| 热re99久久精品国产66热6| 一区二区三区激情视频| 精品一品国产午夜福利视频| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 肉色欧美久久久久久久蜜桃| 波野结衣二区三区在线| 满18在线观看网站| 午夜av观看不卡| 亚洲国产欧美一区二区综合| 精品熟女少妇八av免费久了| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 欧美国产精品一级二级三级| 亚洲精品一区蜜桃| 男人操女人黄网站| 亚洲专区国产一区二区| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 男女无遮挡免费网站观看| 欧美日韩福利视频一区二区| 99热全是精品| 久久人妻熟女aⅴ| 久久久久久久精品精品| 考比视频在线观看| 爱豆传媒免费全集在线观看| 久久久久久久国产电影| 嫁个100分男人电影在线观看 | 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 国产真人三级小视频在线观看| 香蕉国产在线看| 老司机影院成人| 大香蕉久久网| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 成人手机av| 国产精品久久久久成人av| 一本一本久久a久久精品综合妖精| 中文字幕色久视频| 亚洲专区中文字幕在线| 国产一区二区三区av在线| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡| 久久国产精品人妻蜜桃| 日本欧美视频一区| 国产麻豆69| 亚洲中文字幕日韩| 电影成人av| 一区二区三区乱码不卡18| 欧美黄色片欧美黄色片| 激情五月婷婷亚洲| 一区福利在线观看| bbb黄色大片| 又紧又爽又黄一区二区| 久久精品国产亚洲av高清一级| 丁香六月欧美| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 最黄视频免费看| av在线播放精品| 亚洲成人免费电影在线观看 | 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放| 国产精品国产三级专区第一集| 亚洲自偷自拍图片 自拍| 国产精品九九99| svipshipincom国产片| 91成人精品电影| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 男女免费视频国产| av不卡在线播放| 看免费成人av毛片| 一级毛片女人18水好多 | av国产精品久久久久影院| 考比视频在线观看| 夫妻午夜视频| 亚洲少妇的诱惑av| 亚洲国产精品一区二区三区在线| 久久久久国产一级毛片高清牌| 亚洲精品日本国产第一区| 免费看不卡的av| 交换朋友夫妻互换小说| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 国产欧美日韩一区二区三区在线| 亚洲国产精品成人久久小说| 新久久久久国产一级毛片| 男人添女人高潮全过程视频| 国产亚洲av片在线观看秒播厂| 色精品久久人妻99蜜桃| 一本色道久久久久久精品综合| 精品国产乱码久久久久久男人| 观看av在线不卡| 青春草亚洲视频在线观看| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 亚洲av成人精品一二三区| 啦啦啦视频在线资源免费观看| 亚洲国产成人一精品久久久| 只有这里有精品99| 亚洲精品第二区| 精品免费久久久久久久清纯 | 在线看a的网站| 热re99久久国产66热| 久久久久精品人妻al黑| 免费在线观看日本一区| www.999成人在线观看| 中文字幕最新亚洲高清| 1024香蕉在线观看| www.熟女人妻精品国产| 一区二区日韩欧美中文字幕| 国产男人的电影天堂91| 美女午夜性视频免费| 十分钟在线观看高清视频www| 久久久久久久国产电影| bbb黄色大片| 少妇粗大呻吟视频| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| 超碰成人久久| 高清黄色对白视频在线免费看| 夜夜骑夜夜射夜夜干| 女性生殖器流出的白浆| 中文字幕av电影在线播放| 久久av网站| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 亚洲国产精品999| 夫妻午夜视频| 成年动漫av网址| 各种免费的搞黄视频| av在线app专区| 精品久久久久久电影网| 悠悠久久av| 亚洲熟女精品中文字幕| 国产高清视频在线播放一区 | 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀 | 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 精品人妻熟女毛片av久久网站| 亚洲国产欧美一区二区综合| 777米奇影视久久| 国产成人a∨麻豆精品| 国产亚洲精品第一综合不卡| 国产91精品成人一区二区三区 | 亚洲精品一区蜜桃| 午夜福利在线免费观看网站| 日本色播在线视频| 男男h啪啪无遮挡| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 在线观看免费日韩欧美大片| 久久精品久久精品一区二区三区| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| av网站在线播放免费| 国产成人系列免费观看| 2018国产大陆天天弄谢| 80岁老熟妇乱子伦牲交| 欧美日韩亚洲国产一区二区在线观看 | 乱人伦中国视频| 国产极品粉嫩免费观看在线| 自线自在国产av| 国产成人av教育| 亚洲图色成人| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| 无遮挡黄片免费观看| 桃花免费在线播放| 日韩视频在线欧美| 久久久精品94久久精品| 亚洲男人天堂网一区| 亚洲av电影在线观看一区二区三区| 亚洲第一青青草原| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 好男人视频免费观看在线| 色94色欧美一区二区| 丝袜美足系列| 国产有黄有色有爽视频| 美女国产高潮福利片在线看| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 中文字幕人妻熟女乱码| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 国产精品 欧美亚洲| 成年动漫av网址| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三 | 男男h啪啪无遮挡| 夫妻性生交免费视频一级片| 不卡av一区二区三区| 欧美在线一区亚洲| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 国产高清视频在线播放一区 | 咕卡用的链子| 天堂中文最新版在线下载| 在线 av 中文字幕| 国产成人影院久久av| 超碰97精品在线观看| 99精品久久久久人妻精品| 成人国产一区最新在线观看 | 精品人妻在线不人妻| 中文字幕最新亚洲高清| 成年人免费黄色播放视频| 国产1区2区3区精品| 久久国产精品大桥未久av| 精品久久久精品久久久| 人成视频在线观看免费观看| 一级黄片播放器| 久久99精品国语久久久| 天天躁夜夜躁狠狠躁躁| 各种免费的搞黄视频| 一区福利在线观看| 久久综合国产亚洲精品| videosex国产| 一本大道久久a久久精品| 欧美在线一区亚洲| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 国产一区亚洲一区在线观看| 久久毛片免费看一区二区三区| 久久影院123| 成年人免费黄色播放视频| 亚洲av片天天在线观看| 99国产精品一区二区蜜桃av | 亚洲伊人久久精品综合| 男女无遮挡免费网站观看| 国产人伦9x9x在线观看| 岛国毛片在线播放| 免费在线观看视频国产中文字幕亚洲 | 一级片免费观看大全| 亚洲中文字幕日韩| 国产精品偷伦视频观看了| 亚洲精品第二区| 国产精品av久久久久免费| 亚洲人成77777在线视频| 国产亚洲午夜精品一区二区久久| 好男人视频免费观看在线| 在线观看人妻少妇| 国产成人av教育| 亚洲精品国产区一区二| 视频在线观看一区二区三区| 色婷婷久久久亚洲欧美| 大陆偷拍与自拍| 午夜福利视频精品| 一本一本久久a久久精品综合妖精| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 精品免费久久久久久久清纯 | 久热爱精品视频在线9| 国产成人精品无人区| 一本大道久久a久久精品| 国产av精品麻豆| 国产精品久久久久久精品电影小说| 欧美日韩成人在线一区二区| 国产爽快片一区二区三区| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 男女高潮啪啪啪动态图| 日本黄色日本黄色录像| 一区二区三区乱码不卡18| 国产精品 国内视频| 黄色 视频免费看| 亚洲伊人久久精品综合| 欧美97在线视频| 在线观看国产h片| 岛国毛片在线播放| 欧美性长视频在线观看| 国产精品 国内视频| 悠悠久久av| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久人人做人人爽| 久久精品久久精品一区二区三区| 国产熟女欧美一区二区| 久久久久国产精品人妻一区二区| 观看av在线不卡| 国产精品麻豆人妻色哟哟久久| 久久ye,这里只有精品| 五月开心婷婷网| 在线 av 中文字幕| 国产色视频综合| 极品少妇高潮喷水抽搐| 国产激情久久老熟女| 捣出白浆h1v1| 一本久久精品| 日韩av不卡免费在线播放| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精| 99九九在线精品视频| 欧美精品一区二区大全| 在线观看www视频免费| 亚洲av男天堂| 国产欧美日韩一区二区三 | 高潮久久久久久久久久久不卡| 国产欧美日韩精品亚洲av| 性高湖久久久久久久久免费观看| 国产精品欧美亚洲77777| 91成人精品电影| 日本vs欧美在线观看视频| 飞空精品影院首页| 久久九九热精品免费| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 老司机在亚洲福利影院| 老鸭窝网址在线观看| 水蜜桃什么品种好| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 亚洲欧美一区二区三区国产| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 亚洲av国产av综合av卡| 日韩中文字幕欧美一区二区 | 又黄又粗又硬又大视频| 久久人妻熟女aⅴ| www日本在线高清视频| 大型av网站在线播放| 下体分泌物呈黄色| 69精品国产乱码久久久| 男女无遮挡免费网站观看| 亚洲,一卡二卡三卡| 永久免费av网站大全| 蜜桃国产av成人99| 亚洲综合色网址| 久久精品国产亚洲av涩爱| 欧美国产精品va在线观看不卡| 日本色播在线视频| 国产淫语在线视频| 久久国产亚洲av麻豆专区| 老鸭窝网址在线观看| 亚洲av成人不卡在线观看播放网 | 侵犯人妻中文字幕一二三四区| 国产一区二区在线观看av| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 1024视频免费在线观看| 亚洲国产精品国产精品| 在线观看国产h片| 欧美激情高清一区二区三区| 性色av一级| 成人国语在线视频| 深夜精品福利| 婷婷色综合www| 波多野结衣一区麻豆| 成年动漫av网址| 亚洲成人手机| 只有这里有精品99| 免费少妇av软件| 日日爽夜夜爽网站| 亚洲精品自拍成人| 精品亚洲成a人片在线观看| 久久综合国产亚洲精品| 在线看a的网站| 亚洲专区中文字幕在线| 欧美精品av麻豆av| 久久人妻熟女aⅴ| 久久久久久久大尺度免费视频| 国产精品 欧美亚洲| 黑丝袜美女国产一区| 亚洲精品在线美女| 日韩av免费高清视频| 亚洲成色77777| 天堂俺去俺来也www色官网| 在线av久久热| 啦啦啦 在线观看视频| 久热爱精品视频在线9| 七月丁香在线播放| 捣出白浆h1v1| 国产精品免费视频内射| 欧美黄色淫秽网站| 黄色一级大片看看| a级毛片黄视频| 极品人妻少妇av视频| 欧美人与善性xxx| 精品福利观看| 十分钟在线观看高清视频www| 日本黄色日本黄色录像| 国产精品免费视频内射| 国产成人欧美在线观看 | 9热在线视频观看99| 性少妇av在线| 国产在线视频一区二区| 曰老女人黄片| 精品一区二区三区四区五区乱码 | 激情五月婷婷亚洲| 免费女性裸体啪啪无遮挡网站| 三上悠亚av全集在线观看| 国产高清国产精品国产三级| 亚洲七黄色美女视频| 国产深夜福利视频在线观看| 亚洲情色 制服丝袜| 欧美精品一区二区大全| 国产亚洲精品第一综合不卡| 一区二区三区四区激情视频| 最新的欧美精品一区二区| 欧美在线黄色| 欧美日韩国产mv在线观看视频|