• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perspectives on the non-stationarity of the relationship between Indian and East Asian summer rainfall variations

    2018-05-24 01:41:39WURenGungHUKiMingndLINZhong

    WU Ren-Gung, HU Ki-Ming nd LIN Zhong-D

    aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China; bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing, China

    1. Introduction

    Given the high demand for water supply in the populous countries of South and East Asia, the variability and prediction of summer rainfall in these regions has long been of great concern. Previous studies have led to important progress in understanding the factors and processes involved in the year-to-year summer rainfall variations of South and East Asia (e.g. Webster et al. 1998). One important factor is ENSO, which imposes a substantial impact on both Indian and East Asian summer rainfall variability (e.g. Walker 1923;Huang and Wu 1989; Wang, Wu, and Lau 2001; Wu, Hu, and Kirtman 2003).

    The connection between the variations of Indian and East Asian summer rainfall is also a focus in the literature.Previous studies have revealed an in-phase relationship in the summer rainfall variations between India and North China (Guo and Wang 1988; Kripalani and Singh 1993;Zhang, Sumi, and Kimoto 1999; Kripalani and Kulkarni 2001; Wu 2002; Liu and Ding 2008; Greatbatch, Sun, and Yang 2013; Preethi et al. 2017a), and an out-of-phase relationship between India and southern Japan (Kripalani and Kulkarni 2001; Krishnan and Sugi 2001; Wang, Wu,and Lau 2001; Wu 2002; Yun, Lee, and Ha 2014) or South Korea (Kim et al. 2002; Preethi et al. 2017a). According to the literature, there are two pathways for the connection between Indian and East Asian summer rainfall variations,as summarized by Wu (2017). One pathway is atmospheric circulation change over the lower latitudes that modifies the moisture transport from the Indian Ocean to East Asia (Zhang, Sumi, and Kimoto 1999; Krishnan and Sugi 2001; Zhang 2001; Liu and Ding 2008). The other pathway is atmospheric circulation change over the midlatitudes of continental Asia, featuring a zonal wave pattern (Guo and Wang 1988; Kripalani, Kulkarni, and Singh 1997; Krishnan and Sugi 2001; Wang, Wu, and Lau 2001;Kim et al. 2002; Lu, Oh, and Kim 2002; Wu 2002; Enomoto,Hoskins, and Matsuda 2003). This zonal wave pattern is partly associated with anomalous Indian heating, and in turn modulates winds over East Asia (Wu 2002; Wu, Hu,and Kirtman 2003; Ding and Wang 2005; Liu and Ding 2008; Greatbatch, Sun, and Yang 2013).

    A key issue is that the relationship between the variations of Indian and East Asian summer rainfall is not steady.Long-term changes in the relationship have been identified in previous studies (Guo 1992; Kripalani and Kulkarni 2001; Wu 2002; Wang and Huang 2006; Lin, Lu, and Wu 2017; Ha et al. 2017; Preethi et al. 2017b). One prominent change in the Indian–North China summer rainfall relationship occurred around the late 1970s (Wu 2002). The weakened connection after the late 1970s can be attributed to a shift in the distribution of large rainfall variability in India to lower latitudes, which weakened the impacts of anomalous Indian heating on the midlatitude Asian atmospheric circulation (Wu 2002; Wu and Wang 2002).The change in the relationship has also been detected in coupled climate model simulations (Preethi et al. 2017b;Wu and Jiao 2017). However, a plausible explanation for the non-stationarity in the above relationship has yet to be determined. The present study discusses various perspectives of the long-term changes in the connection between the summer rainfall variations of India and East Asia.

    Following this introduction, we begin by showing the long-term changes in the Indian–East Asian summer rainfall relationship in observations and climate model simulations (Section 2). Then, we present different perspectives on what may contribute to the long-term changes in the relationship (Section 3). Lastly, some concluding remarks are provided (Section 4).

    2. Long-term changes in the relationship

    The long-term change in the relationship between Indian and North China summer rainfall variations in observations has been identified in previous studies. Guo (1992)pointed out that the Indian–North China summer rainfall correlation is weak during 1921–1950 but strong during 1891–1920 and 1951–1980. A change in the Indian–North China summer rainfall relationship around the late 1970s was noted by Kripalani and Kulkarni (2001), Wu (2002), Wu and Wang (2002), and Wang and Huang (2006). Long-term changes in the Indian–southern Japan and North China–southern Japan summer rainfall correlation were identified by Kripalani and Kulkarni (2001). The above changes in the Indian–East Asian summer rainfall relationship have been con firmed by Wu (2017) and Wu and Jiao (2017) using updated rainfall data. Secular changes have been observed in the relationship between the Indian and Yangtze–Huai River summer rainfall variations, as well as between the Indian and Korea–Japan summer rainfall variations (Ha et al. 2017; Preethi et al. 2017b).

    The long-term changes in the Indian–East Asian summer rainfall relationship are illustrated in Figure 1(a), which shows three correlations in a 21-years sliding window using GPCC version 7 0.5° gridded rainfall data (Schneider et al. 2015). Following Wu (2017) and Wu and Jiao (2017), the domains for calculating the areamean Indian, North China, and southern Japan rainfall are (8°–28°N, 70°–86°E), (36°–42°N, 108°–118°E), and(31°–36°N, 130°–140°E), respectively. Apparently, the Indian–North China June–September (JJAS) rainfall correlation is higher during 1950s–1960s than during the 1980s and 1930s, which is consistent with previous studies (Kripalani and Kulkarni 2001; Wu 2002). The Indian–southern Japan and North China–southern Japan JJAS rainfall correlation is higher around 1970 than during the 1950s and 1990s. The results agree with Wu (2017)and Wu and Jiao (2017), whose studies used different rainfall data over land.

    Long-term changes in the Indian–North China summer rainfall relationship have been identified in the historical simulations of the CMIP5 climate models (Wu and Jiao 2017). Furthermore, there are also secular variations in the relationship between Indian and Korea–Japan summer rainfall variations in historical simulations and future projections of climate models (Preethi et al.2017b), albeit with the timing of the changes in the relationship differing from model to model and among different simulations of a single model (Wu and Jiao 2017).As an illustration, Figure 2 displays the 21-years running correlation between Indian and North China JJAS rainfall in two members of the CCSM4 and CNRM-CM5 simulations, which are selected from all the simulations shown in Wu and Jiao (2017). In the two members of the CCSM4 simulations, opposite correlation appears around 1980(Figure 2(a)). In the two members of the CNRM-CM5 simulations, the correlation is opposite in the 1980s but tends to vary in-phase before the 1960s (Figure 2(b)). The range of change in the correlation coefficient is large in the two members, from above +0.4 to below ?0.4.

    3. Perspectives on the factors involved in the changes in the relationship

    There may be many reasons behind the long-term changes in the Indian–East Asian summer rainfall relationship. Here,we discuss four of them.

    Figure 1. (a) 21-years sliding correlation between area-mean Indian and northern China JJAS rainfall (red curve), between area-mean Indian and southern Japan JJAS rainfall (green curve), and between area-mean northern China and southern Japan JJAS rainfall (blue curve), based on GPCC version 7 0.5° gridded rainfall data (Schneider et al. 2015). (b) As in (a) except that the ENSO signal has been removed through partial correlation with respect to JJAS Ni?o3.4 (5°S–5°N, 170°–120°W) SST anomalies based on HadISST1.1 data(Rayner et al. 2003).Note: The horizontal dashed lines denote the 95% con fidence level of the correlation coefficient according to the Student’s t-test.

    3.1. ENSO

    Given the impact of ENSO on both Indian and East Asian summer monsoon variability (Wang, Wu, and Lau 2001),ENSO is likely a factor involved in the long-term changes in the Indian–East Asian summer rainfall relationship through changes its impacts on either the Indian or East Asian summer monsoon (Kumar, Rajagopalan, and Cane 1999; Wu and Wang 2002). Hu et al. (2005) indicated that ENSO may reinforce the connection between Indian and North China summer rainfall variations. Wang and Huang(2006) noted that a weakened connection may correspond to weakened in fluences of ENSO on both Indian and North China rainfall variations. In addition, SST anomalies in other regions may affect the relationship. E.g. Yun, Lee, and Ha(2014) proposed that a strengthened zonal gradient of SST between the Indian Ocean, western Pacific, and eastern Pacific may be a possible cause of an enhanced contrast in convective precipitation between South Asia and East Asia. Lee et al. (2017) suggested an enhanced in fluence of tropical Atlantic SSTs on Korean summer rainfall variations since the mid-1970s.

    Interdecadal changes in the relationships among Indian, North China, and southern Japan summer rainfall variations remain after ENSO-related signals have been removed (Wu 2017; Wu and Jiao 2017) – a point clearly demonstrated by comparing Figure 1(b) with Figure 1(a).In Figure 1(b), the impacts of the ENSO signal on the correlation have been removed through partial correlation with respect to JJAS Ni?o3.4 (5°S–5°N, 170°–120°W) SST anomalies. Figure 1 is similar to Figure 6 of Wu (2017),except for different rainfall data over land used in the correlation analysis. The Indian–southern Japan rainfall correlation around 1970 weakens after the ENSO signal is removed, indicative of a contribution from ENSO to the interdecadal change in the Indian–southern Japan rainfall correlation. Nevertheless, long-term changes are still present in the three correlations after removal of the ENSO signals. The results are consistent with Wu (2017) and Wu and Jiao (2017). This implies that long-term changes in the Indian–East Asian summer rainfall relationship may occur in the absence of ENSO impacts. In other words, long-term changes in the relationship may be induced by internal atmospheric variability.

    Figure 2. 21-years sliding correlation between Indian and North China JJAS rainfall based on two members of historical (a) CCSM4 and(b) CNRM-CM5 model simulations.Note: The horizontal dashed lines denote the 95% con fidence level of the correlation coefficient according to the Student’s t-test.

    3.2. Internal variability

    The possibility of contribution from internal atmospheric variability to long-term changes in the Indian–East Asian summer rainfall relationship is demonstrated by a 100-years simulation of an AGCM forced by climatological monthly mean SST and sea ice (derived from AMIP). The AGCM used is ECHAM5 (Roeckner et al. 2003), and we use a version with a triangular truncation at zonal wavenumber 63 (T63; equivalent to a horizontal resolution of 1.9°)and 19 sigma levels in the vertical direction. Figure 3(a)displays the correlation of the 21-years running window for the three pairs of JJAS rainfall time series. The domains for calculating the area-mean rainfall in the model are the same as in observations.

    Apparent long-term changes in the correlation are present in Figure 3(a). For example, the correlation coefficient between Indian and southern Japan summer rainfall varies from +0.4 to ?0.4; and the correlation coefficient between North China and southern Japan summer rainfall varies from +0.4 to ?0.8. The long-term change in the Indian–North China rainfall correlation is less obvious in the sliding correlation. The grid-point correlation in the two periods(model years 2040–2060 and 2012–2032) displays a clearer difference in North China (Figure 3(b) and (c)). The region of positive correlation in North China with Indian rainfall tends to be located more northwest in the model compared to observations (e.g. Wu 2017).

    The difference in the rainfall relationship between the two periods is explained well by the circulation difference in the model. During model years 2040–2060, an obvious wave pattern is present across continental midlatitude Asia, with an anomalous high over central and East Asia(Figure 3(d)), which is similar to observed (Wu 2002). The anomalous high over East Asia induces southerly winds over North China and northerly winds over Japan, leading to above-normal and below-normal rainfall, respectively,in the two regions (Figure 3(b)). During model years 2012–2032, the wave pattern is weak and shifts eastward (Figure 3(e)). The anomalous high over East Asia shifts to Japan.Anomalous lower-level high pressure is situated southeast of Japan (not shown) and anomalous southwesterly winds along the west flank of the anomalous high transport more moisture from lower latitudes, contributing to above-normal rainfall over Japan (Figure 3(e)). As there are no yearto-year changes in the SST forcing, the long-term change in the above relationship in the AGCM simulation is attributable to the impacts of internal atmospheric variability.

    Figure 3. (a) 21-years sliding correlation between Indian and North China (red curve), Indian and southern Japan (green curve), and North China and southern Japan (blue curve) JJAS rainfall in a 100-years AGCM simulation. (b, c) Correlation coefficients of rainfall with respect to normalized area-mean Indian rainfall during JJAS for the period 2040–2060 and 2012–2032 of the AGCM simulation. (d, e)Anomalies of geopotential height (units: m) at 200 hPa obtained by regression on normalized area-mean Indian rainfall during JJAS for the period 2040–2060 and 2012–2032 of the AGCM simulation.

    3.3. Mean state changes

    The atmospheric circulation patterns connecting the variations of Indian and East Asian summer rainfall depend upon the forcing and mean circulation. Thus, it is possible that changes in anomalous forcing and mean winds may lead to fluctuations in the Indian–East Asian rainfall connection. Wu and Jiao (2017) showed that the Indian–North China summer rainfall relationship tends to be stronger when a larger Indian rainfall anomaly occurs during a higher mean rainfall period. Lin, Lu, and Wu (2017) performed experiments using a barotropic vorticity equation model with the same anomalous heating over India but different mean winds prescribed over the midlatitudes.They found a notable difference in the midlatitude zonal wave pattern and in the location of the accompanying anomalous anticyclone over East Asia.

    We conducted experiments with the barotropic model used by Lin, Lu, and Wu (2017). Anomalous heating was imposed over India and the prescribed mean winds were the average 200-hPa winds during the two periods (2040–2060 and 2012–2032) of the AGCM simulation. When the center of anomalous heating moves from 20°N to 25°N along 72.5°E, an obvious eastward shift in the wave-type response appears, regardless of whether the prescribed mean winds are based on the model years 2040–2060 or 2012–2032 ( figures not shown). This indicates that the atmospheric response is sensitive to the location of anomalous heating, which is consistent with Wu (2002) and Wu and Wang (2002). The response, however, does not show a large difference between the two prescribed mean winds( figures not shown).

    3.4. Stochastic processes

    Interdecadal changes in the relationship may occur due to stochastic processes (e.g. Gershunov, Schneider, and Barnett 2001) or sampling variability (e.g. Cash et al. 2017).To examine the impact of stochastic processes on the relationship, we carried out Monte Carlo test, as in Wu (2016)and Wu and Jiao (2017). Taking the Indian–North China rainfall relationship as an example, the procedure for the Monte Carlo test was as follows. First, two values were randomly selected from the Indian and North China summer rainfall time series for the period 1900–2010 (one from each time series). This was repeated 21 times to obtain two sub–time series with a length of 21 years. Then, we calculated the correlation coefficient between the two 21-years time series. The above processes were repeated 5000 times to obtain 5000 correlation coefficients. After that,we calculated the probability distribution of the correlation coefficient based on the 5000 values obtained above.The distribution was then compared to the maximum and minimum 21-years sliding correlation coefficients in the observations to determine the probability for the observed correlation to occur randomly. A similar procedure was applied to the Indian and southern Japan summer rainfall time series and the North China and southern Japan summer rainfall time series. The results are shown in Figure 4. Wu and Jiao (2017) performed similar Monte Carlo test for the Indian–North China rainfall relationship.

    For the Indian–North China rainfall correlation, the maximum and minimum correlation coefficients in the observations are 0.80 and 0.01, respectively, which are around the 99% and 5% level of the Monte Carlo correlation distribution, respectively (Figure 4(a)). For the Indian–southern Japan rainfall correlation, the observed maximum and minimum correlation coefficient is close to the 95% and 2% level, respectively (Figure 4(b)). For the North China–southern Japan rainfall correlation, the maximum correlation coefficient in observations is below the 95% level (Figure 4(c)). These results indicate that the possibility that the observed change in the Indian–North China summer rainfall correlation being due to stochastic processes cannot be excluded.

    Figure 4. Probability distribution (%) for the frequency of occurrence of correlation coefficients based on 5000 samples derived from a Monte Carlo test using (a) Indian and North China,(b) Indian and southern Japan, and (c) North China and southern Japan JJAS rainfall time series.Notes: The red vertical lines denote the minimum, mean and maximum correlation coefficient in observations. The black vertical lines denote the 1%,5%, 95%, and 99% level of the correlation coefficient from the Monte Carlo simulations.

    4. Concluding remarks

    The relationship between summer rainfall variations over India and East Asia displays long-term changes in both observations and climate model simulations, and there are different perspectives on what may have contributed to these long-term changes. ENSO’s impact may be a factor, but it cannot totally explain the observed long-term change in the Indian–North China summer rainfall relationship. Both a climatological SST–forced AGCM simulation and CMIP5 coupled model simulations indicate an important role played by internal atmospheric variability in the change of the Indian–North China summer rainfall relationship; plus, Monte Carlo test indicates that the role of random processes in the observed long-term changes of the Indian–East Asian summer rainfall relationship cannot be totally excluded.

    It is possible that different factors may play their respective roles in interdecadal changes in the above relationship at different times. Further analysis of observations and numerical model simulations are needed to advance our understanding of the contributions of different factors in the long-term changes in the relationship between Indian and East Asian summer rainfall.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was supported by the National Key Research and Development Program of China [grant number 2016YFA0600603];the National Key Basic Research Program of China [grant number 2014CB953902]; and the National Natural Science Foundation of China [grant number 41661144016], [grant number 41530425], [grant number 41475081], and [grant number 41275081].

    References

    Cash, B. A., R. Barimalala, J. L. Kinter III, E. L. Altshuler, M. J.Fennessy, J. V. Manganello, F. Molteni, P. Towers, and F.Vitart. 2017. “Sampling Variability and the Changing ENSO-monsoon Relationship.”Climate Dynamics48 (11-12): 4071–4079. doi:10.1007/s00382-016-3320-3.

    Ding, Q., and B. Wang. 2005. “Circumglobal Teleconnection in the Northern Hemisphere Summer.”Journal of Climate18:3483–3505.

    Enomoto, T., B. J. Hoskins, and Y. Matsuda. 2003. “The Formation Mechanism of the Bonin High in August.”Quarterly Journal of Royal Meteorological Society129: 157–178.

    Gershunov, A., N. Schneider, and T. Barnett. 2001. “Lowfrequency Modulation of the ENSO–Indian Monsoon Rainfall Relationship: Signal or Noise?”Journal of Climate14: 2486–2492.

    Greatbatch, R. J., X. Sun, and X.-Q. Yang. 2013. “Impact of the Variability in the Indian Summer Monsoon on the East Asian Summer Monsoon.”Atmospheric Science Letters14: 14–19.

    Guo, Q.-Y. 1992. “Teleconnection between the Floods/Droughts in North China and Indian Summer Monsoon Rainfall.”Acta Geographica Sinica(in Chinese) 47 (5): 394–402.

    Guo, Q.-Y., and J.-Q. Wang. 1988. “A Comparison of the Summer Precipitation in India with That in China.”Journal of Tropical Meteorology(in Chinese) 4: 53–60.

    Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun. 2017.“Linkages Between the South and East Asian Summer Monsoons: A Review and Revisit.”Climate Dynamics.doi:10.1007/s00382-017-3773-z.

    Hu, Z.-Z., R. Wu, J. L. Kinter III, and S. Yang. 2005. “Connection of Summer Rainfall Variations in South and East Asia: Role of El Ni?o-Southern Oscillation.”International Journal of Climatology25: 1279–1289.

    Huang, R.-H., and Y. Wu. 1989. “The In fluence of ENSO on the Summer Climate Change in China and Its Mechanism.”Advances in Atmospheric Science6: 21–32.

    Kim, B.-J., S.-E. Moon, R. Lu, and R. H. Kripalani. 2002.“Teleconnections: Summer Monsoon Over Korea and India.”Advances in Atmospheric Sciences19: 665–676.

    Kripalani, R. H., and A. Kulkarni. 2001. “Monsoon Rainfall Variations and Teleconnections Over South and East Asia.”International Journal of Climatology21: 603–616.

    Kripalani, R. H., and S. V. Singh. 1993. “Large-scale Aspects of India-China Summer Rainfall.”Advances in Atmospheric Sciences10: 71–84.

    Kripalani, R. H., A. Kulkarni, and S. V. Singh. 1997. “Association of the Indian Summer Monsoon with the Northern Hemisphere Mid-latitude Circulation.”International Journal of Climatology17: 1055–1067.

    Krishnan, R., and M. Sugi. 2001. “Baiu Rainfall Variability and Associated Monsoon Teleconnections.”Journal of the Meteorological Society of Japan79: 851–860.

    Kumar, K. K., B. Rajagopalan, and M. A. Cane. 1999. “On the Weakening Relationship Between the Indian Monsoon and ENSO.”Science284: 2156–2159.

    Lee, J.-Y., M.-H. Kwon, K.-S. Yun, S.-K. Min, I.-H. Park, Y.-G. Ham, E.K. Jin, J.-H. Kim, K.-H. Seo, W.-M. Kim, S.-Y. Yim, and J.-H. Yoon.2017. “The Long-term Variability of Changma in the East Asian Summer Monsoon System: A Review and Revisit.”Asia-Pacific Journal of Atmospheric Science53 (2): 252–272.

    Lin, Z., R. Lu, and R. Wu. 2017. “Weakened Impact of the Indian Early Summer Monsoon on North China Rainfall around the Late 1970s: Role of Basic-state Change.”Journal of Climate30(19): 7991–8005. doi:10.1175/JCLI-D-17-0036.1.

    Liu, Y.-Y., and Y.-H. Ding. 2008. “Analysis and Numerical Simulation of the Teleconnection between Indian Summer Monsoon and Precipitation in North China.”Acta Meteorologica Sinica(in Chinese) 66 (5): 789–799.

    Lu, R.-Y., J.-H. Oh, and B.-J. Kim. 2002. “A Teleconnection Pattern in Upper-level Meridional Wind over the North African and Eurasian Continent in Summer.”Tellus54A: 44–55.

    Preethi, B., M. Mujumdar, R. H. Kripalani, A. Prabhu, and R.Krishnan. 2017a. “Recent Trends and Tele-connections Among South and East Asian Summer Monsoons in a Warming Environment.”Climate Dynamics48 (7–8): 2489–2505. doi:10.1007/S00382-016-3218-0.

    Preethi, B., M. Mujumdar, A. Prabhu, and R. H. Kripalani. 2017b.“Variability and Teleconnections of South and East Asian Summer Monsoons in Present and Future Projections of CMIP5 Climate Models.”Asia Pacific Journal of Atmospheric Sciences53(2): 305–325.

    Rayner, N. A., B. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander,D. P. Rowell, E. C. Kent, and A. Kaplan. 2003.“Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century.”Journal Geophysiscal Research108 (D14): 4407. doi:10.1029/2002JD002670.

    Roeckner, E., G. B?uml, L. Bonaventura, R. Brokopf, M. Esch,M. Giorgetta, S. Hagemann, et al. 2003. “The Atmospheric General Circulation Model ECHAM5. Part I: Model Description.”Max Planck Institute for Meteorology Rep. 349, 127 Pp.[Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany.].

    Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf,and M. Ziese. 2015. “GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land Surface Precipitation from Rain Gauges Built on GTS-based and Historic Data.” doi:10.5676/DWD_GPCC/FD_M_V7_050.

    Walker, G. T. 1923. “Correlation in Seasonal Variations of Weather VIII: A Preliminary Study of World Weather.”Memorial Indian Meteorology Department24: 75–131.

    Wang, S.-W., and J.-B. Huang. 2006. “Instability of Precipitation Teleconnection Between North China and India.”Progress Natural Science(in Chinese) 16 (8): 980–985.

    Wang, B., R. Wu, and K.-M. Lau. 2001. “Interannual Variability of the Asian Summer Monsoon: Contrasts Between the Indian and Western North Pacific-East Asian Monsoons.”Journal of Climate14: 4073–4090.

    Webster, P. J., V. O. Maga?a, T. N. Palmer, R. A. Thomas, M. Yanai,and T. Yasunari. 1998. “Monsoons: Processes, Predictability,and the Prospects for Prediction.”Journal of Geophysical Research103: 14451–14510.

    Wu, R. 2002. “A mid-Latitude Asian Circulation Pattern in Boreal Summer and Its Connection with the Indian and East Asian Summer Monsoons.”International Journal of Climatology22:1879–1895.

    Wu, R. 2016. “Possible Roles of Regional SST Anomalies in Long-term Changes in the Relationship between the Indian and Australian Summer Monsoon Rainfall.”Theoretical and Applied Climatology124 (3–4): 663–677.

    Wu, R. 2017. “Relationship between Indian and East Asian Summer Rainfall Variations.”Advances in Amospheric Science34 (1): 4–15. doi:10.1007/s00376-016-6216-6.

    Wu, R., and Y. Jiao. 2017. “The Impacts of the Indian Summer Rainfall on North China Summer Rainfall.”Asia Pacific Journal of Atmospheric Sciences53 (2): 195–206. doi:10.1007/s13143-017-0013-8.

    Wu, R., and B. Wang. 2002. “A Contrast of the East Asian Summer Monsoon and ENSO Relationship between 1962–77 and 1978–93.”Journal of Climate15: 3266–3279.

    Wu, R., Z.-Z. Hu, and B. P. Kirtman. 2003. “Evolution of ENSO-related Rainfall Anomalies in East Asia.”Journal of Climate16:3741–3757.

    Yun, K.-S., J.-Y. Lee, and K.-J. Ha. 2014. “Recent Intensification of the South and East Asian Monsoon Contrast Associated with an Increase in the Zonal Tropical SST Gradient.”Journal of Geophysical Research119: 8104–8116.

    Zhang, R. 2001. “Relation of Water Vapor Transport from the Indian Monsoon with That over East Asia and the Summer Rainfall in China.”Advances in Atmospheric, Science18: 1005–1017.

    Zhang, R.-H., A. Sumi, and M. Kimoto. 1999. “A Diagnostic Study of the Impact of El Ni?o on the Precipitation in China.”Advances in Atmospheric Science16: 229–241.

    成人欧美大片| 成人毛片60女人毛片免费| 少妇人妻一区二区三区视频| 久久久精品欧美日韩精品| 久久国内精品自在自线图片| 国产在视频线在精品| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 激情 狠狠 欧美| 在线免费十八禁| 亚洲天堂国产精品一区在线| 成人亚洲欧美一区二区av| eeuss影院久久| 国产精品精品国产色婷婷| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久 | 全区人妻精品视频| 美女黄网站色视频| 国产精品嫩草影院av在线观看| 尤物成人国产欧美一区二区三区| 国产白丝娇喘喷水9色精品| 少妇人妻一区二区三区视频| 一二三四中文在线观看免费高清| 亚洲不卡免费看| 免费看光身美女| 国产午夜精品久久久久久一区二区三区| 久久久精品94久久精品| 色视频www国产| kizo精华| 自拍偷自拍亚洲精品老妇| 久久精品综合一区二区三区| 国产中年淑女户外野战色| av专区在线播放| 国内精品美女久久久久久| 99久久中文字幕三级久久日本| 18禁在线无遮挡免费观看视频| 亚洲欧美精品综合久久99| 亚洲无线观看免费| 黄片wwwwww| 久久精品久久精品一区二区三区| 久久精品国产99精品国产亚洲性色| 国产成人午夜福利电影在线观看| 欧美又色又爽又黄视频| 日本av手机在线免费观看| 国产亚洲一区二区精品| 天天一区二区日本电影三级| 午夜a级毛片| av视频在线观看入口| 久久草成人影院| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看| 国产精品精品国产色婷婷| 秋霞在线观看毛片| 亚洲欧美日韩东京热| 深夜a级毛片| 激情 狠狠 欧美| 三级国产精品片| 亚洲国产日韩欧美精品在线观看| 蜜臀久久99精品久久宅男| 久久久久久国产a免费观看| 在线免费十八禁| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 超碰av人人做人人爽久久| 成年免费大片在线观看| 99久久九九国产精品国产免费| 成人国产麻豆网| 日韩av在线大香蕉| 日本一本二区三区精品| 久久欧美精品欧美久久欧美| av在线播放精品| 99久国产av精品| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 亚洲综合精品二区| 欧美97在线视频| 麻豆久久精品国产亚洲av| 精品午夜福利在线看| av女优亚洲男人天堂| 看片在线看免费视频| 午夜日本视频在线| 欧美激情在线99| 亚洲不卡免费看| 成人亚洲欧美一区二区av| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 国产精品电影一区二区三区| 日本与韩国留学比较| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 日本熟妇午夜| 免费av毛片视频| 禁无遮挡网站| 啦啦啦韩国在线观看视频| 久久精品人妻少妇| 一区二区三区四区激情视频| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 亚洲熟妇中文字幕五十中出| 最近2019中文字幕mv第一页| 亚洲最大成人中文| 亚洲精品乱久久久久久| 建设人人有责人人尽责人人享有的 | 在线播放无遮挡| 亚洲自拍偷在线| 亚洲av熟女| 亚洲美女搞黄在线观看| 午夜福利在线观看免费完整高清在| АⅤ资源中文在线天堂| 99久国产av精品| 波野结衣二区三区在线| 日韩大片免费观看网站 | 亚洲色图av天堂| 日日撸夜夜添| 午夜激情欧美在线| 久久精品国产亚洲av涩爱| 久久精品久久久久久噜噜老黄 | 亚洲成人精品中文字幕电影| 一区二区三区乱码不卡18| 久久久精品大字幕| 国产精品无大码| 色播亚洲综合网| 国产亚洲av片在线观看秒播厂 | 国产精品无大码| 91久久精品国产一区二区成人| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 超碰av人人做人人爽久久| 亚洲av电影不卡..在线观看| 午夜福利网站1000一区二区三区| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 全区人妻精品视频| 成年女人永久免费观看视频| 精品久久久久久成人av| 亚洲精品aⅴ在线观看| 日韩强制内射视频| 直男gayav资源| av.在线天堂| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 精品熟女少妇av免费看| 18禁在线播放成人免费| 一级爰片在线观看| 91av网一区二区| 国模一区二区三区四区视频| 亚洲欧美成人精品一区二区| 久久久成人免费电影| 国产老妇伦熟女老妇高清| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 最近手机中文字幕大全| 成人一区二区视频在线观看| 少妇丰满av| 国产亚洲精品久久久com| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 国产精品久久久久久精品电影小说 | 国产精品人妻久久久影院| 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 美女国产视频在线观看| a级毛色黄片| 成人高潮视频无遮挡免费网站| 亚洲av男天堂| 毛片女人毛片| 99热这里只有是精品50| 国产三级中文精品| 男女国产视频网站| 亚洲av不卡在线观看| av.在线天堂| 狂野欧美激情性xxxx在线观看| 欧美成人免费av一区二区三区| 美女脱内裤让男人舔精品视频| 欧美精品国产亚洲| 亚洲国产精品久久男人天堂| 日本五十路高清| 国产精品久久视频播放| 国产伦理片在线播放av一区| 久久久久久久久久黄片| 一级av片app| 国产熟女欧美一区二区| 欧美性感艳星| av黄色大香蕉| 村上凉子中文字幕在线| 亚洲国产精品成人久久小说| 亚洲av二区三区四区| 又粗又硬又长又爽又黄的视频| 色视频www国产| 99视频精品全部免费 在线| 综合色av麻豆| 老女人水多毛片| 欧美又色又爽又黄视频| 日本欧美国产在线视频| 免费看光身美女| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 人妻夜夜爽99麻豆av| 最近中文字幕高清免费大全6| 久久久a久久爽久久v久久| 日日啪夜夜撸| 在现免费观看毛片| 亚洲经典国产精华液单| 欧美一区二区亚洲| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 51国产日韩欧美| 亚洲色图av天堂| 国产精品日韩av在线免费观看| 成年av动漫网址| 中文天堂在线官网| 男女视频在线观看网站免费| 亚洲性久久影院| 97超视频在线观看视频| 中文字幕免费在线视频6| 国产精品综合久久久久久久免费| 97热精品久久久久久| 国产精品人妻久久久久久| 精品一区二区免费观看| 国产乱来视频区| 最近中文字幕2019免费版| 亚洲最大成人av| 国产乱人偷精品视频| 2022亚洲国产成人精品| 禁无遮挡网站| 国产精品一区二区在线观看99 | 国产免费视频播放在线视频 | 日日啪夜夜撸| 久久久久网色| 黄色一级大片看看| 欧美性感艳星| 国产在线男女| 亚洲av福利一区| 如何舔出高潮| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 小说图片视频综合网站| av视频在线观看入口| 一级毛片aaaaaa免费看小| 精品国产三级普通话版| 麻豆精品久久久久久蜜桃| 熟女电影av网| av卡一久久| 国产精品人妻久久久久久| 国产精品,欧美在线| 久久久国产成人精品二区| 精品一区二区三区人妻视频| 亚洲综合精品二区| 国产黄片美女视频| 99九九线精品视频在线观看视频| 日本一本二区三区精品| 亚洲综合色惰| 亚洲不卡免费看| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| www.av在线官网国产| 男女国产视频网站| 可以在线观看毛片的网站| 菩萨蛮人人尽说江南好唐韦庄 | ponron亚洲| 好男人视频免费观看在线| 日韩在线高清观看一区二区三区| 色哟哟·www| 国产精品永久免费网站| 在线观看一区二区三区| 如何舔出高潮| av播播在线观看一区| 久久久国产成人免费| 三级经典国产精品| 两个人视频免费观看高清| 看黄色毛片网站| 亚州av有码| 欧美高清性xxxxhd video| 亚州av有码| 欧美另类亚洲清纯唯美| 精品久久久久久久久亚洲| 国产黄色视频一区二区在线观看 | 国产美女午夜福利| 国产免费福利视频在线观看| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 国产探花在线观看一区二区| 亚州av有码| 蜜桃久久精品国产亚洲av| 国产三级在线视频| 三级国产精品片| 免费观看在线日韩| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 观看美女的网站| 天堂av国产一区二区熟女人妻| av免费在线看不卡| 亚洲av不卡在线观看| 只有这里有精品99| 国内精品宾馆在线| 精品熟女少妇av免费看| 男插女下体视频免费在线播放| 国内精品一区二区在线观看| 一夜夜www| kizo精华| 最近视频中文字幕2019在线8| 欧美97在线视频| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 亚洲精品,欧美精品| 精品人妻熟女av久视频| 精品人妻偷拍中文字幕| 欧美色视频一区免费| 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 女人久久www免费人成看片 | 日韩欧美 国产精品| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| 视频中文字幕在线观看| 特级一级黄色大片| 校园人妻丝袜中文字幕| 免费看光身美女| 深爱激情五月婷婷| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 免费人成在线观看视频色| 日韩三级伦理在线观看| 亚洲在线自拍视频| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 高清毛片免费看| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 少妇人妻精品综合一区二区| 日韩av在线免费看完整版不卡| 国产淫片久久久久久久久| 国产精品久久久久久久电影| 春色校园在线视频观看| 国产一级毛片七仙女欲春2| 国产在视频线精品| 精品国产露脸久久av麻豆 | 亚洲欧美一区二区三区国产| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影小说 | 日日摸夜夜添夜夜爱| 国产伦一二天堂av在线观看| 综合色丁香网| 亚洲在久久综合| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放 | 熟女电影av网| 亚洲四区av| 国产极品精品免费视频能看的| 性色avwww在线观看| 小说图片视频综合网站| 禁无遮挡网站| 亚洲精品aⅴ在线观看| 久久久久网色| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 中文欧美无线码| 欧美丝袜亚洲另类| 久久热精品热| 日韩一区二区三区影片| 日本与韩国留学比较| 国产69精品久久久久777片| 国产精品福利在线免费观看| 干丝袜人妻中文字幕| 村上凉子中文字幕在线| 特大巨黑吊av在线直播| 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 国产91av在线免费观看| 久久久成人免费电影| 高清在线视频一区二区三区 | 中文字幕制服av| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| eeuss影院久久| 一卡2卡三卡四卡精品乱码亚洲| 男女下面进入的视频免费午夜| 中文字幕免费在线视频6| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久国产电影| 亚洲伊人久久精品综合 | 欧美日韩精品成人综合77777| 久热久热在线精品观看| 最新中文字幕久久久久| 国产综合懂色| 99在线人妻在线中文字幕| 一级毛片aaaaaa免费看小| 麻豆国产97在线/欧美| 国产在线男女| 日韩成人av中文字幕在线观看| 国产精品乱码一区二三区的特点| 六月丁香七月| 亚洲电影在线观看av| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 国产精品国产三级国产专区5o | 中文字幕人妻熟人妻熟丝袜美| 久久久久久伊人网av| 日本一本二区三区精品| 精品久久国产蜜桃| 国产伦一二天堂av在线观看| 色播亚洲综合网| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看 | 直男gayav资源| 最近最新中文字幕免费大全7| 国产成人a区在线观看| 一边亲一边摸免费视频| 中文资源天堂在线| 日日摸夜夜添夜夜爱| 夫妻性生交免费视频一级片| 好男人在线观看高清免费视频| 中文字幕av成人在线电影| 国产视频内射| 亚洲欧洲国产日韩| 成人美女网站在线观看视频| 亚洲最大成人av| 不卡视频在线观看欧美| 一边摸一边抽搐一进一小说| 亚洲精品aⅴ在线观看| 一级黄片播放器| 欧美日韩在线观看h| 午夜福利成人在线免费观看| 日韩大片免费观看网站 | 国产私拍福利视频在线观看| av专区在线播放| 成人漫画全彩无遮挡| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 大话2 男鬼变身卡| 免费黄色在线免费观看| 欧美日韩精品成人综合77777| 久久久久久久久久久丰满| 黑人高潮一二区| 成人一区二区视频在线观看| 偷拍熟女少妇极品色| 99久久九九国产精品国产免费| 一区二区三区乱码不卡18| 日韩欧美 国产精品| 三级国产精品片| 色噜噜av男人的天堂激情| 高清在线视频一区二区三区 | 午夜久久久久精精品| АⅤ资源中文在线天堂| 麻豆成人av视频| 91久久精品国产一区二区成人| 高清午夜精品一区二区三区| 最近的中文字幕免费完整| 亚洲欧美日韩无卡精品| 午夜久久久久精精品| 国产成人福利小说| 伊人久久精品亚洲午夜| 亚洲va在线va天堂va国产| 国产爱豆传媒在线观看| 欧美+日韩+精品| 一个人免费在线观看电影| 免费av不卡在线播放| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区| 欧美3d第一页| av免费在线看不卡| 日韩欧美在线乱码| 男女视频在线观看网站免费| 纵有疾风起免费观看全集完整版 | 国产久久久一区二区三区| 亚洲精品色激情综合| 18+在线观看网站| 99国产精品一区二区蜜桃av| 国产免费福利视频在线观看| 久久精品久久久久久久性| 99久久精品热视频| 天堂av国产一区二区熟女人妻| 一夜夜www| 国产熟女欧美一区二区| 少妇熟女欧美另类| 国产真实伦视频高清在线观看| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 高清视频免费观看一区二区 | 乱码一卡2卡4卡精品| 国产一区二区亚洲精品在线观看| www.av在线官网国产| 亚洲四区av| 久久99精品国语久久久| 99久久人妻综合| 少妇的逼好多水| 亚洲在久久综合| 亚洲精品国产av成人精品| 波多野结衣高清无吗| 亚洲久久久久久中文字幕| 国产成人精品婷婷| 天天一区二区日本电影三级| 男人和女人高潮做爰伦理| 自拍偷自拍亚洲精品老妇| 99久久成人亚洲精品观看| 国产精品日韩av在线免费观看| 看免费成人av毛片| 久久久国产成人免费| 亚洲精品日韩av片在线观看| 亚洲在线自拍视频| 日本免费a在线| 你懂的网址亚洲精品在线观看 | 精品一区二区免费观看| 亚洲人成网站在线观看播放| 男女视频在线观看网站免费| 22中文网久久字幕| 蜜桃久久精品国产亚洲av| 变态另类丝袜制服| www.av在线官网国产| 99在线视频只有这里精品首页| 亚洲欧美精品专区久久| 又黄又爽又刺激的免费视频.| 国产精品精品国产色婷婷| 一级黄色大片毛片| 久久久久性生活片| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 一边摸一边抽搐一进一小说| 汤姆久久久久久久影院中文字幕 | 亚洲人成网站在线观看播放| 亚洲五月天丁香| 亚洲精品乱码久久久久久按摩| 亚洲久久久久久中文字幕| 亚洲欧洲日产国产| 国语自产精品视频在线第100页| 国产片特级美女逼逼视频| 精华霜和精华液先用哪个| 成人综合一区亚洲| 久久6这里有精品| 三级国产精品欧美在线观看| 91精品国产九色| 久久人人爽人人爽人人片va| 亚洲国产精品合色在线| 成人性生交大片免费视频hd| 久久精品久久久久久噜噜老黄 | 成人午夜高清在线视频| 国产爱豆传媒在线观看| 亚洲图色成人| 噜噜噜噜噜久久久久久91| 欧美区成人在线视频| 久久99热6这里只有精品| 国产成人免费观看mmmm| 国产伦一二天堂av在线观看| 午夜精品在线福利| av国产免费在线观看| 青春草视频在线免费观看| 日日摸夜夜添夜夜爱| 天天躁夜夜躁狠狠久久av| av线在线观看网站| 欧美性猛交╳xxx乱大交人| 在线天堂最新版资源| 婷婷色av中文字幕| 九色成人免费人妻av| 网址你懂的国产日韩在线| 99热6这里只有精品| 美女国产视频在线观看| 国产伦一二天堂av在线观看| 1024手机看黄色片| 亚洲欧洲国产日韩| 国产亚洲精品av在线| 国产亚洲精品久久久com| 五月伊人婷婷丁香| 天堂av国产一区二区熟女人妻| 一区二区三区免费毛片| 久久99蜜桃精品久久| 男女那种视频在线观看| av视频在线观看入口| 又粗又爽又猛毛片免费看| 午夜久久久久精精品| 天美传媒精品一区二区| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 国产精品精品国产色婷婷| 国产极品精品免费视频能看的| 亚洲av不卡在线观看| 男女国产视频网站| 日本免费在线观看一区| 国产精品久久久久久久久免| 国产精品日韩av在线免费观看| 欧美日韩综合久久久久久| 成人二区视频| 亚洲欧洲日产国产| 插逼视频在线观看| 国产精品蜜桃在线观看| 一级毛片电影观看 | 99国产精品一区二区蜜桃av| 男人舔奶头视频| 亚洲人成网站高清观看| 欧美zozozo另类| 又粗又爽又猛毛片免费看| 最近最新中文字幕大全电影3| 国产黄片视频在线免费观看| 日韩一本色道免费dvd| 最近最新中文字幕大全电影3| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久久久按摩| 观看免费一级毛片| 日日摸夜夜添夜夜爱| 国产极品天堂在线| 国产一区有黄有色的免费视频 | 麻豆成人午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产视频首页在线观看| 永久网站在线| 直男gayav资源| 一夜夜www|