• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of the zonal wind stress response to SST in the CMIP5 AMIP simulations

    2018-05-24 01:41:44TANGShaoLeiandYUYongQiang

    TANG Shao-Lei and YU Yong-Qiang

    aLASG, Institute of Atmospheric Physics, Beijing, China; bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    1. Introduction

    El Ni?o–Southern Oscillation (ENSO) is characterized by the irregular occurrence of warm or cold sea surface temperature (SST) anomalies in the equatorial eastern Pacific,and usually reaches its peak in boreal winter (Rasmusson and Carpenter 1982). As an oscillation of the ocean–atmosphere system, ENSO is the dominant mode of interannual climate variability, and in fluences weather and climatic patterns worldwide (Bove et al. 1998; McPhaden, Zebiak, and Glantz 2006; Liu and Alexander 2007). Accordingly, being able to predict ENSO events well in advance has practical significance for economic development and social stability.Over the last 30 years, the theoretical understanding of ENSO has advanced significantly with the increasing availability and quality of observational data and paleo proxies (Wang and Picaut 2004); plus, climate model performance has also continually improved (Zhang and Jin 2012; Chen, Yu, and Sun 2013; Bellenger et al. 2013).Nonetheless, it remains difficult to accurately simulate and predict ENSO with coupled atmosphere–ocean general circulation models (CGCMs)–even the state-of-theart models involved in phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Bellenger et al. 2013;Chen et al. 2017)–because of the complex interplay between various oceanic and atmospheric processes and the relatively short observational record. Process- and feedback-based metrics and diagnostics provide us with some objective ways to locate errors exhibited by CGCMs and understand related dynamics, which is helpful in tackling the challenges that lie ahead.

    Zonal wind stress–one of the major variables involved in Bjerknes feedback (Bjerknes 1969)–affects not only ENSO amplitude (Lloyd et al. 2009; Lai, Herzog,and Graf 2015) but also other characteristics such as asymmetry and meridional width (Zhang et al. 2013;Zhang and Sun 2014). Based on NCEP–NOAA reanalysis data, Lai, Herzog, and Graf (2015) found that strong and sustained westerly wind anomalies in the western Pacific are needed to trigger an Eastern Pacific El Ni?o. Through observational and theoretical analyses, Zhang et al.(2013) concluded that a systematic weak trade-wind bias can lead to weak ocean meridional currents and eventually contribute to the narrow bias of the simulated ENSO meridional scale. By conducting wind-forced ocean GCM experiments, Zhang and Sun (2014) suggested that the stronger time-mean zonal winds and weaker asymmetry in the interannual anomalies of the zonal winds in Atmospheric Model Intercomparison Project (AMIP)models can both be a contributing factor to a weaker ENSO asymmetry in the corresponding coupled models.Currently, most models still fail to simulate the zonal wind stress correctly. For example, examining the representation of CMIP5 models, Abellán, McGregor, and England (2017) found that most models tend to underestimate the magnitude of the zonal wind stress anomalies, which is consistent with the results of Bellenger et al. (2013). Several CGCM analyses have pointed out that,through modifying deep convection schemes, characteristics associated with wind stress simulated by CGCMs have changed (Guilyardi et al. 2009; Zhang et al. 2009). It is generally accepted that the mechanism of the atmospheric response to changes in SST consists of the Gill mode (Gill 1980) and the Lindzen–Nigam mode (Lindzen and Nigam 1987). To simulate tropical low-level circulation accurately, the Gill mode and the Lindzen–Nigam mode should be combined (Wang and Li 1993). So far, a number of studies have focused on the oceanic dynamics and atmospheric thermodynamic processes (e.g.Lloyd, Guilyardi, and Weller 2011; Bellenger et al. 2013)and, generally, they agree that the SST–cloud shortwave radiance feedback is the main source of erroneous ENSO in CGCMs. However, little research has been devoted to the atmospheric dynamic processes, especially those associated with zonal wind stress. At the same time,since the role of the atmospheric component of CGCMs in shaping the modeled ENSO is dominant (Watanabe et al. 2010; Lloyd, Guilyardi, and Weller 2011), and it is relatively easy to establish a clear causality, analysis of AMIP model performance provides a simple yet powerful way to uncovering the potential source of modeled errors. In this paper, we present an assessment of the basic ENSO-related zonal wind stress response in CMIP5 AMIP simulations and attempt to discern the mechanisms responsible for bias in the simulated stress over the central tropical Pacific.

    2. Datasets and methods

    The zonal wind stress in 18 atmosphere-only GCMs (Table S1) from CMIP5 AMIP runs is evaluated. Detailed information on the individual models is available in Taylor,Stouffer, and Meehl (2012). For comparison with the model results, wind stress data from the Simple Ocean Data Assimilation (Carton and Giese 2008) are adopted,in which the surface winds are a combination of ERA-40 and Quick Scatterometer satellite data. Observations of precipitation are obtained from the Global Precipitation Climatology Project (Huffman et al. 2009). The validation of sea level pressure uses National Centers for Environmental Prediction–Department of Energy Reanalysis II data(Kanamitsu et al. 2002).

    In this study, we consider the period 1979–2008 for all the datasets, with a monthly temporal resolution adopted throughout. The anomalies for all variables are de fined as the deviations from the 1979–2008 climatological mean.Model outputs are examined at native grid resolution and then interpolated to the same grid as observations,to facilitate comparison with the measurement record and assessment of the multi-model means. The selection of El Ni?o and La Ni?a events is based on the threshold of one standard deviation from the wintertime (December–February, DJF) mean Ni?o3.4 index, which is de fined as the area-averaged SST anomaly (SSTA) over the region(5°N–5°S, 170°–120°W). Following this criterion, we find in the observations six El Ni?o events (1982/1983, 1986/1987,1991/1992, 1994/1995, 1997/1998, and 2002/2003) and four La Ni?a events (1988/1989, 1998/1999, 1999/192000,and 2007/2008) during the period 1979–2008. As ENSO events typically peak near the end of the calendar year, we composite during DJF regardless of the event peak, and focus on the performance of the multi-model ensemble(MME) mean.

    3. Results

    3.1. Southern Oscillation Index in AMIP simulations

    During recent decades there has been steady progress in the simulation of ENSO using CGCMs (AchutaRao and Sperber 2002; Randall et al. 2007). One of the typical characteristics of ENSO is a seesaw pattern in sea level pressure,associated with a modulation of the trade winds and a shift in tropical Pacific precipitation. To gain insight into the performance of CMIP5, Figure 1 shows the time series of Southern Oscillation Index (SOI) simulated by the MME,which is one measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (i.e. the state of the Southern Oscillation) during El Ni?o and La Ni?a episodes. As expected, although some of the finer details are not captured, the variation in SOI is reproduced by the MME, with roughly the correct magnitude. For example, the ensemble displays extreme negative SOI values in 1982/1983 and 1997/1998 and exhibits moderate values throughout the year when relatively weak El Ni?o or La Ni?a events develop. The correlation between the MME and observations for SOI is 0.87, and exceeds the 0.05 significance level.

    3.2. Responses of zonal wind stress anomalies to El Ni?o and La Ni?a events

    As mentioned earlier, zonal wind stress plays an important role in the development of ENSO (Chen et al. 2015; Fedorov et al. 2014). Because the two phases of ENSO, i.e. El Ni?o and La Ni?a, are not mirror images of each other (Burgers and Stephenson 1999; Okumura and Deser 2010; Zhang and Sun 2014; Im et al. 2015), and the relative importance of the physical processes involved in the oscillation may be different, model biases also tend to differ in these two phases, and it is therefore preferable to evaluate related ENSO characteristics in the two phases separately.

    Figure 2 presents the composite zonal wind stress anomalies during El Ni?o and La Ni?a events from the MME and observations, separately. In general, the MME displays comparable behavior to the observations.However, although the distribution of the ensemble-mean zonal wind stress anomalies is qualitatively similar to those observed, some differences can be seen: (i) the magnitudes of the ensemble-mean anomalous wind stress for both warm events (area-averaged over (5°N–5°S, 160°–220°E)) and cold events (area-averaged over (5°N–5°S,150°–210°E)) are weaker than their observed counterparts,perhaps indicating that the weak zonal wind stress represented by coupled models and shown by Bellenger et al. (2013) and Abellán, McGregor, and England (2017)do indeed derive from atmospheric model errors; (ii) the location of the wind stress response simulated by the MME is somewhat different from that observed. The main bias associated with warm events in the ensemble is a severe underestimation of westerly (positive) wind stress anomalies over the western and central tropical Pacific. In contrast, the zonal wind stress response shows a further westward extension during the cold phase. Here, we focus on the bias in the intensity of the wind stress response and find that the error associated with warm events is larger than that with cold events. Figure 3(a) shows a quantitative measure of the westerly wind stress anomalies associated with El Ni?o events over the region where the response is evident in the central Pacific (denoted by the solid blue line in Figure 2). Most models tend to underestimate El Ni?o–related wind stress anomalies, and the response intensity of the MME only accounts for about 60% of the observed one. In comparison, the bias in the ensemble-simulated wind stress anomaly associated with La Ni?a events is smaller, with an intensity comparable to that observed(not shown). The reason for the underestimated response in the zonal wind stress anomalies associated with El Ni?o events is analyzed in the next section.

    Figure 1. Three-month smoothed time series of Southern Oscillation index (SOI): observation (red curve); MME (blue curve),with blue shading denoting the standard deviation from each MME value, representing the monthly spread and variation across models.Note: The SOI is computed following the method described on the following website: https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/.

    3.3. Attribution of atmospheric model bias in the zonal wind stress

    As is well known, the interannual variability of zonal wind stress is closely related to that of the diabatic heating resulting from convective precipitation (Guilyardi et al.2009; Watanabe et al. 2011). According to the Gill mode(Gill 1980), low-level wind can be driven by diabatic heating, and the response of wind is stronger with more anomalous heating. The relationship between precipitation and zonal wind stress over the tropical Pacific is examined, in which we use precipitation to represent diabatic heating.A scatterplot of the area-averaged precipitation and zonal wind anomalies is provided in Figure 3(a). The precipitation anomalies are averaged over the area where most precipitation anomalies are observed in the central and eastern Pacific,as indicated by the blue frame in Figure 4. As shown in Figure 3(a), the zonal wind stress is positively correlated with the rainfall, with a correlation coefficient of 0.50, exceeding the 0.05 significance level. This illustrates the important role that the Gill mode plays in modulating zonal wind changes. At the same time, it is notable that an apparent discrepancy exists between the simulated and observed precipitation and wind stress in terms of intensity. Specifically, the simulated precipitation anomalies are a little stronger compared to those observed, whereas the simulated wind stress anomalies are much weaker than observed. This discrepancy implies that the mechanism of the zonal wind stress response to the SSTA cannot be as simple as stated above. There must be some other mechanisms involved that in fluence the zonal wind stress over the central Pacific.

    Figure 2. Spatial distributions of composite zonal wind stress anomalies (units: N m?2) during El Ni?o (left column) and La Ni?a (right column) events, from observation (upper panels) and the MME (middle panels), and their differences (lower panels).Notes: The blue frame (5°N–5°S, 160°–220°E) and red frame (5°N–5°S, 120°–190°E) are used in Figure 3(a) and (b) to calculate the correlation between the modeled precipitation and zonal wind stress.

    To understand the cause of the opposite model–observation relationship between precipitation and wind stress, we focus on the bias in the simulated precipitation. Several previous CGCM analyses have pointed out the important role played by the Indian Ocean in shaping modeled ENSO characteristics (Kug, Kirtman,and Kang 2006; Santoso, England, and Cai 2012; Wieners,Dijkstra, and de Ruijter 2017), giving us a clue to the potential mechanism responsible for the weaker zonal wind stress. As shown in Figure 4, there are systematically weaker negative precipitation anomalies over the entire eastern Indian Ocean and the Maritime Continent during El Ni?o events. In comparison, the bias in the eastern Indian Ocean is less consistent during La Ni?a events.Of note is that, although both the eastern Indian Ocean and the Maritime Continent have positive precipitation biases, they exert different impacts on the zonal wind stress across the western and central Pacific. As shown in Figure S1, the correlation coefficients over the Indian Ocean are negative, whereas those across the western and central Pacific are positive, with regions over 100°–140°E acting as a transition zone. Accordingly, the main cause of the negative biases in zonal wind stress over the western and central Pacific may be the positive biases across the eastern Indian Ocean in the modeled precipitation anomalies. Using the Center for Ocean–Land–Atmosphere Studies interactive ensemble coupled model, Kug, Kirtman, and Kang (2006) showed that anomalous Indian Ocean warming can induce anomalous easterlies over the western Pacific by in fluencing the Walker circulation. Consistent with these results, in this study, compared with observations, the MME underestimates the negative precipitation anomalies over the eastern Indian Ocean, and at the same time simulates weaker westerly wind anomalies over the western Pacific. To check the relationship between eastern Indian Ocean precipitation and western Pacific Ocean zonal wind stress, we produce scatterplots of these two variables (Figure 3(b)) averaged over regions where their responses are evident, as indicated by the red frames in Figures 2 and 4, respectively. To a large extent, strong precipitation over the eastern Indian Ocean tends to be accompanied by strengthened easterly wind stress in the western tropical Pacific Ocean, as shown in Figure 3(b). The correlation coefficient between these variables is 0.76, which is even larger than that between precipitation and wind stress averaged over the central Pacific.This indicates that the Indian Ocean plays an important role in the ENSO cycle and contributes considerably to the modulation of ENSO variability. The mechanism by which precipitation over the eastern Indian Ocean affects easterly wind stress in the western Pacific Ocean is in exact accordance with the Gill mode, in which eastward Kelvin waves can induce easterly winds east of the heating source region (Gill 1980). In contrast, there is no coherent precipitation anomaly bias across the eastern Indian Ocean during La Ni?a events, which contribute to the better simulation of zonal wind stress in the central Pacific than that during El Ni?o events.

    The above analysis explores the causes of the simulated weaker westerly zonal wind stress in the MME over the central Pacific Ocean. This bias may be mainly attributable to the stronger precipitation anomalies simulated across the eastern Indian Ocean. Through the Gill-like mode, positive precipitation anomalies in the central Pacific Ocean induce westerly wind anomalies over the central Pacific, and at the same time the simulated positive precipitation bias in the eastern Indian Ocean causes an easterly wind bias over the western and central Pacific. These two effects counteract each other and eventually contribute collectively to the weaker zonal wind stress anomalies over the central Pacific during El Ni?o events.

    Figure 3. Scatterplot of composite zonal wind stress anomalies and precipitation anomalies from observation and models: (a)precipitation and zonal wind stress in the central Pacific, denoted by the blue frame in Figures 2 and 4, respectively; (b) precipitation in the eastern Indian Ocean and zonal wind stress in the western Pacific Ocean, denoted by the red frame in Figures 2 and 4, respectively.Notes: The horizontal and vertical black solid lines indicate the observed zonal wind stress and precipitation anomalies, respectively. Zero represents observation;1 represents the MME; 2–19 represent the model outputs.

    Figure 4. Spatial distributions of composite precipitation anomalies (units: mm d?1) during El Ni?o (left column) and La Ni?a (right column) events, from observation (upper panels) and the MME (middle panels), and their differences (lower panels).Note: The blue frame (5°N–5°S, 170°–240°E) and red frame (5°N–5°S, 80°–100°E) are used in Figure 3(a) and (b) to calculate the correlation between the modeled precipitation and zonal wind stress.

    4. Summary and discussion

    In this study, the interannual variability of zonal wind stress simulated by the AMIP simulations over the tropical Pacific Ocean is evaluated, and the origin of the associated biases is preliminarily investigated. It is found that, compared with observation, the MME produces weaker zonal wind stress anomalies in response to SST anomalies during both El Ni?o and La Ni?a events, and the model bias in the former is much larger than that in the latter. These findings agree with the results from CGCMs reported by Bellenger et al. (2013) and Abellán, McGregor, and England(2017), indicating that the atmospheric models may play a key role in simulating zonal wind stress anomalies at the interannual timescale. At the same time, the location of the zonal wind stress response differs to the observed one,with a further eastward extension during the warm phase but a further westward extension during the cold phase.The reason for the severely weaker zonal wind stress produced in El Ni?o events is examined and is attributed to the apparent underestimation of negative precipitation anomalies over the eastern Indian Ocean during warm events. According to the Gill mode (Gill 1980), a heating source that is symmetric about the equator will induce low-level easterly flow to the east of it and westerly flow to the west. In this study, precipitation anomalies associated El Ni?o events over the central Pacific result in westerly wind in the central Pacific Ocean, whereas a positive precipitation bias across the eastern Indian Ocean induces easterly wind in the western and central Pacific. These two different responses of zonal wind stress to the prescribed SSTAs cancel each other out to some extent, and ultimately result in the weakened response of westerly wind anomalies to the observed SSTAs over the central Pacific Ocean.Overall, the bias in the simulated zonal wind stress anomalies is much larger during El Ni?o events than during La Ni?a events. The reason is that, during El Ni?o events, most models simulate a large area of weaker negative precipitation anomalies across the eastern Indian Ocean, which has a strong impact on the simulated zonal wind stress anomalies in the central Pacific. In contrast, there is no consistency in the error of simulated precipitation anomalies in the eastern Indian Ocean during La Ni?a events, which has little effect on the simulated zonal wind stress anomaly in the central Pacific.

    Given the Indian Ocean dipole (IOD) signal in the observation and model biases shown in Figure 4, we also check whether the performance of the MME changes dramatically with and without IOD occurrence. What we find is that both groups show the typical zonal wind stress response associated with El Ni?o, meaning that–compared to the IOD–El Ni?o events play a dominant role in zonal wind stress anomalies. On the other hand, although a weaker wind stress response over the western and central Pacific can be found in both groups, larger biases exist in the group without IOD occurrence (Figures S2 and S3). One possible explanation is that El Ni?o tends to co-occur with the Indian Ocean basin mode (IOBM) in non-IOD cases, and the IOBM induces stronger easterly anomalies in the western and central Pacific during boreal winter than the IOD (Santoso, England, and Cai 2012), resulting in larger zonal wind stress anomaly biases.

    It is important to note that the mechanisms affecting the zonal wind stress response that we talk about in this paper are all related to the Gill mode. However, there may not be a one-to-one correspondence between the heating intensity in the Gill mode and the magnitude of precipitation anomalies. The heating intensity in the Gill mode may be more related to the vertical heating pro file. In addition,the response of zonal wind stress is related not only to diabatic heating but also to the SST gradient (Lindzen and Nigam 1987). Nevertheless, it is difficult to separate their relative roles using GCMs. On the other hand, the present study highlights the importance of representing precipitation in the Indian Ocean precisely in AMIP simulations.However, numerical experiments should be carried out in future to fully understand the mechanism by which precipitation in the Indian Ocean in fluences the zonal wind stress over the Pacific. In addition, the sensitivity of the simulated zonal wind stress to the choice of physical parameterization schemes or the dynamic core of atmospheric models also needs further analysis in future work.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41530426].

    References

    Abellán, E., S. McGregor, and M. H. England. 2017. “Analysis of the Southward Wind Shift of ENSO in CMIP5 Models.”Journalof Climate30 (7): 2415–2435. doi:10.1175/jcli-d-16-0326.1.

    AchutaRao, K., and K. Sperber. 2002. “Simulation of the El Ni?o Southern Oscillation: Results from the Coupled Model Intercomparison Project.”Climate Dynamics19 (3): 191–209.doi:10.1007/s00382-001-0221-9.

    Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J.Vialard. 2013. “ENSO Representation in Climate Models: From CMIP3 to CMIP5.”Climate Dynamics42 (7–8): 1999–2018.doi:10.1007/s00382-013-1783-z.

    Bjerknes, J. 1969. “Atmospheric Teleconnections from the Equatorial Pacific.”Monthly Weather Review97 (3): 163–172.doi:10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2.

    Bove, M. C., J. J. O’Brien, J. B. Eisner, C. W. Landsea, and X.Niu. 1998. “Effect of El Ni?o on US Landfalling Hurricanes,Revisited.”Bulletin of the American Meteorological Society79(11): 2477–2482. doi:10.1175/1520-0477(1998)079<2477:eo enoo>2.0.co;2.

    Burgers, G., and D. B. Stephenson. 1999. “The “Normality” of El Ni?o.”Geophysical Research Letters26 (8): 1027–1030.doi:10.1029/1999gl900161.

    Carton, J. A., and B. S. Giese. 2008. “A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation(SODA).”Monthly Weather Review136 (8): 2999–3017.doi:10.1175/2007mwr1978.1.

    Chen, L., Y. Yu, and D.-Z. Sun. 2013. “Cloud and Water Vapor Feedbacks to the El Ni?o Warming: Are They Still Biased in CMIP5 Models?”Journal of Climate26 (14): 4947–4961.doi:10.1175/jcli-d-12-00575.1.

    Chen, D., T. Lian, C. Fu, M. A. Cane, Y. Tang, R. Murtugudde, X.Song, Q. Wu, and L. Zhou. 2015. “Strong In fluence of Westerly Wind Bursts on El Ni?o Diversity.”Nature Geoscience8 (5):339–345. doi:10.1038/ngeo2399.

    Chen, L., T. Li, Y. Yu, and S. K. Behera. 2017. “A Possible Explanation for the Divergent Projection of ENSO Amplitude Change under Global Warming.”Climate Dynamics49 (11–12): 3799–3811. doi:10.1007/s00382-017-3544-x.

    Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi. 2014. “The Impact of Westerly Wind Bursts and Ocean Initial State on the Development, and Diversity of El Ni?o Events.”Climate Dynamics44 (5–6): 1381–1401. doi:10.1007/s00382-014-2126-4.

    Gill, A. 1980. “Some Simple Solutions for Heat-induced Tropical Circulation.”Quarterly Journal of the Royal Meteorological Society106 (449): 447–462. doi:10.1256/smsqj.44904.

    Guilyardi, E., P. Braconnot, F.-F. Jin, S. T. Kim, M. Kolasinski,T. Li, and I. Musat. 2009. “Atmosphere Feedbacks during ENSO in a Coupled GCM with a Modified Atmospheric Convection Scheme.”Journal of Climate22 (21): 5698–5718.doi:10.1175/2009jcli2815.1.

    Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu. 2009.“Improving the Global Precipitation Record: GPCP Version 2.1.”Geophysical Research Letters36 (17): 153–159. doi:10.10 29/2009gl040000.

    Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin. 2015. “Feedback Processes Responsible for El Ni?o-La Ni?a Amplitude Asymmetry.”Geophysical Research Letters42 (13): 5556–5563.doi:10.1002/2015gl064853.

    Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,M. Fiorino, and G. L. Potter. 2002. “NCEP–DOE AMIP-II Reanalysis (R-2).”Bulletin of the American Meteorological Society83 (11): 1631–1643. doi:10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2.

    Kug, J.-S., B. P. Kirtman, and I.-S. Kang. 2006. “Interactive Feedback between ENSO and the Indian Ocean in an Interactive Ensemble Coupled Model.”Journal of Climate19(24): 6371–6381. doi:10.1175/jcli3980.1.

    Lai, A. W.-C., M. Herzog, and H.-F. Graf. 2015. “Two Key Parameters for the El Ni?o Continuum: Zonal Wind Anomalies and Western Pacific Subsurface Potential Temperature.”Climate Dynamics45 (11–12): 3461–3480. doi:10.1007/s00382-015-2550-0.

    Lindzen, R. S., and S. Nigam. 1987. “On the Role of Sea Surface Temperature Gradients in Forcing Low-level Winds and Convergence in the Tropics.”Journal of the Atmospheric Sciences44 (17): 2418–2436. doi:10.1175/1520-0469(1987)044<2418:otross>2.0.co;2.

    Liu, Z., and M. Alexander. 2007. “Atmospheric Bridge, Oceanic Tunnel, and Global Climatic Teleconnections.”Reviews of Geophysics45 (2): RG2005. doi:10.1029/2005rg000172.

    Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo. 2009. “The Role of Atmosphere Feedbacks during ENSO in the CMIP3 Models.”Atmospheric Science Letters10 (3): 170–176. doi:10.1002/asl.227.

    Lloyd, J., E. Guilyardi, and H. Weller. 2011. “The Role of Atmosphere Feedbacks during ENSO in the CMIP3 Models.Part II: Using AMIP Runs to Understand the Heat Flux Feedback Mechanisms.”Climate Dynamics37 (7–8): 1271–1292. doi:10.1007/s00382-010-0895-y.

    McPhaden, M. J., S. E. Zebiak, and M. H. Glantz. 2006. “ENSO as an Integrating Concept in Earth Science.”Science314 (5806):1740–1745. doi:10.1126/science.1132588.

    Okumura, Y. M., and C. Deser. 2010. “Asymmetry in the Duration of El Ni?o and La Ni?a.”Journal of Climate23 (21): 5826–5843.doi:10.1175/2010jcli3592.1.

    Randall, D. A., R. A. Wood, S. Bony, R. A. Colman, V. Kattsov, A.Pitman, J. Shukla, et al. 2007. “Climate Models and Their Evaluation.” Chap. 8 inClimate Change 2007: The Physical Science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC on Climate Change. Cambridge:Cambridge University Press.

    Rasmusson, E. M., and T. H. Carpenter. 1982. “Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Ni?o.”Monthly Weather Review110 (5): 354–384. doi:10.1175/1520-0493(1982)110<0354:vitsst>2.0.co;2.

    Santoso, A., M. H. England, and W. Cai. 2012. “Impact of Indopacific Feedback Interactions on ENSO Dynamics Diagnosed Using Ensemble Climate Simulations.”Journal of Climate25(21): 7743–7763. doi:10.1175/jcli-d-11-00287.1.

    Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.”Bulletin of the American Meteorological Society93 (4): 485–498. doi:10.1175/bams-d-11-00094.1.

    Wang, B., and T. Li. 1993. “A Simple Tropical Atmosphere Model of Relevance to Short-term Climate Variations.”Journal of the Atmospheric Sciences50 (2): 260–284. doi:10.1175/1520-0469(1993)050<0260:astamo>2.0.co;2.

    Wang, C., and J. Picaut. 2004. “Understanding Enso Physics – A Review.” Chap. 2 inEarth’s Climate: The Ocean-Atmosphere Interaction, 21–48. Washington, DC: American Geophysical Union.

    Watanabe, M., T. Suzuki, R. O’ishi, Y. Komuro, S. Watanabe,S. Emori, T. Takemura, et al. 2010. “Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity.”Journal of Climate23 (23): 6312–6335.doi:10.1175/2010jcli3679.1.

    Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto. 2011.“Convective Control of ENSO Simulated in MIROC.”Journal of Climate24 (2): 543–562. doi:10.1175/2010jcli3878.1.

    Wieners, C. E., H. A. Dijkstra, and W. P. de Ruijter. 2017. “The In fluence of the Indian Ocean on ENSO Stability and Flavor.”Journal of Climate30 (7): 2601–2620. doi:10.1175/jcli-d-16-0516.1.

    Zhang, W., and F.-F. Jin. 2012. “Improvements in the CMIP5 Simulations of ENSO-SSTA Meridional Width.”Geophysical Research Letters39 (23): L23073. doi:10.1029/2012gl053588.Zhang, T., and D.-Z. Sun. 2014. “ENSO Asymmetry in CMIP5 Models.”Journal of Climate27 (11): 4070–4093. doi:10.1175/jcli-d-13-00454.1.

    Zhang, T., D.-Z. Sun, R. Neale, and P. J. Rasch. 2009. “An Evaluation of ENSO Asymmetry in the Community Climate System Models: A View from the Subsurface.”Journal of Climate22(22): 5933–5961. doi:10.1175/2009jcli2933.1.

    Zhang, W., F.-F. Jin, J.-X. Zhao, and J. Li. 2013. “On the Bias in Simulated ENSO SSTA Meridional Widths of CMIP3 Models.”Journal of Climate26 (10): 3173–3186. doi:10.1175/jcli-d-12-00347.1.

    国产精品久久久人人做人人爽| 日本色播在线视频| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 亚洲一码二码三码区别大吗| 在线观看三级黄色| 亚洲自偷自拍图片 自拍| 自线自在国产av| 午夜免费男女啪啪视频观看| 麻豆av在线久日| 又粗又硬又长又爽又黄的视频| 少妇猛男粗大的猛烈进出视频| av不卡在线播放| www.熟女人妻精品国产| videosex国产| 波野结衣二区三区在线| 人成视频在线观看免费观看| 一区二区三区精品91| 最黄视频免费看| 中文字幕人妻熟女乱码| 色综合欧美亚洲国产小说| 综合色丁香网| 婷婷色麻豆天堂久久| 中文字幕人妻丝袜一区二区 | 一级爰片在线观看| 老熟女久久久| 日韩电影二区| 久久av网站| 看十八女毛片水多多多| 国产成人精品无人区| 亚洲av中文av极速乱| 熟女少妇亚洲综合色aaa.| 我要看黄色一级片免费的| 亚洲伊人色综图| 国产成人精品福利久久| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 亚洲伊人色综图| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 亚洲av电影在线观看一区二区三区| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 男女边摸边吃奶| 欧美中文综合在线视频| 老司机在亚洲福利影院| 日韩一区二区视频免费看| 在线看a的网站| 可以免费在线观看a视频的电影网站 | av视频免费观看在线观看| 国产成人精品久久二区二区91 | 在线亚洲精品国产二区图片欧美| 国产av精品麻豆| 国产麻豆69| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 黄频高清免费视频| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 久久久欧美国产精品| 久久天躁狠狠躁夜夜2o2o | 一级a爱视频在线免费观看| 久久婷婷青草| 久久精品亚洲av国产电影网| 精品少妇内射三级| 日韩视频在线欧美| 亚洲av国产av综合av卡| 亚洲精品av麻豆狂野| 中文字幕亚洲精品专区| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 97人妻天天添夜夜摸| 日韩一区二区视频免费看| 麻豆av在线久日| 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 国产在线视频一区二区| 99久久精品国产亚洲精品| 国语对白做爰xxxⅹ性视频网站| 日日啪夜夜爽| 男女之事视频高清在线观看 | 91老司机精品| 国产在线一区二区三区精| 久久精品人人爽人人爽视色| 一级片'在线观看视频| 午夜激情av网站| 最新的欧美精品一区二区| 欧美日韩福利视频一区二区| 高清不卡的av网站| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲综合一区二区三区_| 成人国产av品久久久| 捣出白浆h1v1| 又大又黄又爽视频免费| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 超色免费av| 黄色怎么调成土黄色| 纯流量卡能插随身wifi吗| 国产精品.久久久| 桃花免费在线播放| 777久久人妻少妇嫩草av网站| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 王馨瑶露胸无遮挡在线观看| avwww免费| 日韩一本色道免费dvd| 久久午夜综合久久蜜桃| 国产无遮挡羞羞视频在线观看| 国产探花极品一区二区| 一区二区av电影网| 下体分泌物呈黄色| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 国产老妇伦熟女老妇高清| 午夜福利一区二区在线看| 十八禁人妻一区二区| 我的亚洲天堂| 亚洲少妇的诱惑av| 国产精品久久久久久人妻精品电影 | 国产在线一区二区三区精| 黄频高清免费视频| 日韩成人av中文字幕在线观看| 成年av动漫网址| 国产熟女欧美一区二区| 女人精品久久久久毛片| 9色porny在线观看| 亚洲av男天堂| 日韩av不卡免费在线播放| 亚洲av成人精品一二三区| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 18禁观看日本| 亚洲成人国产一区在线观看 | 久久精品人人爽人人爽视色| 熟女少妇亚洲综合色aaa.| 亚洲三区欧美一区| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 免费观看a级毛片全部| 午夜日韩欧美国产| 亚洲欧美成人精品一区二区| 日韩一卡2卡3卡4卡2021年| 国产精品熟女久久久久浪| 国产精品久久久人人做人人爽| 一区在线观看完整版| 中文字幕高清在线视频| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 三上悠亚av全集在线观看| 一级毛片黄色毛片免费观看视频| 久久久久精品国产欧美久久久 | 菩萨蛮人人尽说江南好唐韦庄| 一边亲一边摸免费视频| 午夜日韩欧美国产| 欧美日韩精品网址| 亚洲av在线观看美女高潮| 国产又色又爽无遮挡免| 性高湖久久久久久久久免费观看| 麻豆av在线久日| 日韩一卡2卡3卡4卡2021年| 两个人看的免费小视频| 亚洲自偷自拍图片 自拍| 日日啪夜夜爽| videosex国产| 久久精品久久久久久噜噜老黄| 欧美久久黑人一区二区| 亚洲精品在线美女| 赤兔流量卡办理| 男女下面插进去视频免费观看| 国产欧美日韩综合在线一区二区| 2018国产大陆天天弄谢| 中文字幕高清在线视频| 婷婷色av中文字幕| 熟女av电影| 汤姆久久久久久久影院中文字幕| 国产男女内射视频| 女性被躁到高潮视频| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 免费少妇av软件| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 高清欧美精品videossex| 免费看不卡的av| 一区二区av电影网| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大的猛进出69影院| 操美女的视频在线观看| 久久久精品区二区三区| 国产高清不卡午夜福利| 欧美久久黑人一区二区| 在线观看一区二区三区激情| bbb黄色大片| 在线 av 中文字幕| 国产男女超爽视频在线观看| 国产亚洲最大av| 伊人久久大香线蕉亚洲五| av网站免费在线观看视频| 日韩成人av中文字幕在线观看| 一级爰片在线观看| 欧美人与性动交α欧美精品济南到| 夜夜骑夜夜射夜夜干| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 欧美在线一区亚洲| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 人人妻人人澡人人看| 午夜激情av网站| 亚洲成色77777| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| www日本在线高清视频| 十八禁网站网址无遮挡| 国产亚洲欧美精品永久| 伊人久久国产一区二区| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 国产在线免费精品| 中国国产av一级| 精品人妻一区二区三区麻豆| 免费观看a级毛片全部| 曰老女人黄片| 精品免费久久久久久久清纯 | 18禁动态无遮挡网站| 国产成人精品无人区| 在线观看免费高清a一片| 一级爰片在线观看| 一级,二级,三级黄色视频| 一级毛片电影观看| 久久人人爽人人片av| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 黄色视频在线播放观看不卡| 在线观看一区二区三区激情| 香蕉丝袜av| 大片电影免费在线观看免费| 国产老妇伦熟女老妇高清| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| 黄网站色视频无遮挡免费观看| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 美国免费a级毛片| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 波多野结衣av一区二区av| 最近最新中文字幕大全免费视频 | 国产一区二区 视频在线| 国产免费又黄又爽又色| 国产精品亚洲av一区麻豆 | 国产精品人妻久久久影院| 婷婷成人精品国产| 亚洲人成电影观看| 国产精品99久久99久久久不卡 | 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 久久精品久久精品一区二区三区| 亚洲第一青青草原| 中文字幕色久视频| 男女午夜视频在线观看| 亚洲欧洲国产日韩| 久久人人97超碰香蕉20202| 日韩大码丰满熟妇| 最近2019中文字幕mv第一页| 亚洲成人av在线免费| 色视频在线一区二区三区| 成年动漫av网址| 日韩大片免费观看网站| 国产野战对白在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 亚洲五月色婷婷综合| 亚洲欧美一区二区三区黑人| 色播在线永久视频| 午夜福利免费观看在线| 男男h啪啪无遮挡| 在线精品无人区一区二区三| 我的亚洲天堂| 午夜福利,免费看| 免费av中文字幕在线| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 日韩制服丝袜自拍偷拍| 亚洲欧洲国产日韩| www.自偷自拍.com| 少妇人妻 视频| 建设人人有责人人尽责人人享有的| 午夜福利在线免费观看网站| 亚洲综合色网址| 亚洲欧美一区二区三区国产| 在线免费观看不下载黄p国产| 国产一区二区三区综合在线观看| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| 久热这里只有精品99| 1024视频免费在线观看| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 国产免费福利视频在线观看| 欧美久久黑人一区二区| 欧美97在线视频| 精品一区二区免费观看| 韩国av在线不卡| 看免费成人av毛片| 久久天躁狠狠躁夜夜2o2o | 精品一区二区三区av网在线观看 | 捣出白浆h1v1| 2018国产大陆天天弄谢| 中文字幕亚洲精品专区| 免费观看av网站的网址| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 成人亚洲欧美一区二区av| 美女扒开内裤让男人捅视频| 久久久久久免费高清国产稀缺| 国产男女超爽视频在线观看| 成人国产av品久久久| 久久97久久精品| 欧美在线黄色| 成人手机av| 国产精品熟女久久久久浪| 亚洲第一青青草原| 久久久精品国产亚洲av高清涩受| 亚洲精品av麻豆狂野| 一本一本久久a久久精品综合妖精| 国产成人免费观看mmmm| 99热全是精品| av有码第一页| www.精华液| 激情视频va一区二区三区| 最近中文字幕2019免费版| 黑人欧美特级aaaaaa片| 性色av一级| 一级毛片黄色毛片免费观看视频| 国产片内射在线| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 精品一区二区三区av网在线观看 | 婷婷色麻豆天堂久久| 午夜91福利影院| 熟女av电影| 各种免费的搞黄视频| 老汉色∧v一级毛片| 国产成人精品久久二区二区91 | 老熟女久久久| 欧美在线一区亚洲| 制服人妻中文乱码| 晚上一个人看的免费电影| 交换朋友夫妻互换小说| netflix在线观看网站| 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 亚洲色图 男人天堂 中文字幕| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆 | 超色免费av| av不卡在线播放| 啦啦啦 在线观看视频| av天堂久久9| 欧美精品高潮呻吟av久久| 亚洲精品美女久久av网站| 无遮挡黄片免费观看| 亚洲精品视频女| 日韩av免费高清视频| 亚洲伊人色综图| 久久毛片免费看一区二区三区| 亚洲一级一片aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| 成人国产麻豆网| 黄色视频在线播放观看不卡| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久av网站| 国产男女内射视频| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 日日摸夜夜添夜夜爱| 18禁国产床啪视频网站| 狂野欧美激情性xxxx| 成年av动漫网址| 人体艺术视频欧美日本| 精品少妇内射三级| 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| 乱人伦中国视频| 午夜福利网站1000一区二区三区| 国产高清国产精品国产三级| av视频免费观看在线观看| 在线观看三级黄色| 国产野战对白在线观看| 少妇被粗大猛烈的视频| 一级a爱视频在线免费观看| 欧美xxⅹ黑人| 交换朋友夫妻互换小说| 99久久综合免费| 久久久国产精品麻豆| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 多毛熟女@视频| 精品人妻在线不人妻| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| 爱豆传媒免费全集在线观看| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 曰老女人黄片| 深夜精品福利| 在线观看三级黄色| 天天躁狠狠躁夜夜躁狠狠躁| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 超碰成人久久| 叶爱在线成人免费视频播放| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 午夜老司机福利片| 国产精品久久久久久精品古装| 久久人妻熟女aⅴ| 亚洲免费av在线视频| 丝袜脚勾引网站| 亚洲七黄色美女视频| 欧美乱码精品一区二区三区| 国产精品久久久久久人妻精品电影 | 日本欧美视频一区| 久久久久精品国产欧美久久久 | 国产爽快片一区二区三区| 桃花免费在线播放| 国产午夜精品一二区理论片| 丁香六月欧美| 国产成人精品久久久久久| 秋霞在线观看毛片| 亚洲欧美成人综合另类久久久| 国产精品久久久av美女十八| 欧美精品av麻豆av| 日本黄色日本黄色录像| 亚洲自偷自拍图片 自拍| 日韩av在线免费看完整版不卡| 国产无遮挡羞羞视频在线观看| 日韩精品有码人妻一区| 亚洲第一av免费看| 亚洲情色 制服丝袜| 国产精品.久久久| 老司机亚洲免费影院| 免费人妻精品一区二区三区视频| 亚洲av成人不卡在线观看播放网 | 亚洲伊人久久精品综合| 久热这里只有精品99| 久久青草综合色| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av高清不卡| 日韩精品有码人妻一区| avwww免费| 黄色怎么调成土黄色| 叶爱在线成人免费视频播放| 精品少妇一区二区三区视频日本电影 | 中文字幕最新亚洲高清| 色94色欧美一区二区| 欧美人与性动交α欧美软件| 18在线观看网站| 中文字幕制服av| 一本色道久久久久久精品综合| 免费看不卡的av| 国产成人a∨麻豆精品| 纵有疾风起免费观看全集完整版| 另类精品久久| 免费不卡黄色视频| 亚洲视频免费观看视频| 色播在线永久视频| 久久天躁狠狠躁夜夜2o2o | 亚洲av电影在线进入| 欧美日韩av久久| 别揉我奶头~嗯~啊~动态视频 | 免费黄网站久久成人精品| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人爽人人添夜夜欢视频| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 一区二区三区乱码不卡18| 日韩av在线免费看完整版不卡| 丰满饥渴人妻一区二区三| 黄片无遮挡物在线观看| 国产视频首页在线观看| 国产成人一区二区在线| 我要看黄色一级片免费的| 国产黄频视频在线观看| 九九爱精品视频在线观看| 成人三级做爰电影| 久久精品国产亚洲av涩爱| 毛片一级片免费看久久久久| 日韩一本色道免费dvd| 自线自在国产av| 国产亚洲午夜精品一区二区久久| av有码第一页| 日韩 亚洲 欧美在线| 亚洲av成人精品一二三区| 久久久精品免费免费高清| 久久韩国三级中文字幕| 日韩av不卡免费在线播放| 嫩草影视91久久| 久久久精品94久久精品| 久久久久久久久久久免费av| 老司机在亚洲福利影院| 99热国产这里只有精品6| 一区福利在线观看| 午夜福利视频精品| 亚洲一区二区三区欧美精品| 日日啪夜夜爽| 青春草亚洲视频在线观看| 天天添夜夜摸| 建设人人有责人人尽责人人享有的| 桃花免费在线播放| 欧美人与善性xxx| 在线观看免费高清a一片| 国产精品 国内视频| 亚洲图色成人| 丰满乱子伦码专区| 国产av精品麻豆| 国产亚洲av高清不卡| 国产成人免费观看mmmm| 亚洲,欧美,日韩| 老司机深夜福利视频在线观看 | 久久久久久久久久久久大奶| 麻豆乱淫一区二区| 成人黄色视频免费在线看| 天天躁夜夜躁狠狠躁躁| 国产一区二区在线观看av| 无遮挡黄片免费观看| 国产精品三级大全| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 99国产综合亚洲精品| 国产精品久久久久久精品电影小说| 国产精品久久久久久人妻精品电影 | 王馨瑶露胸无遮挡在线观看| 高清黄色对白视频在线免费看| 美女视频免费永久观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 九草在线视频观看| 一二三四在线观看免费中文在| 99热网站在线观看| 男女床上黄色一级片免费看| 成年人午夜在线观看视频| bbb黄色大片| kizo精华| 欧美国产精品va在线观看不卡| 少妇被粗大猛烈的视频| 国产午夜精品一二区理论片| 夜夜骑夜夜射夜夜干| 欧美人与性动交α欧美精品济南到| 欧美黑人精品巨大| 欧美乱码精品一区二区三区| 国产 一区精品| 在线观看免费视频网站a站| 精品卡一卡二卡四卡免费| 电影成人av| 亚洲国产成人一精品久久久| 极品人妻少妇av视频| 国产成人av激情在线播放| 午夜免费观看性视频| 青草久久国产| 三上悠亚av全集在线观看| 桃花免费在线播放| 日韩一区二区视频免费看| 在线观看国产h片| 啦啦啦 在线观看视频| 国语对白做爰xxxⅹ性视频网站| 欧美精品一区二区大全| 日韩一区二区三区影片| 亚洲一卡2卡3卡4卡5卡精品中文| 乱人伦中国视频| 久久久国产一区二区| 亚洲男人天堂网一区| av在线播放精品| 天天躁夜夜躁狠狠久久av| 亚洲成人免费av在线播放| 精品少妇久久久久久888优播| 日韩一本色道免费dvd| 波多野结衣av一区二区av| 国产成人免费无遮挡视频| 免费人妻精品一区二区三区视频| 日韩 欧美 亚洲 中文字幕| av国产久精品久网站免费入址| 成人黄色视频免费在线看| 国产午夜精品一二区理论片| 不卡av一区二区三区|