• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of solar wind energy flux on the interannual variability of ENSO in the subsequent year

    2018-05-24 01:41:45HEShenPinWANGHuiJunGAOYonQiLIFeiLIHuindWANGChi

    HE Shen-Pin, WANG Hui-Jun, GAO Yon-Qi, LI Fei, LI Hui nd WANG Chi

    aGeophysical Institute, University of Bergen, Bjerknes Center for Climate Research, Bergen, Norway; bKey Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China; cClimate Change Research Center, Chinese Academy of Sciences, Beijing, China; dNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; eNansen Environmental and Remote Sensing Center,Bergen, Norway; fNorwegian Institute for Air Research, Kjeller, Norway; gState Key Laboratory of Space Weather, National Space Science Center,Chinese Academy of Sciences, Beijing, China

    1. Introduction

    It is well recognized that variations in solar irradiance,especially on quasi-decadal time scales, exert substantial effects on tropospheric climate (Christoforou and Hameed 1997; Gray et al. 2010; Herschel 1801; Liu and Lu 2010). Strong connections between the 11-year solar cycle (e.g. solar radio flux at 10.7 cm (F10.7) or sunspot number (SSN)) and climatic variability in the troposphere–lower stratosphere have been well documented(Ineson et al. 2011; Labitzke and Van Loon 1988, 1997;Loon and Labitzke 1988). For instance, both observational and modelling results have documented the changes in regional and global pressure systems associated with the 11-year solar cycle, including the eastward (southward)migration of the Aleutian low (Hawaiian high) during minimum sunspots years (Christoforou and Hameed 1997),apparent positive pressure anomalies over the Gulf of Alaska in November–January of peak sunspots years(van Loon and Meehl 2008; Loon and Meehl 2014), and positive phases of the North Atlantic Oscillation in winters of maximum solar cycles (Kodera 2003; Thiéblemont et al. 2015).

    Over the Pacific, one of the most dramatic features of sea level pressure (SLP) is the Southern Oscillation (SO)(Rasmusson and Carpenter 1982), together with El Ni?o/La Ni?a events, collectively known as El Ni?o–Southern Oscillation (ENSO) (Zebiak and Cane 1987). Previous studies have reported that ENSO is related to the internal cycle of feedback within the tropical Pacific ocean–atmosphere climatic systems (Chen, Chen, and Yu 2017; Chen et al. 2016;Chen and Zhou 2012; Graham and White 1988; McCreary Jr 1983; Nuzhdina 2002). Many recent studies have revealed that the extratropical forcing associated with large-scale atmospheric circulation plays very important roles in the formation of ENSO (Chen et al. 2013, 2015; Chen, Yu, and Chen 2014, 2015). Controversially, it has also been claimed that external forcing such as volcanic aerosols (Emile-Geay et al. 2008; Handler 1984) and Pacific bottom seismic events (Walker 1995) can explain the variability of ENSO.Additionally, the contribution of the 11-year solar cycle to the interdecadal variability of ENSO has been widely discussed (Kirov and Georgieva 2002; Marchitto et al. 2010;Troshichev et al. 2005). As the solar cycle cannot directly re flect the total energy contributing to Earth’s atmosphere and is dominated by quasi-decadal variability (Ammann et al. 2007; Scafetta and West 2006), the interannual relationship between ENSO and solar activity, as well as the related mechanisms, is far from clear.

    Although the total solar energy penetrating Earth’s atmosphere is considerably smaller than the total solar irradiance, the interannual variability of the energy input from the solar wind is much larger (Troshichev et al. 2005).Therefore, it is very interesting to examine the interannual relationship between the total energy input from the solar wind into Earth’s magnetosphere (Ein) and ENSO, which has rarely been discussed before because of the big challenge in quantitatively estimatingEin(Akasofu 1981; Newell et al. 2008). Based on a totally newEinindex, which is quantitatively estimated via three-dimensional magnetohydrodynamics (Wang et al. 2014), we reveal a statistically significant interannual relationship between the annual meanEinand the subsequent early-winter ENSO.

    2. Data and methods

    2.1. Energy input from the solar wind into Earth’s magnetosphere

    A three-dimensional magnetohydrodynamic simulation is used to quantitatively estimateEin(units: W), which is de fined as follows (Wang et al. 2014):

    Here,nSWandVSWare the solar wind number density (units:cm?3) and solar wind velocity (units: km s?1), respectively;BTis the transverse magnetic field magnitude (units: nT),andθis the interplanetary magnetic field clock angle.Solar wind data is obtained from NASA OMNIweb (http://omniweb.gsfc.nasa.gov/). It has been suggested thatEinperforms better than the empirical parameter used by Perreault and Akasofu (1978) in quantitatively estimating the energy input on the global scale (Wang et al. 2014).

    2.2. Spatial data and other indices

    Monthly mean atmospheric circulation data are obtained from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP/NCAR)reanalysis (Kalnay et al. 1996), with a horizontal resolution of 2.5° × 2.5°. To support the results derived from the NCEP/NCAR reanalysis, observational gridded monthly SLP data from the Met Office Hadley Center (HadISLP2r)are employed (Allan and Ansell 2006), with a horizontal resolution of 5° × 5°. The sea surface temperature (SST)data is also from the Met Office Hadley Centre (Rayner et al. 2003), with a horizontal resolution of 1° × 1°.

    Given that the atmosphere plays an important role in transferring the solar signal to the ocean (Thiéblemont et al. 2015), we first use SO indices to investigate the relationship betweenEinand ENSO. Three SO indices are calculated from the monthly SLP anomaly (SLPA) for the period January 1964 to December 2013, based on the method proposed by Schwing, Murphree, and Green (2002). The Northern Oscillation Index (NOI), which is roughly the North Pacific equivalent of the SO index, is de fined as the difference in the SLPA between the climatological mean position of the center of the North Pacific high (35°N,130°W) and Darwin (10°S, 130°E). One SO index (SIO1) is de fined as the difference in the SLPA between the climatological mean position of the center of the South Pacific high (30°S, 95°W) and Darwin (10°S, 130°E), and the other(SOI2) is de fined as the difference in the SLPA between Tahiti (18°S, 150°W) and Darwin (10°S, 130°E). SSN and F10.7 indices are obtained from National Centers for Environmental Information of the NOAA (https://www.ngdc.noaa.gov/stp/solar/solar-indices.html). All correlation and regression analyses are based on the detrended datasets.

    3. Results

    3.1. Different variability of Ein from SSN and F10.7

    Figure 1. Normalized time series of annual-mean (a) SSN, (b) F10.7, and (c) Ein during 1963–2012. Morlet wavelet analysis for the standardized time series of annual-mean (d) SSN, (e) F10.7, and (f) Ein.Notes: The dotted regions are statistically significant at the 95% con fidence level for a red-noise process. Cross-hatched regions on either end indicate the ‘cone of in fluence’, where edge effects become important.

    Figure 2. Evolution of the lagged (SO lags solar activity) correlation coefficients between the annual-mean (a) SSN, (b) F10.7, and (c) Ein during 1963–2012 and the seasonal-mean SO indices during 1964–2013.Note: The dashed lines indicate statistically significant correlation coefficients at the 90% con fidence level.

    Considering that many previous studies have addressed the connection between SSN or F10.7 and climate (Huo and Xiao 2016; Nuzhdina 2002; Troshichev et al. 2005;Xiao and Li 2016; Xiao et al. 2017), we first discuss the difference between the solar wind energy and SSN/F10.7.Figure 1(a)–(c) display the normalized time series of annual-mean SSN, F10.7 andEinduring 1963–2012. It is apparent that SSN and F10.7 are dominated by low-frequency variability, with alternate positive and negative phases (Figure 1(a) and (b)). Morlet wavelet analysis indicates that SSN and F10.7 show clear low-frequency oscillation, with a period of about 11 years (Figure 1(d) and(e)). Moreover, the wavelet power of SSN and F10.7 with periods below 8 years is not statistically significant. In contrast, the periodicity ofEinis not as stable as that of SSN and F10.7. It displays both interannual and decadal variability(Figure 1(c)), which is more apparent by inspecting Figure 1(f). The indication is thatEinis dominated by variability with 2–4-year and 8–11-year periodicity (Figure 1(f)). These results are also supported by spectral analysis (data not shown). Additionally, compared with the high correlation coefficient of 0.988 between SSN and F10.7, the correlation coefficients of 0.637/0.647 betweenEinand SSN/F10.7 imply a notable difference betweenEinand SSN/F10.7.

    Figure 3. (a, b) Regression maps of NCEP1/Hadley SLP (contours; units: hPa) in early winter 1964–2013 upon the Ein during 1963–2012.Light and dark shading indicates statistical significance at the 90% and 95% con fidence level, respectively. (c, d) As in (a, b) but regressed upon SSN.Notes: The pentagrams indicate the position of the centers of SLP in the North Pacific (35°N, 130°W), Darwin and Australia (10°S, 130°E), the South Pacific (30°S,95°W), and Tahiti (18°S, 150°E); the same in subsequent figures.

    3.2. Linkages between atmospheric circulation and Ein

    To con firm a robust linkage between ENSO andEin, we adopt three different SO indices (NOI, SIO1, and SOI2, as outlined in Section 2.2). The temporal evolution of the lagged correlations between the annual-meanEinand the seasonal-mean SO indices indicates that significant correlations start to emerge in the following autumn,with the strongest correlation in the following early winter (October to December) (Figure 2(c)). In contrast,such a statistically significant interannual relationship is not observed between the 11-year solar cycle (i.e. SSN or F10.7) and the SO indices (Figures 2(a) and (b)). This implies that the annual accumulation of solar energy potentially contributes to the interannual variability of the SO in the following early winter.

    To give more detail on the different in fluences betweenEinand SSN/F10.7, we present in Figure 3 the regression of early-winter SLP upon the preceding annualEinand SSN.At lag(+1 yr) of high total solar wind energy penetrating Earth’s magnetosphere, the early-winter SLP shows statistically significant anomalies over Asia, the eastern Indian Ocean, the western Pacific, the North and South Pacific,and the United States (Figure 3(a)). A statistically signi ficant high-pressure anomaly (0.3–1.4 hPa) extends from Asia southward to the Maritime Continent (between 40°S and 40°N), and a significant low-pressure anomaly (?1.2 to ?0.2 hPa) is located in the subtropical North (20°–60°N)and South (60°–20°S) Pacific. The spatial distribution derived from HadSLP2r is similar to that from the NCEP/NCAR reanalysis (Figure 3(b)), indicating the robustness of the results. Such an anomalous pressure pattern, resembling the SO (Rasmusson and Carpenter 1982; Schwing,Murphree, and Green 2002), has rarely been detected before by crude composite differences between maximum and minimum solar phases. As illustrated by Figure 3(c)and (d), the SLPAs related to SSN are less significant and smaller in magnitude than those related toEin.

    Figure 4. Regression maps of the divergence component of the wind (div; vectors; units: m s?1) and velocity potential (VP; shading;units: 105 m2 s?1) at (a) 100 hPa and (b) 850 Pa in early winter 1964–2013 upon the Ein during 1963–2012. (c) As in (a) but for a vertical–longitude cross section of VP averaged over (35°S–35°N).Notes: Values enclosed by contours in (a) and (b) and stippling in (c) indicate statistically significant VP anomalies at the 90% con fidence level. The black arrows in(c) are a schematic representation of the anomalous Walker circulation.

    3.3. Anomalous atmospheric dynamical processes of ENSO associated with Ein

    Linear regression of early-winter velocity potential at lag(+1 yr) ontoEinshows a zonally oriented dipole pattern with opposite sign at the near surface (850 hPa ≈ 1.4 km)and upper level (100 hPa ≈ 16 km) (Figure 4(a) and (b)). At 850 hPa, a statistically significant anomalous divergence center (approximately ?4.0 × 105m2s?1) is strictly confined to Darwin Island, accompanied by two statistically significant positive centers located around Tahiti Island and the Northeast Pacific (35°N, 130°W) (Figure 4(b), shading). Similar results but with opposite sign are apparent in the upper troposphere. Note that the velocity potential anomaly in the upper troposphere is stronger, with a magnitude as high as 1.4 × 106m2s?1(Figure 4(a), shading). Additionally, apparent significant anomalous divergence and convergence winds appear where negative and positive velocity potential anomaly centers are located(Figure 4(a) and (b), vectors). It should be noted that the significant anomalous divergence/convergence winds are observed in the locations used to identify the SO indices (Figure 4(b), blue boxes), con firming the significant in fluence ofEinon the formation of the SO. This is further supported by the cross section (averaged between 35°S and 35°N) of velocity potential, which indicates that the anomalies west of the date line are opposite to those in the east, and the sign also reverses at ~400 hPa or ~7 km(Figure 4(c)). The con figuration of anomalous divergence/convergence indicates a pronounced weakening of the Pacific Hadley–Walker circulation (Bjerknes 1966), which is an important dynamical contributor to the formation of the SO (Schwing, Murphree, and Green 2002). As a result,corresponding to an increasing of the total energy input from the solar wind penetrating Earth’s magnetosphere,the atmospheric circulation in the subsequent early winter is characterized by anomalous surface westerly winds(~0.5 m s?1) across the central and eastern tropical Pacific(Figure 5(f), vectors). Meanwhile, anomalous rising motion over the eastern Pacific, a returning flow (~0.5 m s?1) from east to west at the upper level of the troposphere, and anomalous sinking motion over the western Pacific are observed (data not shown). The change in atmospheric circulation, especially the surface anomalous westerly(~0.5 m s?1) in the central and eastern tropical Pacific, leads to an El Ni?o-like SST anomaly pattern (Figure 5(a), shading) (Li 1990). In contrast, the early-winter surface wind related to the preceding SSN barely shows any significant anomalies (Figure 5(b), vectors). Correspondingly, the correlation between SSN and SST is much weaker (Figure 5(b),shading). We speculate that the solar ultraviolet irradiance effect associated withEinand the atmospheric internal variability (i.e. Brewer–Dobson circulation) might be the main mechanism of such a significant lag correlation.

    4. Discussion

    Recent analyses of the relationship between solar activity and atmospheric processes conducted by comparing two multi-decadal ocean–atmosphere chemistry–climate simulations with and without solar forcing variability revealed a significant response of the boreal winter atmosphere at lag(+1 yr) to the 11-year solar cycle (i.e. F10.7)(Thiéblemont et al. 2015). Although they found statistically significant SLPAs over the Atlantic–Arctic regions, the signals in other regions (e.g. the North Pacific) have not drawn much attention. As the 11-year solar cycle is dominated by quasi-decadal variability and cannot directly re flect the total energy contributed to Earth’s atmosphere, the relationship between solar activity and the atmosphere at the interannual time scale remains unclear.

    This study, based on a new index estimated by three-dimensional magneto hydrodynamic simulations (Wang et al. 2014), reveals a new statistically significant interannual relationship between the annual-mean solar wind energy penetrating Earth’s magnetosphere and the subsequent early-winter ENSO. The annual accumulation of solar wind energy may explain more of the total interannual variance of ENSO compared to SSN/F10.7. Therefore, this study suggests that, even though it might be a big challenge, describing the processes of energy transmission,conversion and dissipation well in the solar wind–magnetosphere–ionosphere coupled system is essential to understand climate change and improve climate prediction.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This research was supported by the National Key R&D Program of China [grant number 2016YFA0600703], the National Natural Science Foundation of China [grant numbers 41421004,41505073, and 41605059], and the Young Talent Support Plan launched by the China Association for Science and Technology[grant number 2016QNRC001].

    References

    Akasofu, S.-I. 1981. “Energy Coupling between the Solar Wind and the Magnetosphere.”Space Science Reviews28: 121–190.

    Allan, R., and T. Ansell. 2006. “A New Globally Complete Monthly Historical Gridded Mean Sea Level Pressure Dataset(HadSLP2): 1850–2004.”Journal of Climate19: 5816–5842.

    Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas. 2007. “Solar In fluence on Climate during the past Millennium: Results from Transient Simulations with the NCAR Climate System Model.”Proceedings of the National Academy of Sciences of the United States of America104: 3713–3718.

    Bjerknes, J. 1966. “A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature.”Tellus18: 820–829.

    Chen, S., W. Chen, and B. Yu. 2017. “The In fluence of Boreal Spring Arctic Oscillation on the Subsequent Winter ENSO in CMIP5 Models.”Climate Dynamics48: 2949–2965.

    Chen, S., W. Chen, B. Yu, and H. F. Graf. 2013. “Modulation of the Seasonal Footprinting Mechanism by the Boreal Spring Arctic Oscillation.”Geophysical Research Letters40: 6384–6389.

    Chen, S., R. Wu, W. Chen, and B. Yu. 2015. “In fluence of the November Arctic Oscillation on the Subsequent Tropical Pacific Sea Surface Temperature.”International Journal of Climatology35: 4307–4317.

    Chen, S., R. Wu, W. Chen, B. Yu, and X. Cao. 2016. “Genesis of Westerly Wind Bursts over the Equatorial Western Pacific during the Onset of the Strong 2015–2016 El Ni?o.”Atmospheric Science Letters17: 384–391.

    Chen, S., B. Yu, and W. Chen. 2014. “An Analysis on the Physical Process of the In fluence of AO on ENSO.”Climate Dynamics42: 973–989.

    Chen, S., B. Yu, and W. Chen. 2015. “An Interdecadal Change in the In fluence of the Spring Arctic Oscillation on the Subsequent ENSO around the Early 1970s.”Climate Dynamics44: 1109–1126.

    Chen, W., and Q. Zhou. 2012. “Modulation of the Arctic Oscillation and the East Asian Winter Climate Relationships by the 11-Year Solar Cycle.”Advances in Atmospheric Sciences29: 217–226.

    Christoforou, P., and S. Hameed. 1997. “Solar Cycle and the Pacific ‘Centers of Action’.”Geophysical Research Letters24:293–296.

    Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug.2008. “Volcanoes and ENSO Over the Past Millennium.”Journal of Climate21: 3134–3148.

    Graham, N. E., and W. B. White. 1988. “The El Ni?o Cycle: A Natural Oscillator of the Pacific Ocean-Atmosphere System.”Science240: 1293–1302.

    Gray, L. J., J. Beer, M. Geller, J. D. Haigh, M. Lockwood, K. Matthes,U. Cubasch, et al. 2010. “Solar In fluences on Climate.”Reviews of Geophysics48 (4): RG4001. doi:10.1029/2009RG000282.

    Handler, P. 1984. “Possible Association of Stratospheric Aerosols and El Nino Type Events.”Geophysical Research Letters11:1121–1124.

    Herschel, W. 1801. “Observations Tending to Investigate the Nature of the Sun, in Order to Find the Causes or Symptoms of Its Variable Emission of Light and Heat; with Remarks on the Use That May Possibly Be Drawn from Solar Observations.”Philosophical Transactions of the Royal Society of London91:265–318.

    Huo, W.-J., and Z.-N. Xiao. 2016. “The Impact of Solar Activity on the 2015/16 El Ni?o Event.”Atmospheric and Oceanic Science Letters9: 428–435.

    Ineson, S., A. A. Scaife, J. R. Knight, J. C. Manners, N. J. Dunstone, L.J. Gray, and J. D. Haigh. 2011. “Solar Forcing of Winter Climate Variability in the Northern Hemisphere.”Nature Geoscience4:753–757.

    Labitzke, K., and H. Van Loon. 1997. “The Signal of the 11-Year Sunspot Cycle in the Upper Troposphere-Lower Stratosphere.”Space Science Reviews80: 393–410.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L.Gandin, M. Iredell, et al. 1996. “The NCEP/NCAR 40-Year Reanalysis Project.”Bulletin of the American Meteorological Society77: 437–471.

    Kirov, B., and K. Georgieva. 2002. “Long-Term Variations and Interrelations of ENSO, NAO and Solar Activity.”Physics and Chemistry of the Earth, Parts a/B/C27: 441–448.

    Kodera, K. 2003. “Solar In fluence on the Spatial Structure of the NAO during the Winter 1900–1999.”Geophysical Research Letters30 (4): 1175. doi:10.1029/2002GL016584.

    Labitzke, K., and H. Van Loon. 1988. “Associations between the 11-Year Solar Cycle, the QBO and the Atmosphere. Part I: The Troposphere and Stratosphere in the Northern Hemisphere in Winter.”Journal of Atmospheric and Terrestrial Physics50:197–206.

    Li, C. Y. 1990. “Interaction between Anomalous Winter Monsoon in East Asia and El Nino Events.”Advances in Atmospheric Sciences7: 36–46.

    Liu, Y., and C. H. Lu. 2010. “The In fluence of the 11-Year Sunspot Cycle on the Atmospheric Circulation during Winter.”Chinese Journal of Geophysics53: 354–364.

    Loon, H. V., and K. Labitzke. 1988. “Association between the 11-Year Solar Cycle, the QBO, and the Atmosphere. Part II:Surface and 700 Mb in the Northern Hemisphere in Winter.”Journal of Climate1: 905–920.

    van Loon, H., and G. A. Meehl. 2008. “The Response in the Pacific to the Sun’s Decadal Peaks and Contrasts to Cold Events in the Southern Oscillation.”Journal of Atmospheric and Solar-Terrestrial Physics70: 1046–1055.

    Loon, H., and G. A. Meehl. 2014. “Interactions between Externally Forced Climate Signals from Sunspot Peaks and the Internally Generated Pacific Decadal and North Atlantic Oscillations.”Geophysical Research Letters41: 161–166.

    Marchitto, T. M., R. Muscheler, J. D. Ortiz, J. D. Carriquiry, and A.van Geen. 2010. “Dynamical Response of the Tropical Pacific Ocean to Solar Forcing during the Early Holocene.”Science330: 1378–1381.

    McCreary Jr, J. P. 1983. “A Model of Tropical Ocean-Atmosphere Interaction.”Monthly Weather Review111: 370–387.

    Newell, P. T., T. Sotirelis, K. Liou, and F. Rich. 2008. “Pairs of Solar Wind-Magnetosphere Coupling Functions:Combining a Merging Term with a Viscous Term Works Best.”Journal of Geophysical Research113: A04218.doi:10.1029/2007JA012825.

    Nuzhdina, M. 2002. “Connection between ENSO Phenomena and Solar and Geomagnetic Activity.”Natural Hazards and Earth System Science2: 83–89.

    Perreault, P., and S. I. Akasofu. 1978. “A Study of Geomagnetic Storms.”Geophysical Journal International54 (3): 547–573.

    Rasmusson, E. M., and T. H. Carpenter. 1982. “Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Ni?o.”Monthly Weather Review110: 354–384.

    Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan. 2003. “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century.”Journal of Geophysical Research Atmospheres108: 1063–1082.

    Scafetta, N., and B. West. 2006. “Phenomenological Solar Contribution to the 1900–2000 Global Surface Warming.”Geophysical Research Letters33: L05708. doi:10.1029/2005 GL025539.

    Schwing, F., T. Murphree, and P. Green. 2002. “The Northern Oscillation Index (NOI): A New Climate Index for the Northeast Pacific.”Progress in Oceanography53: 115–139.

    Thiéblemont, R., K. Matthes, N.-E. Omrani, K. Kodera, and F.Hansen. 2015. “Solar Forcing Synchronizes Decadal North Atlantic Climate Variability.”Nature Communications6: 8268.

    Troshichev, O., L. Egorova, A. Janzhura, and V. Vovk. 2005.“In fluence of the Disturbed Solar Wind on Atmospheric Processes in Antarctica and El-Nino Southern Oscillation(ENSO).”Memorie Societa Astronomica Italiana76 (4): 890.

    Walker, D. A. 1995. “More Evidence Indicates Link between El Ni?os and Seismicity.”EOS, Transactions American Geophysical Union76: 33–36.

    Wang, C., J. Han, H. Li, Z. Peng, and J. Richardson. 2014. “Solar Wind-Magnetosphere Energy Coupling Function Fitting:Results from a Global MHD Simulation.”Journal of Geophysical Research: Space Physics119: 6199–6212.

    Xiao, Z., and D. Li. 2016. “Solar Wind: A Possible Factor Driving the Interannual Sea Surface Temperature Tripolar Mode over North Atlantic.”Journal of Meteorological Research30: 312–327.

    Xiao, Z.-N., D.-L. Li, L.-M. Zhou, L. Zhao, and W.-J. Huo. 2017.“Interdisciplinary Studies of Solar Activity and Climate Change.”Atmospheric and Oceanic Science Letters1–4.

    Zebiak, S. E., and M. A. Cane. 1987. “A Model El Ni?o-Southern Oscillation.”Monthly Weather Review115: 2262–2278.

    国产成年人精品一区二区| 毛片女人毛片| 久久久久久国产a免费观看| 久久这里只有精品中国| 亚洲精品成人久久久久久| 久久久久久大精品| 午夜爱爱视频在线播放| 久久久a久久爽久久v久久| 最近2019中文字幕mv第一页| 欧美日韩精品成人综合77777| 天天躁夜夜躁狠狠久久av| 波野结衣二区三区在线| 成人高潮视频无遮挡免费网站| 成人永久免费在线观看视频| 亚洲欧美精品专区久久| 亚洲熟妇中文字幕五十中出| 一级毛片我不卡| 人妻久久中文字幕网| 天堂av国产一区二区熟女人妻| 人人妻人人看人人澡| 精品少妇黑人巨大在线播放 | av在线播放精品| 校园人妻丝袜中文字幕| 丝袜美腿在线中文| 国产高清有码在线观看视频| 久久6这里有精品| 精品欧美国产一区二区三| 一本久久中文字幕| 国产一区二区亚洲精品在线观看| av在线天堂中文字幕| 干丝袜人妻中文字幕| 色综合亚洲欧美另类图片| 免费看a级黄色片| 身体一侧抽搐| 1000部很黄的大片| 欧美精品国产亚洲| 国产精品一区www在线观看| 亚洲人成网站高清观看| 91久久精品电影网| 欧美日韩精品成人综合77777| 日韩制服骚丝袜av| www.av在线官网国产| 国产毛片a区久久久久| 亚洲自拍偷在线| 欧美性猛交黑人性爽| 亚洲av熟女| 久久午夜福利片| АⅤ资源中文在线天堂| 免费观看人在逋| videossex国产| 男人的好看免费观看在线视频| 免费搜索国产男女视频| 国产精品久久久久久精品电影小说 | 日本爱情动作片www.在线观看| 久久精品国产亚洲网站| 欧美极品一区二区三区四区| 国产精品一区www在线观看| 成人性生交大片免费视频hd| 亚洲av免费高清在线观看| 精品一区二区三区视频在线| 久久精品夜色国产| 亚洲成a人片在线一区二区| 成年av动漫网址| 国产免费男女视频| 精品一区二区免费观看| 日韩亚洲欧美综合| 免费av观看视频| 国产极品天堂在线| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲网站| 99久久九九国产精品国产免费| 成人国产麻豆网| 亚洲五月天丁香| 别揉我奶头 嗯啊视频| 国语自产精品视频在线第100页| 3wmmmm亚洲av在线观看| 一本久久中文字幕| 国产激情偷乱视频一区二区| 大型黄色视频在线免费观看| 欧美激情在线99| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 日本五十路高清| 激情 狠狠 欧美| 桃色一区二区三区在线观看| 婷婷亚洲欧美| 五月玫瑰六月丁香| 韩国av在线不卡| 欧美激情国产日韩精品一区| 18禁黄网站禁片免费观看直播| 两个人视频免费观看高清| 精品99又大又爽又粗少妇毛片| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 男人舔奶头视频| 乱人视频在线观看| 国产91av在线免费观看| 国产午夜福利久久久久久| 亚洲18禁久久av| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩东京热| 久久精品久久久久久噜噜老黄 | 国产在视频线在精品| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 精品一区二区免费观看| 久久久久网色| 亚洲在久久综合| 久久国产乱子免费精品| 国产亚洲精品久久久com| av专区在线播放| 午夜福利在线在线| 18禁在线无遮挡免费观看视频| 老女人水多毛片| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 天堂影院成人在线观看| 国产极品天堂在线| 插阴视频在线观看视频| 国产午夜精品一二区理论片| 久久亚洲精品不卡| 亚洲成人久久爱视频| 日韩在线高清观看一区二区三区| 99久久精品热视频| 禁无遮挡网站| 亚洲成av人片在线播放无| 亚洲国产精品sss在线观看| 美女内射精品一级片tv| 十八禁国产超污无遮挡网站| 日本与韩国留学比较| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线播放欧美日韩| 精品久久国产蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 久久热精品热| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 国产精品久久久久久久久免| 国产午夜福利久久久久久| 综合色av麻豆| 精品久久久久久久久久久久久| 欧美三级亚洲精品| 一个人免费在线观看电影| 九九爱精品视频在线观看| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 欧美3d第一页| 波野结衣二区三区在线| 乱人视频在线观看| 哪里可以看免费的av片| 麻豆精品久久久久久蜜桃| 国产探花极品一区二区| 长腿黑丝高跟| 晚上一个人看的免费电影| 欧美区成人在线视频| 亚洲内射少妇av| 美女高潮的动态| 亚洲成人av在线免费| 亚洲国产欧美人成| 又爽又黄a免费视频| 91久久精品电影网| 午夜福利在线观看吧| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 日韩高清综合在线| 日韩成人伦理影院| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区 | 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 亚洲成人久久性| 国产黄色小视频在线观看| 中文在线观看免费www的网站| 在线观看av片永久免费下载| 在线观看午夜福利视频| 久久亚洲国产成人精品v| 久久婷婷人人爽人人干人人爱| 国产老妇伦熟女老妇高清| 国产欧美日韩精品一区二区| 亚洲中文字幕日韩| 美女黄网站色视频| 日日干狠狠操夜夜爽| 1024手机看黄色片| 国内久久婷婷六月综合欲色啪| 成熟少妇高潮喷水视频| 高清毛片免费看| 不卡视频在线观看欧美| 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件| 久久久精品94久久精品| 在线观看午夜福利视频| 内地一区二区视频在线| 久久久久久久久久成人| 国产精品综合久久久久久久免费| 欧美精品国产亚洲| 久久久久网色| 联通29元200g的流量卡| 欧美日韩一区二区视频在线观看视频在线 | 国产精品伦人一区二区| 夜夜夜夜夜久久久久| 久久精品国产亚洲av天美| 欧美成人精品欧美一级黄| 天堂av国产一区二区熟女人妻| 午夜福利在线在线| 边亲边吃奶的免费视频| 深爱激情五月婷婷| 亚洲图色成人| 全区人妻精品视频| 久久精品国产清高在天天线| 亚洲精品影视一区二区三区av| 在线免费十八禁| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99 | 少妇熟女欧美另类| 免费一级毛片在线播放高清视频| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 好男人视频免费观看在线| 丝袜喷水一区| 我的老师免费观看完整版| АⅤ资源中文在线天堂| 亚洲成人久久爱视频| 在线国产一区二区在线| 日韩av不卡免费在线播放| 亚洲最大成人av| 国产69精品久久久久777片| 成人高潮视频无遮挡免费网站| 色噜噜av男人的天堂激情| 美女内射精品一级片tv| 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看| 青青草视频在线视频观看| 国产色爽女视频免费观看| 免费观看a级毛片全部| 亚洲国产精品成人久久小说 | 好男人在线观看高清免费视频| 搞女人的毛片| 国产一区二区激情短视频| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 欧美丝袜亚洲另类| 欧美日韩综合久久久久久| 青春草亚洲视频在线观看| 十八禁国产超污无遮挡网站| 成人国产麻豆网| 日韩一区二区三区影片| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 国产伦精品一区二区三区四那| 丰满的人妻完整版| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 午夜老司机福利剧场| 91狼人影院| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 男人舔奶头视频| 99久久精品国产国产毛片| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 在线国产一区二区在线| 久久久久久国产a免费观看| 亚洲美女搞黄在线观看| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| 国产精品久久视频播放| 91狼人影院| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 久久这里只有精品中国| 欧美另类亚洲清纯唯美| 国产亚洲5aaaaa淫片| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 久久综合国产亚洲精品| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 久久久久久久久大av| 午夜福利成人在线免费观看| 精品人妻视频免费看| 国产黄色视频一区二区在线观看 | 亚洲自偷自拍三级| 真实男女啪啪啪动态图| 美女国产视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线在线| 99热全是精品| 国产女主播在线喷水免费视频网站 | 日韩国内少妇激情av| 亚洲欧洲日产国产| av专区在线播放| 日韩三级伦理在线观看| 午夜久久久久精精品| 五月伊人婷婷丁香| 国产精品蜜桃在线观看 | 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| av视频在线观看入口| 久久久久久久久中文| 国产av不卡久久| 老师上课跳d突然被开到最大视频| 少妇丰满av| 男人狂女人下面高潮的视频| 久久久午夜欧美精品| 男插女下体视频免费在线播放| h日本视频在线播放| 国产黄片视频在线免费观看| 欧美人与善性xxx| 久久久精品欧美日韩精品| 国产精品野战在线观看| 色哟哟·www| 国产日韩欧美在线精品| 国产成人精品婷婷| 国产色婷婷99| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 欧美精品国产亚洲| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 成人欧美大片| 床上黄色一级片| 国产高清三级在线| 久久久久久久久久黄片| 国产单亲对白刺激| 黄片无遮挡物在线观看| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 国产精品综合久久久久久久免费| 国产美女午夜福利| 国产乱人视频| 99热全是精品| 国产精品无大码| 国产亚洲欧美98| 日韩精品青青久久久久久| 亚洲国产精品成人久久小说 | 又爽又黄无遮挡网站| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 日韩一本色道免费dvd| 久99久视频精品免费| 日本黄大片高清| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 99riav亚洲国产免费| 一个人看的www免费观看视频| 亚洲国产精品成人综合色| 岛国毛片在线播放| 亚洲高清免费不卡视频| 国产精品久久久久久久电影| 免费观看的影片在线观看| 插逼视频在线观看| 老司机影院成人| 永久网站在线| 精品人妻熟女av久视频| 亚洲av中文av极速乱| 精品无人区乱码1区二区| 亚洲精品自拍成人| 青春草国产在线视频 | 狠狠狠狠99中文字幕| 99热精品在线国产| 黄片wwwwww| or卡值多少钱| 又爽又黄a免费视频| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| 天堂网av新在线| 精华霜和精华液先用哪个| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 欧美一区二区亚洲| 精品久久久噜噜| 日韩中字成人| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 丝袜喷水一区| www日本黄色视频网| 亚洲国产精品成人久久小说 | 美女内射精品一级片tv| 欧美日本视频| 亚洲18禁久久av| 99久久人妻综合| 中文欧美无线码| 国产美女午夜福利| 精品熟女少妇av免费看| av卡一久久| 伦精品一区二区三区| 男女边吃奶边做爰视频| 99热这里只有是精品50| 国产精品三级大全| 国产午夜精品论理片| 一夜夜www| 伦理电影大哥的女人| 毛片一级片免费看久久久久| 女同久久另类99精品国产91| 亚洲四区av| 午夜福利高清视频| 国产精品一二三区在线看| 中文欧美无线码| 老司机福利观看| 久久99热这里只有精品18| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 亚洲丝袜综合中文字幕| 深爱激情五月婷婷| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 国产成人精品久久久久久| 精品一区二区三区视频在线| 久久99精品国语久久久| 成人鲁丝片一二三区免费| 97人妻精品一区二区三区麻豆| 成年av动漫网址| 99久久中文字幕三级久久日本| 观看免费一级毛片| 久久久成人免费电影| 嘟嘟电影网在线观看| 午夜福利高清视频| 女人十人毛片免费观看3o分钟| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 久久久精品94久久精品| 精品久久久久久久久久免费视频| 男人舔女人下体高潮全视频| 少妇人妻精品综合一区二区 | 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 久久精品国产自在天天线| 久久精品久久久久久久性| 大型黄色视频在线免费观看| 国产精品嫩草影院av在线观看| 少妇高潮的动态图| 日韩强制内射视频| 欧美潮喷喷水| 我的女老师完整版在线观看| 亚洲av不卡在线观看| av在线观看视频网站免费| 国产精品美女特级片免费视频播放器| 日本黄大片高清| 午夜福利视频1000在线观看| 成人亚洲欧美一区二区av| av卡一久久| 国产精品.久久久| 亚洲欧美日韩卡通动漫| 联通29元200g的流量卡| 日韩制服骚丝袜av| 亚洲av电影不卡..在线观看| 黄片无遮挡物在线观看| 国产日本99.免费观看| 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 变态另类成人亚洲欧美熟女| 蜜桃亚洲精品一区二区三区| 波多野结衣高清无吗| 在现免费观看毛片| 欧美日韩综合久久久久久| 能在线免费看毛片的网站| 人妻夜夜爽99麻豆av| 国产视频内射| 亚洲美女视频黄频| 国产精品电影一区二区三区| 亚洲av第一区精品v没综合| 免费av不卡在线播放| 国产精品久久久久久精品电影小说 | 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 一级毛片电影观看 | 在线天堂最新版资源| 亚洲国产色片| 五月伊人婷婷丁香| 亚洲在线观看片| 成人漫画全彩无遮挡| 白带黄色成豆腐渣| 人妻少妇偷人精品九色| 久久国产乱子免费精品| 99热这里只有是精品50| 青青草视频在线视频观看| 小说图片视频综合网站| 可以在线观看的亚洲视频| eeuss影院久久| 真实男女啪啪啪动态图| 欧美性感艳星| 在线天堂最新版资源| 99热全是精品| 免费av毛片视频| 国产精品电影一区二区三区| 一区二区三区四区激情视频 | 性欧美人与动物交配| 高清日韩中文字幕在线| 国产亚洲精品av在线| 嫩草影院入口| 在线观看av片永久免费下载| 亚洲人成网站在线播| 国产成年人精品一区二区| 91狼人影院| 插阴视频在线观看视频| 2021天堂中文幕一二区在线观| 直男gayav资源| 有码 亚洲区| 欧美激情久久久久久爽电影| 国产老妇伦熟女老妇高清| 成人三级黄色视频| 国内精品久久久久精免费| 国产黄色小视频在线观看| 永久网站在线| 国产v大片淫在线免费观看| 五月玫瑰六月丁香| 亚洲最大成人中文| 国产片特级美女逼逼视频| av国产免费在线观看| 啦啦啦观看免费观看视频高清| 亚洲av第一区精品v没综合| 国产成人精品久久久久久| 一级av片app| 免费不卡的大黄色大毛片视频在线观看 | 欧美xxxx性猛交bbbb| 热99在线观看视频| 国产av麻豆久久久久久久| 亚洲欧美日韩卡通动漫| 欧美一区二区精品小视频在线| 国产91av在线免费观看| 国产精品日韩av在线免费观看| 三级经典国产精品| 日韩 亚洲 欧美在线| 婷婷六月久久综合丁香| 亚洲精华国产精华液的使用体验 | 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| av福利片在线观看| 国产视频内射| 亚州av有码| 国产成人一区二区在线| 99久国产av精品国产电影| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 日日干狠狠操夜夜爽| 男的添女的下面高潮视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人av| 亚洲中文字幕日韩| 99久国产av精品| 久久精品影院6| 国产精品.久久久| 在线免费观看不下载黄p国产| www.色视频.com| 色5月婷婷丁香| 久久午夜亚洲精品久久| 欧美bdsm另类| 成人欧美大片| 欧美成人一区二区免费高清观看| 欧美日本亚洲视频在线播放| av在线老鸭窝| 久久6这里有精品| 又粗又爽又猛毛片免费看| 久久久久久久久久久丰满| or卡值多少钱| 国产极品精品免费视频能看的| 亚洲精品456在线播放app| av又黄又爽大尺度在线免费看 | 三级国产精品欧美在线观看| 亚洲av电影不卡..在线观看| 欧美性猛交黑人性爽| 全区人妻精品视频| 国产精品蜜桃在线观看 | 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜爱| 神马国产精品三级电影在线观看| 国产在视频线在精品| 午夜亚洲福利在线播放| 国产爱豆传媒在线观看| 天堂影院成人在线观看| 日本爱情动作片www.在线观看| 久久久久久九九精品二区国产| 精品久久久久久久久久久久久| 亚洲av一区综合| 91久久精品电影网| av黄色大香蕉| 天美传媒精品一区二区| 天天躁夜夜躁狠狠久久av| 国产大屁股一区二区在线视频| 69人妻影院| 国产三级中文精品| 观看免费一级毛片| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 国产成人精品一,二区 | 悠悠久久av| 国产乱人偷精品视频| 久久综合国产亚洲精品| 久久久久久九九精品二区国产| 天堂影院成人在线观看| av视频在线观看入口| 99国产极品粉嫩在线观看| 亚洲欧美日韩高清在线视频| 亚洲婷婷狠狠爱综合网| 97人妻精品一区二区三区麻豆| 赤兔流量卡办理|