賈明輝,韓貴春
?
*賈明輝,韓貴春
(內(nèi)蒙古民族大學(xué)數(shù)學(xué)學(xué)院,內(nèi)蒙古,通遼 028000)
顯然,不可約矩陣是弱不可約矩陣的特殊形式。
在接下來的討論中,引入下列符號:
則為非奇異-矩陣。
引理2.5設(shè)=(a) ∈C×n∩,若∈2(α),則為非奇異-矩陣。
又由引理2.1知,為非奇異-矩陣。
即
故有
即
即(1) 式成立。
則
綜上,由引理2.2知為非奇異-矩陣。
則為非奇異-矩陣。
[1] Taussky O. A recurring theorem on determinants[J]. The American Mathematical Monthly, 1949, 56(10): 672-676.
[2] Shivakumar P N, Chew K H. A sufficient condition for nonvanishing of determinants[J]. Proceedings of the American mathematical society, 1974, 43: 63-66.
[3] Guo Z, Yang J G. A new criteria for a matrix is not generalized strictly diagonally dominant matrix[J]. Applied Mathematical Sciences, 2011, 5(6): 273-278.
[4] 李敏,李慶春. 非奇異H-矩陣的新判定準(zhǔn)則[J], 工程數(shù)學(xué)學(xué)報, 2012, 29(5): 715-719.
[5] 山瑞平,陸全,徐仲,等. 非奇異H矩陣的一組細(xì)分迭代判定條件?[J]. 工程數(shù)學(xué)學(xué)報, 2014, 33(6):857-864.
[6] Han G, Gao H, Yang H. Discussion for -Matrices and It’s Application[J]. Journal of Applied Mathematics, 2014, 2014:1-6.
[7] 韓貴春,高會雙,肖麗霞. 非奇異-矩陣的判定準(zhǔn)則[J]. 湖北民族學(xué)院學(xué)報, 2014,32(1): 68-70.
[9] Gao Y M. Criteria of the generalized diagonally dominant and nonsingular matrices[J]. Northeast Normal Uuiv., 1982, 3: 23-28.
[10] Cvetkovi? L. H-matrix theory vs. eigenvalue localization[J]. Numerical Algorithms, 2006, 42(3): 229-245.
[11] Ostrowski A. über die Determinanten mit überwiegender Hauptdiagonale[J]. Commentarii Mathematici Helvetici, 1937,10(1): 69-96.
[12] Li B, Tsatsomeros M J. Doubly diagonally dominant matrices[J]. Linear Algebra and Its Applications,1997,261(1-3): 221-235.
[13] Ostrowski A M. über das Nichtverchwinden eiber Klasse von Determinanten und die Lokalisierung der charekteristischen Wurzeln von Matrizen[J].Compositio. Math., 1951, 9: 209-226.
[14] Bru R, Corral C, Gimenez I, et al. Classes of general H-matrices[J]. Linear Algebra and Its Applications, 2008, 429(10): 2358-2366.
[15] Brualdi R A. Matrices eigenvalues, and directed graphs[J]. Linear and Multilinear Algebra, 1982, 11(2): 143-165.
[16] 楊尚駿,張曉東.關(guān)于弱不可約矩陣特征值包含區(qū)域的Brualdi定理[J]. 安徽大學(xué)學(xué)報:自然科學(xué)版, 1999,23(1):1-5.
[19] 徐成賢,徐宗本. 矩陣分析[M]. 西安:西北工業(yè)大學(xué)出版社,1991.
*JIA Ming-hui, HAN Gui-chun
(School of Mathematics, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China)
The concept of weakly irreducible2- diagonally dominant matrices according to circuit is introduced. Firstly, an equivalent condition for judging weakly irreducible strictly2- diagonally dominant matrices according to circuit is given. Furthermore, some new practical criteria for nonsingular-matrices are obtained for the theory of diagonally dominant matrices. The study enriches and perfects the theory of- diagonally dominant matrices according to circuit and nonsingular H-matrices.
1674-8085(2018)01-0012-05
O151.21
A
10.3969/j.issn.1674-8085.2018.01.003
2017-09-04;
2017-11-12
內(nèi)蒙古自治區(qū)自然科學(xué)基金項目(2016MS0118);內(nèi)蒙古民族大學(xué)科學(xué)研究基金項目(NMDYB1778,NMDYB15089)
*賈明輝(1977-),女,內(nèi)蒙古呼倫貝爾人,副教授,主要從事數(shù)值代數(shù)與矩陣?yán)碚摲矫娴难芯?E-Mail:47398255@qq.com);韓貴春(1978-),女,山東陽谷人,講師,博士生,主要從事數(shù)值代數(shù)與矩陣?yán)碚摲矫娴难芯?E-mail:380973379@qq.com).