• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effective approaches to extending medium-term forecasting of persistent severe precipitation in regional models

    2018-05-24 01:41:43WANGDongHaiandZHAOYanFeng

    WANG Dong-Hai and ZHAO Yan-Feng

    aGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University,Guangzhou, China; bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

    1. Introduction

    Persistent severe rainfall (PSR) events, with daily precipitation greater than 50 mm and durations of longer than three days (Bao 2007), are a highly damaging weather phenomenon. For example, a 12-day PSR event in the summer of 1998 caused disastrous flooding in the Yangtze River Valley, with direct economic losses of 250 billion Yuan RMB and a death toll of more than 3000 (Huang et al. 1998;Lu 2000). More recently, in January 2008, successive snow storms in southern China resulted in losses of 146 billion Yuan RMB and over 130 fatalities (Wang et al. 2009).Moreover, PSR events have been occurring with increasing frequency and at higher intensity in the last 60 years,especially since 1990 (Chen and Zhai 2013).

    Regional modeling is a key method for the forecasting of mesoscale circulation and precipitation, and an important means for the forecasting of disastrous weather(Jiao et al. 2006). How to use regional models to extend the medium-term forecasting of PSR events based on improved prediction of regional atmospheric circulation is an important avenue of meteorological research, not least because of the advantages it should bring to disaster prevention and mitigation (Brunet et al. 2010). Most previous studies in this regard have focused on the simulation of atmospheric low-frequency circulation via the combination of statistical and dynamical methods (Zhang et al. 1994; Wheeler and Hendon 2004; Chen, Wei and Gong 2012; Zhu and Li 2017a, 2017b), as well as correcting the forecasting error related to atmospheric circulation (Peng,Che, and Chang 2013) and precipitation (Liu et al. 2013).Meanwhile, little research has been conducted on the use of dynamic prediction methods for PSR from the medium-range forecasting perspective.

    In the last few years, based on current understanding of the formation mechanisms of PSR events (Zhao et al.2017) and the method of dynamic extended forecasting in regional models, studies have focused on analyzing the error sources of regional models and evaluating the predictability of multiscale circulation patterns, proposing improved dynamic forecasting methods for the different types of errors in regional models, and creating a theoretical framework for the dynamic extended medium-term forecasting of PSR events (Zhao et al. 2016; Zhao, Wang,and Xu 2017a, 2017b). Here, we summarize the main results from these attempts at improving dynamic extended forecasting.

    2. Methods

    The forecasting errors of a regional model mainly originate from the initial conditions (ICs) and the numerical forecast model itself. Methods geared toward improving these aspects operate in two main ways: minimizing the uncertainty of ICs by improving the observation and data assimilation system, and making the regional model more representative of the real atmosphere by increasing the resolution and improving the dynamical framework(Wang, Du, and Liu 2011). Most short-range forecast errors originate from the IC errors (Du 2002; Pappenberger et al. 2011), and the IC uncertainty causes the uncertainty in the weather forecast (Jung, Miller, and Palmer 2010).On the other hand, the errors of the model itself cover two main components: systematic error and random error (Reynolds, Satter field, and Bishop 2015). Among these, the systematic error results from de ficiencies in the model dynamical structure, such as the parameterization schemes, resolution, and lateral boundary conditions(LBCs). The systematic circulation errors of different predictive timescales vary in their origin (Lorenz 1982; Tibaldi and Molteni 1990; Skamarock 2004). For the forecasting of PSR events, reducing the IC and LBC errors is an effective approach to reducing the forecasting errors when using a high-resolution regional model (Zhao et al. 2016).

    PSR is different from normal rain events because the water vapor and thermodynamic conditions are produced in the context of weather systems with abnormal or less variation (Ding and Reiter 1982; Samel and Liang 2003; Niu, Zhang, and Jin 2012; Piaget et al. 2015). In the case of PSR, the rainfall duration and amount of precipitation are associated with anomalies of large-scale systems that favor the continuous con fluence of moist/warm and dry/cold air (Zhou and Yu 2005; Qian, Fu, and Yan 2007; Wang et al. 2009; Wang, Xia, and Liu 2011);also, the mesoscale convergence line is a good indicator of the area of severe precipitation (Qian, Shan, and Zhu 2012). As shown by evaluations of the forecasting of multiscale circulation patterns, large-scale circulation systems can be better predicted than smaller-scale disturbances (Lorenz 1969; Chen, Wei, and Gong 2010; Dong et al. 2015). Moreover, global models hold an advantage in predicting large-scale variation, while regional models are better in terms of simulating small-scale disturbances (Wang, Yu, and Wang 2012; Schwartz and Liu 2014; Grazzini and Vitart 2015). Thus, improving the efficiency of large-scale forecasts of the forcing fields whilst at the same time retaining the small-scale features in the regional domain is critical for better forecasting PSR events in regional models.

    The methods of spectral nudging (SN), lateral boundary filtering (LBF), and updated initial conditions (UIC)have been used in the regional Weather Research and Forecasting (WRF) model for PSR forecasting (Wang et al. 2016; Zhao et al. 2016; Zhao, Wang, and Xu 2017a,2017b). SN is a scale-selective interior constraint technique (von Storch, Langenberg, and Feser 2000; Miguez-Macho, Stenchikov, and Robock 2004) for the large-scale circulation in the regional model. It con fines itself to the higher altitudes and cases where the local convection at lower levels develop freely when the large-scale systems develop to deeper levels. SN has been applied in WRF(Miguez-Macho, Stenchikov, and Robock 2004, 2005; Liu et al. 2012; Glisan et al. 2013) and many other regional climate models, in regions such as North America(Kanamaru and Kanamitsu 2007; Spero et al. 2014), western Europe (Feser 2006), and East Asia (Cha and Lee 2009;Xu and Yang 2015), and its application has been shown to significantly improve the prediction of regional climate atmospheric circulation and precipitation forecasts. Zhao et al. (2016) and Zhao, Wang, and Xu (2017a, 2017b) used SN in WRF to improve the forecasting of PSR events in southern China. The nudging experiments were mainly against the horizontal winds, geopotential height and potential temperature above the planetary boundary layer with an interval of 6 h, starting from the initial time to the end time of the forecast, and the nudging fields were from the Global Forecast System (GFS) predictions(Figure 1).

    The LBF method refers to the use of low-pass filtering to retain the regional large-scale circulation from the GFS predictions (Figure 1). In Zhao et al. 2016; its application began in the third-day forecasts and harmonic filtering was selected for spatial field scale separation. The filtering wave selection was based on the dynamical features of the regional large-scale circulation for PSR events (Zhao et al.2017), and the high-frequency waves were reserved by 50%. For the ICs, the UIC method is effective at retaining the large-scale forecasts of the GFS predictions and the small-scale features of the WRF forecasts, by using multi-scale blending (MSB) (Zhao, Wang, and Xu 2017a, 2017b)for 15-day forecasts in WRF. The UIC method was applied to forecasts every three days based on the SN method, with a 12-h running-in period (Figure 1). SN was applied in the first three days, MBS was executed at 2.5 days, and then a new SN was initiated after 12 h of model adaptation.The 15-day forecasts comprised five three-day forecasts.

    Figure 1. Flow diagram of the SN, LBF, and UIC forecast.

    3. Sample case studies

    The methods of the SN and LBF were used in Zhao et al.(2016) to forecast three PSR events during the pre- flood(0000 UTC 19 to 0000 UTC 22 May 2013) and post- flood(0000 UTC 15 to 0000 UTC 19 July 2012) season in South China, and during the Mei-yu period over the Yangtze River Valley (0000 UTC 5 to 0000 UTC 8 July 2013). The anomaly correlation coefficient (ACC) of the 500-hPa geopotential height fields for the different forecast lead times are shown in Figure 2. The improvement by the SN and SN + LBF methods during the PSR periods was re flected mainly in lower-value phases of the ACC at 1–5-day lead times(Figure 2(a)–(c)), whereas the improvement by the LBF was more obvious at 7–11-day lead times (Figure 2(d)–(f)). The averaged ACCs for PSR periods over the different forecast lead times showed that the SN and SN + LBF methods produced stable enhancement, with the SN + LBF method yielding a better forecast at 7–11-day lead times. All the improvements of the new forecasts methods were based on the better GFS forecasts.

    Figure 2. Averaged anomaly correlation coefficients of the 500-hPa geopotential height fields for Domain 1 (15°–55°N, 70°–130°E) at lead times of (a) 1 day, (b) 3 days, (c) 5 days, (d) 7 days, (e) 9 days, and (f) 11 days prior to three PSR events in the pre- flood season in South China, the post- flood season in South China, and the Mei-yu period over the Yangtze–Huaihe river basin, respectively. The abscissa is the forecasting day, with the last four days for the PSR period (beginning at the dotted line). Source: Zhao et al. (2016).

    Figure 3. Accumulative rainfall distribution of PSR during 0000 UTC 30 June to 0000 UTC 6 July 2016 for the observation (OBS), and in the forecast experiments at different lead times ((a1–a3) 3 days; (b1–b3) 5 days; (c1–c3) 7 days) and using the different experiment schemes((a1–c1) control (CTL); (a2–c2) SN + UIC). Panels a3–c3 are the NCEP GFS forecasts. Source: Zhao, Wang, and Xu (2017a).

    The SN and UIC methods (SN + UIC) were used to investigate one of the most devastating flooding events in China since 1998: the case during 0000 UTC 30 June to 0000 UTC 6 July 2016 (Zhao, Wang, and Xu 2017a) (Figure 3). The SN + UIC approach improved the rain band’s range of this PSR event (above 100 mm) at 5–7-day lead times (Figure 3(b2)–(c2)), and the accumulated rainfall above 200 mm at the 3-day lead time (Figure 3(a2)). In addition, the larger the magnitude and longer the lead time, the more obvious the improvement. For the GFS forecasts, the rain band’s range of accumulated rainfall from 50 to 100 mm was wider than that in the observation, and the accumulated rainfall above 100 mm was not forecasted well at 3–5-day lead times (Figure 3(a3)–(b3)). The improvement by the SN + UIC method was based on the new ICs, which combines the advantages of the GFS and WRF forecasts and then improves the accumulated rainfall (especially heavy rainfall) and the rain band’s range forecasts. Furthermore, the SN + UIC method decreased the root-mean-square error (RMSE) for the related meteorological variables in the PSR period, such as the geopotential height, relative humidity, and temperature.

    Numerical predictions of four PSR events during the pre- flood season in South China (case 1, 0000 UTC 12 May–0000 UTC 15 May 2011; case 2, 0000 UTC 4 June–0000 UTC 8 June 2011; case 3, 0000 UTC 6 May–0000 UTC 10 May 2013; and case 4, 0000 UTC 19 May–0000 UTC 22 May 2013) were also investigated using the SN + UIC method (Zhao, Wang, and Xu 2017b). The results showed that the SN + UIC approach improved the prediction of daily precipitation for moderate, heavy, and torrential rain(10–100 mm d?1) (Figure 4). The improvement in the 24-h precipitation threat score by using the SN + UIC method was mainly re flected at 3–7-day lead times for moderate and heavy rain (10–49.9 mm d?1) (Figure 4(b)–(d)), and achieved slightly better forecasts in terms of the relative improvement rate of RMSE for accumulated rainfall (6.2%)and relative humidity (5.67%).

    4. Concluding remarks

    This paper summarizes the improvements generated by a selection of methods (SN, LBF, and UIC) in extending the forecasting of PSR events in China using the WRF model.In addition, relevant case simulations are analyzed and verified.

    The improvements for precipitation generated by these methods are mainly re flected at lead times of 3–7 days for moderate and heavy rain forecasts; plus, the larger the magnitude and longer the lead time, the more significant the improvement–especially when using the SN + UIC approach. For regional large-scale circulation, the improvement through use of SN is apparent mainly in the lower-value phases of the ACC at 1–5-day lead times, while the improvement via the LBF method is more obvious at 7–11-day lead times. In addition, the SN + UIC method decreases the RMSE for the geopotential height, relative humidity,and temperature in the PSR period, and the improvements for the relative humidity may make a greater contribution to the better performance of the SN + UIC method in the precipitation forecasts.

    Figure 4. Averaged threat scores at lead times of (a) 1 day, (b) 3 days, (c) 5 days and (d) 7 days prior to four PSR events during the pre- flood season in South China based on different methods. Source: Zhao, Wang, and Xu (2017b).

    Case studies show that achieving a more efficient use of large-scale forecasts of the global model whilst at the same time retaining the small-scale features in the regional domain is critical for better forecasting PSR events in China using a regional model. In view of the universality of the principles behind the improvements generated by the methods mentioned in this paper, it should be possible to apply them in other regional models for extending the forecasting range for PSR events and other disastrous weather, thus further enhancing disaster prevention and mitigation capabilities. Future work should focus on identifying the optimum con figuration of parameterization schemes and investigating in detail the function of the methods mentioned here, as well as designing a new skill score that can be used for better quantitative verification and analysis. Finally, more cases and long-term statistical studies in different areas with more in-depth dynamic and thermodynamic analysis are needed to fully assess the advantages of these methods of improvement.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 41775097], [grant number 91437221], the National Key Basic Research Program of China [grant number 2012CB417204], and the China Special Fund for Meteorological Research in the Public Interest [grant number GYHY201506002].

    References

    Bao, M. 2007. “The Statistical Analysis of the Persistent Heavy Rain in the Last 50 Years over China and Their Backgrounds on the Large-scale Circulation.”Chinese Journal of Atmospheric Sciences (in Chinese)31: 779–792.

    Brunet, G., M. Shapiro, B. Hoskins, M. Moncrieff, R. Dole, G. N.Kiladis, B. Kirtman, et al. 2010. “Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction.”Bulletin of the American Meteorological Society91: 1397–1406.

    Cha, D. H., and D. K. Lee. 2009. “Reduction of Systematic Errors in Regional Climate Simulations of the Summer Monsoon over East Asia and the Western North Pacific by Applying the Spectral Nudging Technique.”Journal of Geophysical Research114: D14108.

    Chen, G. J., F. Y. Wei, and Y. F. Gong. 2012. “An Extended-range Forecast Method for the Persistent Heavy Rainfall over the Yangtze Huaihe River Valley in Summer Based on the Lowfrequency Oscillation Characteristics.”Chinese Journal of Atmospheric Sciences (in Chinese)36: 633–644.

    Chen, G. J., F. Y. Wei, and Y. F. Gong. 2010. “Assessing the Extended Range Forecast Error of NCEP/CFS in the Summer of East Asia.”Journal of Applied Meteorological Science (in Chinese)21:659–670.

    Chen, Y., and P. M. Zhai. 2013. “Persistent Extreme Precipitation Events in China during 1951–2010.”Climate Research57:143–155.

    Ding, Y. H., and E. R. Reiter. 1982. “A Relationship between Planetary Waves and Persistent Rain- and Thunderstorms in China.”Theoretical & Applied Climatology31: 221–252.

    Dong, Y., S. D. Liu, D. H. Wang, Y. F. Zhao. 2015. “Assessment on Forecasting Skills of GFS Model for Two Persistent Rainfalls over Southern China GFS.”Meteorological Monthly Science (in Chinese)41: 45–51.

    Du, J. 2002. “Present Situation and Prospects of Ensemble Numerical Prediction.”Journal of Applied Meteorological Science (in Chinese)13: 16–28.

    Feser, F. 2006. “Enhanced Detectability of Added Value in Limited-area Model Results Separated into Different Spatial Scales.”Monthly Weather Review134: 2180–2190.

    Glisan, J. M., W. J. Gutowski, J. J. Cassano, M. E. Higgins. 2013.“Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation Simulations.”Journal of Climate26: 3985–3999.

    Grazzini, F., and F. Vitart. 2015. “Atmospheric Predictability and Rossby Wave Packets.”Quarterly Journal of the Royal Meteorological Society141: 2793–2802.

    Huang, R. H., Y. H. Xu, P. F. Wang, L. T. Zhou. 1998. “The Features of the Catastrophic Flood over the Changjiang River Basin during the Summer of 1998 and Cause Exploration.”Climatic and Environmental Research (in Chinese)3: 300–313.

    Jiao, H. Y., J. D. Gong, B. Zhou, S. R. Zhao. 2006. “An Overview of the Development of Weather Forecasting.”Journal of Applied Meteorological Science (in Chinese)17: 594–602.

    Jung, T., M. Miller, and T. Palmer. 2010. “Diagnosing the Origin of Extended-range Forecast Errors.”Monthly Weather Review138: 2434–2446.

    Kanamaru, H., and M. Kanamitsu. 2007. “Scale-selective Bias Correction in a Downscaling of Global Analysis Using a Regional Model.”Monthly Weather Review135: 334–350.

    Liu, L., J. Chen, L. Cheng, C. Z. Lin, and Z. P. Wu. 2013. “Study of the Ensemble-Based Forecast of Extremely Heavy Rainfalls in China:Experiments for July 2011 Cases.”Acta Meteorologica Sinica (in Chinese)71: 853–866.

    Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes.2012. “Differences between Downscaling with Spectral and Grid Nudging Using WRF.”Atmospheric Chemistry and Physics12: 3601–3610.

    Lorenz, E. N. 1969. “The Predictability of a Flow Which Possesses Many Scales of Motion.”Tellus21: 289–307.

    Lorenz, E. N. 1982. “Atmospheric Predictability Experiments with a Large Numerical Model.”Tellus34: 505–513.

    Lu, R. Y. 2000. “Anomalies in the Tropics Associated with the Heavy Rainfall in East Asia during the Summer of 1998.”Advances in Atmospheric Sciences17: 205–220.

    Miguez-Macho, G., G. L. Stenchikov, and A. Robock. 2004.“Spectral Nudging to Eliminate the Effects of Domain Position and Geometry in Regional Climate Model Simulations.”Journal of Geophysical Research109: 1025–1045.

    Miguez-Macho, G., G. L. Stenchikov, and A. Robock. 2005.“Regional Climate Simulations over North America:Interaction of Local Processes with Improved Large-scale Flow.”Journal of Climate18: 1025–1045.

    Niu, R. Y., Z. G. Zhang, and R. H. Jin. 2012. “The Atmospheric Circulation Features of Two Persistent Heavy Rainfalls over Southern China in the Summer of 2010.”Journal of Applied Meteorological Science (in Chinese)23: 385–394.

    Pappenberger, F., H. Cloke, A. Persson, and D. Demeritt. 2011.“‘HESS Opinions’ on Forecast (in) Consistency in a Hydrometeorological Chain. Curse or Blessing?.”Hydrology and Earth System Sciences15: 2391–2400.

    Peng, X., Y. Che, and J. Chang. 2013. “A Novel Approach to Improve Numerical Weather Prediction Skills by Using Anomaly Integration and Historical Data.”Journal of Geophysical Research Atmospheres118: 8814–8826.

    Piaget, N., P. Froidevaux, P. Giannakaki, F. Gierth, O. Martius,M. Riemer, G. Wolf, C. M. Grams. 2015. “Dynamics of a Local Alpine Flooding Event in October 2011. Moisture Source and Large-Scale Circulation.”Quarterly Journal of the Royal Meteorological Society141: 1922–1937.

    Qian, W. H., J. Fu, and Z. Yan. 2007. “Decrease of Light Rain Events in Summer Associated with a Warming Environment in China during 1961–2005.”Geophysical Research Letters34: L11705.

    Qian, W. H., X. L. Shan, and Y. F. Zhu. 2012. “Capability of Regionalscale Transient Wind Anomalies to Indicate Regional Heavy Rains.”Chinese Journal of Geophysics (in Chinese)55: 1513–1522.

    Reynolds, C. A., E. A. Satter field, and C. H. Bishop. 2015. “Using Forecast Temporal Variability to Evaluate Model Behavior.”Monthly Weather Review143: 4785–4804.

    Samel, A. N., and X. Z. Liang. 2003. “Understanding Relationships between the 1998 Yangtze River Flood and Northeast Eurasian Blocking.”Climate Research23: 149–158.

    Schwartz, C. S., and Z. Liu. 2014. “Convection-permitting Forecasts Initialized with Continuously Cycling Limited-area 3DVAR, Ensemble Kalman Filter, and ‘Hybrid’ Variationalensemble Data Assimilation Systems.”Monthly Weather Review142: 716–738.

    Skamarock, W. C. 2004. “Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra.”Monthly Weather Review132:3019–3032.

    Spero, T. L., M. J. Otte, J. H. Bowden, and C. G. Nolte. 2014.“Improving the Representation of Clouds, Radiation, and Precipitation Using Spectral Nudging in the Weather Research and Forecasting Model.”Journal of Geophysical Research Atmospheres119: 11682–11694.

    von Storch, H., H. Langenberg, and F. Feser. 2000. “A Spectral Nudging Technique for Dynamical Downscaling Purposes.”Monthly Weather Review128: 3664–3673.

    Tibaldi, S., and F. Molteni. 1990. “On the Operational Predictability of Blocking.”Tellus A42: 343–365.

    Wang, D. H., J. Du, and C. J. Liu. 2011. “Recognizing and Dealing with the Uncertainty in Weather and Climate Forecasts.”Meteorological Monthly (in Chinese)37: 385–391.

    Wang, D. H., C. J. Liu, Y. Liu, F. Y. Wei, N. Zhao, Z. N. Jiang, Y. Ying,et al. 2009. “A Preliminary Analysis of Features and Causes of the Snow Storm Event over the Southern Areas of China in January 2008.”Journal of Meteorological Research23: 374–386.

    Wang, D. H., R. D. Xia, and Y. Liu. 2011. “A Preliminary Study of the Flood Causing Rainstorm during the First Rainy Season in South China in 2008.”Acta Meteorologica Sinica (in Chinese)69: 137–148.

    Wang, S. L., X. D. Xu, H. W. Kang, S. Zhang, and X. Zhang. 2016.“Simulation of Continuous Rainfall over South China in Early 2008 with the Spectral Nudging Method and the Periodicity Characteristics of the Water Vapor Channel.”Chinese Journal of Atmospheric Sciences (in Chinese)40: 476–488.

    Wang, S. Z., E. T. Yu, and H. J. Wang. 2012. “A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-way Nesting Approach.”Advances in Atmospheric Sciences29: 731–743.

    Wheeler, M. C., and H. H. Hendon. 2004. “An All-season Realtime Multivariate MJO Index: Development of an Index for Monitoring and Prediction.”Monthly Weather Review132:1917–1932.

    Xu, Z., and Z. L. Yang. 2015. “A New Dynamical Downscaling Approach with GCM Bias Corrections and Spectral Nudging.”Journal of Geophysical Research Atmospheres120: 3063–3084.

    Zhang, J. J., W. J. Li, X. D. Xu, and J. Miao. 1994. “The Experiment of DERF with T42L9 Model for DEKAD and Monthly Mean Circulation Anomaly during the Summer Heavy Rainfall Period in 1991.”Acta Meteorologica Sinica (in Chinese)52:180–186.

    Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu. 2016. “Improving Numerical Experiments on Persistent Severe Rainfall Events in Southern China Using Spectral Nudging and Filtering Schemes.”Quarterly Journal of the Royal Meteorological Society142: 3115–3127.

    Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu. 2017. “On the Dynamics of the Large-scale Circulation during the Persistent Severe Rainfall Events in Southern China.”Journal of the Meteorological Society of Japan95: 111–125.

    Zhao, Y. F., D. H. Wang, and J. J. Xu. 2017a. “Improving the Regional Model Forecasting of Persistent Severe Rainfall over the Yangtze River Valley Using the Spectral Nudging and Update Cycle Methods: A Case Study.”Atmospheric Science Letters18: 96–102.

    Zhao, Y. F., D. H. Wang, and J. J. Xu. 2017b. “An Attempt to Improve the Forecasting of Persistent Severe Rainfall Using the Spectral Nudging and Update Cycle Methods.”Weather and Forecasting32: 713–723.

    Zhou, T. J., and R. C. Yu. 2005. “Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China.”Journal of Geophysical Research Atmospheres110: 211–211.

    Zhu, Z., and T. Li. 2017a. “Extended-Range Forecasting of Chinese Summer Surface Air Temperature and Heat Waves.”Climate Dynamics: 1–15. doi:10.1007/s00382-017-3733-7.

    Zhu, Z., and T. Li. 2017b. “Statistical Extended-Range Forecast of Winter Surface Air Temperature and Extremely Cold Days over China.”Quarterly Journal of the Royal Meteorological Society704 (143): 1528–1538.

    精华霜和精华液先用哪个| 国产一区二区亚洲精品在线观看| 国产精品三级大全| 在现免费观看毛片| 日韩欧美国产在线观看| 日日夜夜操网爽| 中文资源天堂在线| 91字幕亚洲| 亚洲综合色惰| 欧美黑人巨大hd| 91麻豆av在线| 久久精品国产亚洲av涩爱 | 1024手机看黄色片| 成人一区二区视频在线观看| 国产极品精品免费视频能看的| 久久久成人免费电影| 两个人视频免费观看高清| 欧美丝袜亚洲另类 | 色哟哟哟哟哟哟| 色综合亚洲欧美另类图片| 欧美在线一区亚洲| 亚洲精品乱码久久久v下载方式| 国产探花极品一区二区| 在线观看一区二区三区| 毛片一级片免费看久久久久 | 久久人妻av系列| 国内精品一区二区在线观看| 久久精品国产自在天天线| 亚洲最大成人av| 久99久视频精品免费| 久久久精品大字幕| 日韩人妻高清精品专区| 国产精品精品国产色婷婷| bbb黄色大片| 看免费av毛片| 免费在线观看影片大全网站| 国产成人福利小说| 欧美日韩福利视频一区二区| 免费人成在线观看视频色| 日本黄色视频三级网站网址| 哪里可以看免费的av片| 欧美日韩福利视频一区二区| 波多野结衣巨乳人妻| 国产高潮美女av| 国产欧美日韩精品亚洲av| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 色哟哟哟哟哟哟| 长腿黑丝高跟| 少妇人妻精品综合一区二区 | 亚洲,欧美精品.| 欧美xxxx黑人xx丫x性爽| 免费黄网站久久成人精品 | 99在线视频只有这里精品首页| 99热这里只有是精品50| 久久热精品热| 亚洲国产欧美人成| 在线看三级毛片| 91在线观看av| 日韩欧美精品v在线| 欧美一区二区亚洲| 国产精品久久电影中文字幕| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av| 一本久久中文字幕| 国产精品电影一区二区三区| 嫩草影视91久久| 欧美性猛交黑人性爽| 久9热在线精品视频| 国产探花在线观看一区二区| 欧美又色又爽又黄视频| 18禁在线播放成人免费| 亚洲av电影不卡..在线观看| 国产毛片a区久久久久| 五月伊人婷婷丁香| 国产精品久久视频播放| 精品国内亚洲2022精品成人| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 亚洲欧美精品综合久久99| 日本熟妇午夜| 午夜福利在线在线| 神马国产精品三级电影在线观看| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| www.熟女人妻精品国产| 12—13女人毛片做爰片一| 琪琪午夜伦伦电影理论片6080| 真人一进一出gif抽搐免费| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| a级毛片免费高清观看在线播放| 国内精品久久久久久久电影| 欧美日韩国产亚洲二区| 热99在线观看视频| 精品欧美国产一区二区三| 免费人成在线观看视频色| 中文字幕av成人在线电影| 欧美性猛交黑人性爽| 色视频www国产| 免费看光身美女| 欧美bdsm另类| 久久九九热精品免费| 欧美最黄视频在线播放免费| 国产三级中文精品| 免费人成视频x8x8入口观看| 中文字幕久久专区| 亚洲国产精品999在线| 欧美在线一区亚洲| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 国产不卡一卡二| 久久亚洲真实| 国产在视频线在精品| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 精品无人区乱码1区二区| 老司机深夜福利视频在线观看| 久久精品国产自在天天线| 97热精品久久久久久| 国产在线精品亚洲第一网站| 午夜影院日韩av| 嫩草影院新地址| 国产精品永久免费网站| 国产乱人视频| 日本 欧美在线| 天堂网av新在线| 午夜福利在线在线| 性色avwww在线观看| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 国产精品女同一区二区软件 | 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 久久久久久久久久成人| 丰满的人妻完整版| xxxwww97欧美| 婷婷亚洲欧美| 亚洲精品色激情综合| 一级作爱视频免费观看| 免费无遮挡裸体视频| 九九久久精品国产亚洲av麻豆| 男女之事视频高清在线观看| 在线播放国产精品三级| 欧美一区二区精品小视频在线| 国产精品自产拍在线观看55亚洲| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 免费搜索国产男女视频| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区视频9| 毛片女人毛片| 天天一区二区日本电影三级| 草草在线视频免费看| 我要看日韩黄色一级片| 最近在线观看免费完整版| 亚洲人成伊人成综合网2020| 好男人电影高清在线观看| 亚洲欧美日韩无卡精品| 女生性感内裤真人,穿戴方法视频| 国产精品免费一区二区三区在线| 一区二区三区免费毛片| 国产av一区在线观看免费| 少妇熟女aⅴ在线视频| 精品国产亚洲在线| www.999成人在线观看| 精品久久久久久久末码| 久久草成人影院| av在线老鸭窝| 久久国产精品影院| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 久久精品国产亚洲av天美| 国产黄片美女视频| 少妇丰满av| 亚洲欧美日韩卡通动漫| 亚洲第一欧美日韩一区二区三区| netflix在线观看网站| 日韩免费av在线播放| 国产成人福利小说| 1024手机看黄色片| 国产大屁股一区二区在线视频| 真人做人爱边吃奶动态| 亚洲欧美日韩东京热| 91字幕亚洲| 变态另类丝袜制服| 禁无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 成人国产综合亚洲| 搡女人真爽免费视频火全软件 | 国产精品嫩草影院av在线观看 | 人妻久久中文字幕网| 一个人看视频在线观看www免费| 亚洲精品亚洲一区二区| 欧美一区二区国产精品久久精品| 亚洲成人久久爱视频| 国产精品野战在线观看| 亚洲专区中文字幕在线| 国产三级黄色录像| 亚洲人成电影免费在线| 日日夜夜操网爽| av天堂中文字幕网| 美女黄网站色视频| 狠狠狠狠99中文字幕| 久久性视频一级片| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 十八禁人妻一区二区| 亚洲无线观看免费| 久久中文看片网| 两人在一起打扑克的视频| 在线天堂最新版资源| 99国产综合亚洲精品| 国产在视频线在精品| 亚洲真实伦在线观看| 久久久久九九精品影院| 久久精品国产亚洲av涩爱 | 搞女人的毛片| 麻豆国产97在线/欧美| 99热这里只有精品一区| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩东京热| 久久精品影院6| 如何舔出高潮| 日本与韩国留学比较| 毛片女人毛片| 小说图片视频综合网站| 两个人视频免费观看高清| 可以在线观看毛片的网站| 男女下面进入的视频免费午夜| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 久久久精品大字幕| 亚洲片人在线观看| 性欧美人与动物交配| 国产精品久久久久久久电影| 两个人视频免费观看高清| 国产精品野战在线观看| 波多野结衣高清作品| 亚洲男人的天堂狠狠| 日韩精品青青久久久久久| 午夜老司机福利剧场| 日日摸夜夜添夜夜添av毛片 | 久9热在线精品视频| 国产白丝娇喘喷水9色精品| 久久久久久国产a免费观看| 色尼玛亚洲综合影院| av在线观看视频网站免费| 99riav亚洲国产免费| 亚洲,欧美,日韩| 亚洲国产欧洲综合997久久,| 国产久久久一区二区三区| 亚洲精品在线观看二区| 99精品久久久久人妻精品| 婷婷精品国产亚洲av| 亚洲熟妇熟女久久| 久久久久久久亚洲中文字幕 | 亚洲人成网站高清观看| 久久久成人免费电影| 国产单亲对白刺激| 日韩精品青青久久久久久| 日本一二三区视频观看| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看 | 国产免费av片在线观看野外av| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 男女视频在线观看网站免费| 国产熟女xx| 国产av不卡久久| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| 美女cb高潮喷水在线观看| 国产精品一区二区三区四区免费观看 | 亚洲国产精品合色在线| 亚洲无线在线观看| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美xxxx性猛交bbbb| 女同久久另类99精品国产91| 午夜福利在线观看吧| 搞女人的毛片| a级毛片免费高清观看在线播放| 又黄又爽又刺激的免费视频.| 3wmmmm亚洲av在线观看| 一级av片app| 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 免费人成视频x8x8入口观看| 国产午夜精品论理片| 免费高清视频大片| 午夜精品一区二区三区免费看| 国产免费av片在线观看野外av| 在线免费观看不下载黄p国产 | 麻豆国产97在线/欧美| 久久人妻av系列| 国产伦精品一区二区三区视频9| 久久草成人影院| 婷婷精品国产亚洲av在线| 最后的刺客免费高清国语| 白带黄色成豆腐渣| 久久亚洲真实| 波野结衣二区三区在线| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 91在线精品国自产拍蜜月| 窝窝影院91人妻| 在线免费观看的www视频| 99热这里只有精品一区| 午夜a级毛片| 老司机午夜福利在线观看视频| 好男人电影高清在线观看| 久久久色成人| 两个人的视频大全免费| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 色播亚洲综合网| 伊人久久精品亚洲午夜| 日韩欧美免费精品| 两性午夜刺激爽爽歪歪视频在线观看| 超碰av人人做人人爽久久| 18+在线观看网站| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| 国产精品久久久久久精品电影| 一卡2卡三卡四卡精品乱码亚洲| 日韩成人在线观看一区二区三区| 亚洲精品456在线播放app | 成人特级av手机在线观看| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 日本一本二区三区精品| 亚洲国产欧洲综合997久久,| 免费人成在线观看视频色| 日本精品一区二区三区蜜桃| 国产在视频线在精品| 久久99热这里只有精品18| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 色av中文字幕| 九九久久精品国产亚洲av麻豆| 亚洲久久久久久中文字幕| 国产不卡一卡二| 人妻久久中文字幕网| 亚洲精品成人久久久久久| 国产成人欧美在线观看| 丁香欧美五月| 亚洲男人的天堂狠狠| 色噜噜av男人的天堂激情| 国产精品伦人一区二区| 丁香欧美五月| 免费黄网站久久成人精品 | 啦啦啦韩国在线观看视频| 亚洲激情在线av| 午夜久久久久精精品| 国产伦精品一区二区三区视频9| 蜜桃久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 日韩欧美在线二视频| 久久亚洲精品不卡| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 少妇丰满av| 免费黄网站久久成人精品 | 日本一本二区三区精品| 长腿黑丝高跟| 丁香六月欧美| 90打野战视频偷拍视频| 成人一区二区视频在线观看| 亚洲最大成人av| 91九色精品人成在线观看| 欧美性猛交╳xxx乱大交人| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 欧美日本视频| 69人妻影院| 成人高潮视频无遮挡免费网站| 欧美激情在线99| 国产精品国产高清国产av| 丝袜美腿在线中文| 国产精品亚洲一级av第二区| 国产亚洲av嫩草精品影院| 不卡一级毛片| 成人av在线播放网站| 好男人电影高清在线观看| 99热6这里只有精品| 午夜免费成人在线视频| 亚洲欧美精品综合久久99| 久久精品久久久久久噜噜老黄 | 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 国产午夜福利久久久久久| 最近在线观看免费完整版| 精品人妻偷拍中文字幕| 欧美黄色淫秽网站| 午夜a级毛片| 精品久久久久久久久久久久久| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器| 欧美+亚洲+日韩+国产| 久久99热6这里只有精品| 日韩欧美精品v在线| 老司机福利观看| 国产主播在线观看一区二区| 真实男女啪啪啪动态图| 变态另类丝袜制服| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 小说图片视频综合网站| av女优亚洲男人天堂| 中文字幕av成人在线电影| 99热这里只有是精品在线观看 | av在线老鸭窝| 亚洲av日韩精品久久久久久密| 搡老熟女国产l中国老女人| а√天堂www在线а√下载| 少妇高潮的动态图| 日本一二三区视频观看| 成人国产一区最新在线观看| 久久精品国产99精品国产亚洲性色| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久精品电影| 日本一本二区三区精品| a级毛片a级免费在线| 国产熟女xx| 69av精品久久久久久| 欧美区成人在线视频| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 男女下面进入的视频免费午夜| 真人一进一出gif抽搐免费| 在线观看av片永久免费下载| 最近在线观看免费完整版| 久久久久亚洲av毛片大全| 性欧美人与动物交配| 搡女人真爽免费视频火全软件 | 国产淫片久久久久久久久 | 99精品久久久久人妻精品| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 欧美bdsm另类| 色尼玛亚洲综合影院| 少妇丰满av| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 午夜福利成人在线免费观看| 男女下面进入的视频免费午夜| 国产大屁股一区二区在线视频| 久久人人爽人人爽人人片va | 麻豆国产97在线/欧美| 国产午夜精品论理片| 老鸭窝网址在线观看| 成年女人看的毛片在线观看| 国产中年淑女户外野战色| 午夜福利欧美成人| 十八禁国产超污无遮挡网站| 90打野战视频偷拍视频| 欧美不卡视频在线免费观看| 国产精品嫩草影院av在线观看 | 亚洲综合色惰| 国产激情偷乱视频一区二区| 91在线精品国自产拍蜜月| 在线天堂最新版资源| 51国产日韩欧美| 久久国产乱子免费精品| 真实男女啪啪啪动态图| 亚洲性夜色夜夜综合| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av在线| 精品99又大又爽又粗少妇毛片 | 欧美日韩福利视频一区二区| 深夜a级毛片| 乱码一卡2卡4卡精品| 亚洲无线在线观看| 免费无遮挡裸体视频| 亚洲欧美日韩高清专用| 国产真实伦视频高清在线观看 | 精品国产亚洲在线| 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜| 亚洲在线自拍视频| 一级毛片久久久久久久久女| 在线天堂最新版资源| 亚洲人成伊人成综合网2020| 久久婷婷人人爽人人干人人爱| 欧美潮喷喷水| а√天堂www在线а√下载| 一区二区三区激情视频| xxxwww97欧美| 亚洲综合色惰| 91在线观看av| 97热精品久久久久久| 在线观看av片永久免费下载| 亚洲男人的天堂狠狠| 国产国拍精品亚洲av在线观看| 成人永久免费在线观看视频| 97热精品久久久久久| 成人国产一区最新在线观看| 亚洲国产精品久久男人天堂| 床上黄色一级片| 国产精品乱码一区二三区的特点| 精品欧美国产一区二区三| 亚洲美女黄片视频| 久久人妻av系列| 听说在线观看完整版免费高清| 欧美最新免费一区二区三区 | 18+在线观看网站| 欧美一区二区亚洲| 校园春色视频在线观看| 国产综合懂色| 我的女老师完整版在线观看| 一本精品99久久精品77| 国产男靠女视频免费网站| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 毛片一级片免费看久久久久 | 极品教师在线视频| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 国产男靠女视频免费网站| 成年免费大片在线观看| 午夜影院日韩av| 性欧美人与动物交配| www日本黄色视频网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲片人在线观看| 天堂影院成人在线观看| 久久精品国产清高在天天线| 国产aⅴ精品一区二区三区波| 日韩欧美三级三区| 怎么达到女性高潮| 久久久久久国产a免费观看| 亚洲中文日韩欧美视频| 国产精品精品国产色婷婷| 成人精品一区二区免费| 久久久久久大精品| 国产精品不卡视频一区二区 | 日韩精品青青久久久久久| 在线播放国产精品三级| 美女xxoo啪啪120秒动态图 | 性欧美人与动物交配| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 国产麻豆成人av免费视频| 草草在线视频免费看| netflix在线观看网站| 午夜免费激情av| 久久人人精品亚洲av| 日本一本二区三区精品| 成人午夜高清在线视频| 亚洲成人久久性| 亚洲精品乱码久久久v下载方式| 露出奶头的视频| 小说图片视频综合网站| 女人被狂操c到高潮| 99在线人妻在线中文字幕| 又黄又爽又免费观看的视频| 午夜激情欧美在线| 精品乱码久久久久久99久播| 亚洲欧美日韩东京热| 国产真实乱freesex| 草草在线视频免费看| 亚洲无线观看免费| 最近在线观看免费完整版| 国产高清激情床上av| 韩国av一区二区三区四区| 成年人黄色毛片网站| 亚洲国产精品sss在线观看| 窝窝影院91人妻| 在线观看午夜福利视频| 日韩欧美精品v在线| 国产精品电影一区二区三区| 欧美xxxx黑人xx丫x性爽| av中文乱码字幕在线| 日韩大尺度精品在线看网址| 夜夜爽天天搞| 国产三级在线视频| 成人欧美大片| a在线观看视频网站| 亚洲成人精品中文字幕电影| 国产欧美日韩精品一区二区| 午夜老司机福利剧场| av国产免费在线观看| 久久久久久久久中文| 亚洲最大成人手机在线| 少妇丰满av| 日日摸夜夜添夜夜添av毛片 | 免费一级毛片在线播放高清视频| 在线观看午夜福利视频| 美女免费视频网站| 久久久久久久久中文| 亚洲av免费高清在线观看| 亚洲精品色激情综合| h日本视频在线播放| 成人鲁丝片一二三区免费| 变态另类丝袜制服|