• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A transient bulk flow model with circular whirl motion for rotordynamic coefficients of annular seals

    2018-05-17 10:07:28PengXIAZhanshengLIUXiangyuYUJingmingZHAO
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Peng XIA,Zhansheng LIU,Xiangyu YU,Jingming ZHAO

    School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    1.Introduction

    Rotordynamic characteristics of high-performance turbomachinery significantly depend on the hydrodynamic forces developed by annular pressure seals.1Accordingly,a large number of studies have been conducted to theoretically predict and to experimentally measure the hydrodynamic forces in a number of seal configurations under various operating conditions.

    The bulk flow model introduced by Hirs2has been widely used to predict the dynamic coefficients for turbulent annular seals.In order to simplify the Navier-Stokes equations and reduce substantial computational costs,the bulk flow theory associated bulk mean flow in the seal clearance with averaged turbulence forces.Childs3firstly used 1D bulk flow model with fluid inertia effect to calculate the rotor dynamic coefficients for smooth annular seals concentric with rotors.San Andres4developed a Computational Fluid Dynamics(CFD)solution for eccentric smooth annular seals.A finite difference scheme was implemented to solve 2D bulk flow model and the numerical solution procedure was based on the Semi-Implicit Method for Pressure Linked Equation(SIMPLE)to accelerate convergence.To improve the accuracy of bulk flow model,simplified turbulence models for different surface textures were developed based on a large number of experimental data in the Refs.5,6Although the turbulent models were proved to be effective in those studies,it was difficult to capture the full nature of turbulence flow based on analogical experiments.In the Refs.7,8,the analytical results and experiment data had good agreement by manually adjusting the friction factors in the turbulence models.Saba et al.9evaluated the friction factors by minimizing leakage derivation between analytical results and experiment data,and the prediction of rotor dynamic coefficients had good agreement with experiment results.However,empirical boundary conditions used in the Refs.7–9were another important error source.As the boundary conditions of bulk flow model also had an influence on the leakage flowrate,the friction factors could not be determined independently in the Ref.9Actually,the boundary conditions such as pressure loss coefficient and pre-swirl ratio could be measured in experiments,but the measurements were very expensive and seldom have been conducted.In the Refs.3–9,the bulk flow model was a static model and a perturbation method was implemented to calculate rotordynamic coefficients with a mathematical simpli fication that the amplitude of rotor whirl motion was much smaller than the clearance thickness,but the amplitude in experiments and engineering hardly fulfilled the perturbation simplification.In addition,there were many other cases where the perturbation condition did not ful fill.In the Refs.10,11,the large-scale dynamic responses of floating ring seals were investigated and the hydrodynamic forces were calculated by the perturbed bulk flow model.

    In recent years,CFD has been increasingly used to predict the performance of annular seals.CFD method solves the complete Navier-Stokes equations and is able to predict turbulence flow at a highly detailed level in the solution.Moore and Palazzolo12conducted CFD simulations to investigate the liquid mean velocity of a grooved liquid annular seal.Numerical predictions of the mean velocity at different positions across the seal showed good agreement with experimental results.With the development of computational technology,CFD method was used to calculate rotordynamic coefficients for annular seals.Moore13introduced a steady-state CFD method to calculate rotordynamic coefficients of a labyrinth seal.The method used a steady-state flow field and a rotor whirl motion with small eccentricities.The axisymmetric geometry of the labyrinth seal allowed frequency-independent rotordynamic coefficients to be evaluated with impedance calculation at three different whirl frequencies.Untaroiu et al.14calculated rotordynamic coefficients for a circumferentially grooved liquid seal with the steady-state method.To study pre-swirl effect,the upstream region for the seal was explicitly modeled in CFD study.Chochua and Soulas15developed a 3D transient,dynamic mesh method to calculate dynamic characteristics of a hole-pattern gas seal.Yan et al.16improved the dynamic mesh method with a small circular rotor whirl motion,and the computational costs for a simulation needed 15 days on an Intel Core2 Quad6600 2.4 GHz CPU.Generally,full 3D CFD method demonstrated superior capacity in predicting leakage and rotordynamic coefficients over bulk flow model while the CFD method required long solution time for calculating the dynamic coefficients.In addition,for wall-bounded flow in liquid seals,turbulence intensity in the clearance was much lower than requirements of the wall function in CFD theory and was inevitable to exponentially increase computational costs to solve the wall-bounded flow in 3D CFD analysis.

    Several investigations were conducted to take advantage of the two methods.Arghir et al.17modified the turbulence model in bulk flow model with a great deal of CFD results for a typical cell extracted from seal textured surfaces.Migliorini et al.18substituted wall shear stress predicted by steady-state CFD analysis into bulk flow model to calculate rotordynamic coefficients.However,the wall shear stress was only part of the turbulence resistance in seal clearance.

    2.Analytical model

    2.1.Bulk flow model with arbitrary rotor motion

    Under high pressure drop and rotational speed,the flow of low viscosity is characterized by high levels of turbulence.By neglecting velocity variation in the radial(y)direction and incorporating simpli fied turbulence models into the Navier-Stokes equations,the bulk flow continuity and momentum equations(Eqs.(1)–(3))in the axial(z)and circumferential(x)directions are given by the Ref.4within each control volume of 2D flow field in seal clearance.

    wheret is the time,w is the axial averaged velocity,u is the circumferential averaged velocity,usis the velocity relative to the stator,uris the velocity relative to the rotor,h is the clearance thickness,p is the fluid pressure,ρ is the fluid density,R is the rotor radius,Ω is the rotor speed,frand fsare Moody’s turbulence formulas at rotor and stator surfaces,n is the friction factor.

    To directly consider rotor whirl motion,the squeeze velocity Vsin the control volume is explicitly represented as the time derivative of film thickness.

    where θ is the circumferential angle of a control volume,Vradialis the radial velocity and Vtangentialis the tangential velocity in the local coordinate system shown in Fig.1.

    Within a trivial time interval Δt,it is assumed that flow variables in Eqs.(1)–(3)lineally vary.For incompressible fluid,the equations are discretized between t and t+Δt time step.

    As shown in Fig.1,the 2D control volumes keep the same shape in the local coordinate system at each time step.The node variables of t time step(φt=pt,ut,wt)in the coordinate system of t+Δt time step are obtained by linear interpolation inside the linear discretized control volumes of the t time step.

    2.2.Boundary conditions with CFD calibration

    Boundary conditions for the velocity and pressure fields at the seal entrance and exit are:

    (1)At the seal entrance,the pressure loss effect is modeled aswhere pinis the upstream pressure,penis the seal entrance pressure and δ is the pressure loss coefficient and wenis the mean flow axial velocity at seal entrance.

    (2)Depending on upstream conditions,the entrance circumferential velocity is uen= βRΩ,where β is the pres wirl ratio.

    (3)At the seal exit,no pressure recovery effect is assumed to exist,pex=pout,where poutis the downstream pressure and pexis the seal exit pressure.

    To obtain the above parameters of the boundary conditions,CFD method is used to simulate the steady-state flow ifeld in and around the seal clearance.By extracting weighted-average CFD results at the seal entrance and exit,the parameters are determined,and the friction factor of bulk flow model is further evaluated by minimizing leakage flowrate deviation between CFD method and bulk flow model.

    2.3.Numerical solution procedure

    The flow field of each time step is discretized with rectangular elements shown in Fig.2,and the distributions of flow variables are obtained by assuming that the variables are linearly distributed inside each element domain Ωe.

    where φ=u,w,p;Niis the 2D Lagrange interpolation function and i is the node number in an element.

    To obtain the finite element matrix represented by Eq.(9),the Eqs.(5)–(7)are multiplied by the Galerkin test function and integrated over a master isopara metric element.Xu19detailed coordinate transformation and numerical integration procedure with the Gauss-Legendre quadrature formulas.

    The sub-matrixes in the left side of the Eq.(9)are 4×4 2D matrixes and the sub-matrixes in the right side are 4×1 1D matrixes.The sub-coefficients in each sub-matrix are given in detail in Appendix A.ue,we,and peare the 4×1 1D matrixes of the node variable ui,wiand piin an element.

    The finite element matrixes of all the elements in the flow field are assembled to form an equation system.The alternating linear iteration algorithm is used to solve the equation system and obtain the velocity and pressure distributions in seal clearance.

    2.4.Fluid film forces and rotor dynamic coefficients

    The leakage flowrate is given by integration of the axial velocity at the seal exit as

    At each time step,the hydrodynamic forces in the local coordinate system are given by Eq.(11)and can be transferred into the fixed reference system to obtain the force components in X and Y directions.

    where Ftand Frare the hydrodynamic forces in the tangential and radial directions of the local coordinate system,and L is the length of the seal.

    When the rotor moves around the seal geometry center with a circular path,the relationship14between the hydrodynamic forces in the local coordinate system and the rotor dynamic coefficients is

    where Rwis rotor whirl radius and ω is rotor whirl speed,K is the direct stiffness,k is the cross-coupled stiffness,C is the direct damping,c is the cross-coupled damping,M is the direct inertia coefficient and m is the cross-coupled inertia coefficient.

    In order to identify the stiffness,damping,and inertia coefficients in the Eqs.(12)and(13),the hydrodynamic forces are calculated at multiple whirl speeds and a linear least square curve fit is conducted.

    3.Results and discussion

    3.1.CFD calibration

    The smooth annular seal schematically illustrated in Fig.3 is chosen from an experimental seal tested at Texas A&M University.7The seal geometry and operating conditions are shown in Table 1,and the test operating speed is respectively 10200,17400 and 24600 r/min,much lower than the first critical speed(30000 r/min)of the rotor in the test rig.When the seal is concentric with the shaft,a 2D axisymmetric analysis of wall-bounded flow in the clearance with high resolution is conducted to reduce substantial computational costs.Thermal effect is not incorporated,since the specific heat of liquid water is large and leakage flow quickly takes energy dissipation away.Rotor surface is defined as a moving wall with tangential velocity and stator surface is specified as a stationary wall.The walls for the surfaces are set to be nonslip,and centrifugal growth20of the rotor is calculated by

    The software ICEM 14.0 is used to generate structured mesh.Under low Reynold number,turbulence flow in the clearance is significantly influenced by the presence of the walls.The k-ε standard turbulence model is used with the enhanced-wall treatment,and the y+values for the first grids near the walls are below 1 with more than 20 nodes inside boundary layers.Total pressure and turbulence quantities are defined at the inlet boundary,and static pressure is specified at the outlet boundary.Discretization scheme is the second-order upwind to guarantee numerical precision.Convergence condition is that the weighted-average pressure,axial velocity and swirl velocity monitored at the seal entrance and exit do not fluctuate with the corresponding scaled residuals of continuous,momentum and turbulence equations reaching 10-8.

    In the case of5.52 MPa and 10200 r/min,a gridindependence study is conducted.Fig.4 depicts the grid distributions at the seal entrance with respectively 1.31(Mesh A),2.73(Mesh B)and 5.32(Mesh C)million elements.The velocities and pressure at the seal entrance are selected to be the key variables for the grid-independence study.Fig.5 shows that the pro files of the static pressure have good agreement,and Fig.6 shows the pro files of the axial velocity and the tangential velocity are almost the same with each other.Consequently,Mesh B is convergent and used in the CFD analysis.

    As there are no turbulence models which demonstrate superior for turbulent flow in annular seals,the comparison including the k-ε standard model,the k-ε renormalization model,the k-ω model and the SST(Shear Stress Transport)model is conducted.The enhanced wall treatment is used with the k-ε turbulence models,and the k-ω model and the SST model candirectly solve boundary layers.Fig.7 shows the leakage comparison of the turbulence models.The k-ω model underestimates the leakage flowrate, while the SST model overestimates.The leakage flowrates of the k-ε renormalization model and the k-ε standard model are between the k-ω model and the SST model.Compared with the test results,the overall leakage flowrate error for the k-ε standard model is smaller than that of other turbulent models with the maximum derivation below 2.68%.Thus,the k-ε standard model with enhanced wall treatment is used to calibrate bulk flow model.

    Table 1 Seal geometry and operating conditions.7

    As there is a sudden narrowing at the seal entrance, fluid inertia accelerates the fluid from an upstream stagnant condition to a flow with high axial speed.Fig.8 shows the distributions of pressure and velocity at the seal entrance in the case of Δp=4.14 MPa and Ω =10200 r/min.

    In all the cases of this work,the violent variation of the flow field at the entrance is con fined to the entrance region,and the weighted-average variables are measured at the position with 4cl away from the seal entrance.Table 2 shows the parameters of bulk flow model calibrated with CFD results.The pressureloss coefficient decreases with increasing pressure drop.The preswirl ratio increases with increasing rotational speed and decreases with increasing pressure drop.

    3.2.Fluid film forces

    To minimize numerical errors of the linear curve fit,eleven whirl frequencies ranging from 0.5Ω/60 to 1.5Ω/60 are used to evaluate rotor dynamic coefficients.For each frequency,360 time steps are used during every period and the rotor whirl radius is 0.025cl.

    Table 2 Bulk flow parameters with CFD calibration.

    Fig.9 shows the reaction forces of four excitation frequencies on the rotor surface in the case of Δp=5.52 MPa and Ω=10200 r/min.The reaction forces FXand FYhave the same frequency with the rotor whirl motion and the amplitudes of the forces increase with increasing the rotor whirl frequency.Table 3 shows the radial force and the tangential force in thelocal coordinate system at the eleven whirl frequencies.With the whirl frequency increasing,the radial force decreases while the tangential force increases.It indicates that the rotor whirl frequency is important for the dynamic stability of the rotor and seal system.Fig.10 shows the data of the forces agree very well with the least square fitted curve.

    Table 3 Radial forces and tangential forces on rotor surface with different whirl frequencies.

    In addition,to reduce computational costs of calculating rotor dynamic coefficients,the convergence condition for each whirl frequency is that the scaled residuals for the radial force and the tangential force reach 10-6.The computational time for the eleven frequencies is about 1.5 h on an Intel Core i7-4770 3.40 GHz CPU.

    3.3.Comparisons and validation

    In order to validate the bulk flow model developed in present study,as shown from Fig.11,the rotor dynamic coefficients are compared with the experimental data and analytic results in Ref.7The experimental difference of the direct damping(CXXand CYY)and direct inertia coefficients(MXXand MYY)is due to experimental errors,and the results of the cross-coupled inertia coefficients are not shown in the reference.In addition,the results calculated by the perturbed bulk flow model4with calibrated parameters are included in the comparison.

    Compared with the analytic results,the direct stiffness of the calibrated bulk flow model has better agreement with the test data.Other results excluding the direct damping and cross-coupled damping agree well with the experimental results.Although the overestimation of the direct damping is apparent and the cross-coupled damping is underestimated,the comparisons indicate that CFD calibration improves the accuracy of bulk flow model.In the reference,the pressure loss coefficient is empirically selected to be 0.1,and the preswirl ratio and the friction factor are not shown explicitly.However,the calibrated pressure loss coefficient shown in Table 2 is much higher than 0.1.The reason may be that the direct stiffness and direct damping of the calibrated model are much higher than the results of the reference.

    On the other hand,the transient bulk flow model provides further improvement for the rotordynamic coefficients in comparison with the perturbed bulk flow model.Although the overestimation of the direct damping still exists,the direct damping of the transient model is smaller than the result of the perturbed model and is closer to the experiment data.Meanwhile,the cross-coupled damping of the transient model is higher than the result of the perturbed model and has better agreement with the test data.The direct stiffness,crosscoupled stiffness and direct inertia coefficients of the transient model show slight improvement.The cross-coupled inertia coefficient of the present model is much larger than the result of the perturbed model.

    4.Conclusions

    (1)In comparison with other turbulence models,the k-ε standard turbulence model with the enhanced wall treatment is accurate to calculate the wall-bounded flow in seal clearance under low Reynolds number.

    (2)The pressure loss coefficient decreases with increasing pressure drop;the preswirl ratio increases with increasing the rotational speed and decreases with increasing the pressure drop.

    (3)The reaction force on the rotor surface has the same frequency with the rotor whirl motion.The radial force decreases and the tangential force increases with increasing the whirl frequency.

    (4)The accuracy of the perturbed bulk flow model with the CFD calibration is improved in comparison with the analytical results in the reference.Furthermore,compared with the perturbed model,the predictions of the transient bulk flow model are in better agreement with experimental data.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China(No.11176010).

    Appendix A

    These are the sub-coefficients in the sub-matrix of the Eq.(9).The coefficient of lower-case letter is corresponding to the submatrix of capital letter.The subscript m and n is corresponding to the dimension of the sub-matrix.

    References

    1.Childs DW.Turbomachinery rotordynamics.Hoboken:John Wiley&Sons;1993.p.8–10.

    2.Hirs GG.A bulk- flow theory for turbulence in lubricant films.J Lubr Technol 1973;95(2):137–45.

    3.Childs DW.Finite-length solutions for rotordynamic coefficients of turbulent annular seals.J Lubr Technol 1983;105(1):437–45.

    4.San Andres L.Analysis of variable fluid properties,turbulent annular seals.J Tribol 1991;113(4):694–702.

    5.Ha T,Childs DW.Annular honeycomb-stator turbulent gas seal analysis using new friction-factor model based on flat plate tests.J Tribol 1994;116(2):352–60.

    6.Childs DW,Kheireddin B,Phillips S,Asirvatham TD.Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars.J Eng Gas Turbines Power 2011;133(9):092504.

    7.Marquette OR,Childs DW,San Andres L.Eccentricity effects on the rotordynamic coefficients of plain annular seals:Theory versus experiment.J Tribol 1997;119(3):443–7.

    8.Lindsey WT,Childs DW.The effects of converging and diverging axial taper on the rotordynamic coefficients of liquid annular pressure seals:theory versus experiment.J Vibr Acoust 2000;122(2):126–31.

    9.Saba D,Forte P,Vannini G.Review and upgrade of a bulk flow model for the analysis of honeycomb gas seals based on new high pressure experimental data.J Mech Eng 2014;60(5):321–30.

    10.Arghir M,Nguyen MH,Tonon D,Dehouve J.Analytic modeling of floating ring annular seals.J Eng Gas Turbines Power 2012;134(5):052507.

    11.Mariot A,Arghir M,Helies P,Dehouve J.Experimental analysis of floating ring annular seals and comparisons with theoretical predictions.J Eng Gas Turbines Power 2016;138(4):042503.

    12.Moore JJ,Palazzolo AB.CFD comparison to 3D laser anemometer and rotordynamic force measurements for grooved liquid annular seals.J Tribol 1999;121(2):306–14.

    13.Moore JJ.Three-dimensional CFD rotordynamic analysis of gas labyrinth seals.J Vibr Acoust 2003;125(4):427–33.

    14.Untaroiu A,Hayrapetian V,Untaroiu CD,Wood HG,Schiavello J,Mcguire J.On the dynamic properties of pump liquid seals.J Fluids Eng 2013;135(5):051104.

    15.Chochua G,Soulas TA.Numerical modeling of rotordynamic coefficients for deliberately roughened stator gas annular seals.J Tribol 2007;129(2):424–9.

    16.Yan X,Li J,Feng Z.Investigations on the rotordynamic characteristics of a hole-pattern seal using transient CFD and periodic circular orbit model.J Vibr Acoust 2011;133(4):041007.

    17.Arghir M,Billy F,Pineau G,Frene J,Texier A.Theoretical analysis of textured damper annular seals.J Tribol 2007;129(3):669–78.

    18.Migliorini PJ,Untaroiu A,Wood HG,Allaire PE.A computational fluid dynamics/bulk- flow hybrid method for determining rotordynamic coefficients of annular gas seals.J Tribol 2012;134(2):022202.

    19.Xu CW.Finite element method.Beijing:Tsinghua University Press;2003.p.130–56[chinese].

    20.Warren Y,Richard B.Roark’s formulas for stress and strain.7th ed.New York:McGraw-Hill;2002.p.683.

    2018国产大陆天天弄谢| 日本vs欧美在线观看视频| 国产色爽女视频免费观看| 大香蕉97超碰在线| 美女xxoo啪啪120秒动态图| 国产一区二区在线观看av| 久久免费观看电影| 成人亚洲欧美一区二区av| 亚洲精品一二三| 中文字幕制服av| 韩国av在线不卡| 久久 成人 亚洲| 亚洲av男天堂| 天堂中文最新版在线下载| 精品人妻在线不人妻| 丝瓜视频免费看黄片| 丰满饥渴人妻一区二区三| 插阴视频在线观看视频| 在线观看免费视频网站a站| 丰满饥渴人妻一区二区三| 亚洲五月色婷婷综合| 亚洲婷婷狠狠爱综合网| 五月天丁香电影| 飞空精品影院首页| 最后的刺客免费高清国语| 人人妻人人澡人人看| 日本免费在线观看一区| 国产白丝娇喘喷水9色精品| 久久狼人影院| 欧美亚洲日本最大视频资源| 免费黄色在线免费观看| 欧美日韩视频高清一区二区三区二| 高清av免费在线| 最新中文字幕久久久久| 男女边摸边吃奶| 国产高清不卡午夜福利| 考比视频在线观看| 亚洲国产成人一精品久久久| 99热全是精品| 黄色视频在线播放观看不卡| 国产免费一区二区三区四区乱码| 亚洲综合色网址| 久久精品国产自在天天线| 亚洲欧美一区二区三区黑人 | www.av在线官网国产| 夜夜爽夜夜爽视频| 国产精品蜜桃在线观看| 97精品久久久久久久久久精品| 国产精品熟女久久久久浪| 国产免费视频播放在线视频| 国产一区亚洲一区在线观看| 国产精品偷伦视频观看了| 大话2 男鬼变身卡| 欧美激情国产日韩精品一区| 少妇的逼水好多| av专区在线播放| 丰满饥渴人妻一区二区三| 91在线精品国自产拍蜜月| 永久免费av网站大全| 国产有黄有色有爽视频| 熟女av电影| 中文字幕久久专区| 亚洲国产精品国产精品| 纯流量卡能插随身wifi吗| 麻豆精品久久久久久蜜桃| 国产乱来视频区| 国产日韩欧美视频二区| 热99国产精品久久久久久7| 丰满少妇做爰视频| 热re99久久国产66热| 精品久久久精品久久久| 国语对白做爰xxxⅹ性视频网站| 99久久综合免费| 性色avwww在线观看| 少妇猛男粗大的猛烈进出视频| 黑人欧美特级aaaaaa片| 综合色丁香网| 久久影院123| 久久99热这里只频精品6学生| 777米奇影视久久| 爱豆传媒免费全集在线观看| 亚洲美女视频黄频| 草草在线视频免费看| 汤姆久久久久久久影院中文字幕| 国产精品偷伦视频观看了| 超色免费av| 久久久午夜欧美精品| 最新的欧美精品一区二区| 日韩av不卡免费在线播放| 欧美三级亚洲精品| 街头女战士在线观看网站| 国产精品无大码| 成年美女黄网站色视频大全免费 | 一级片'在线观看视频| av又黄又爽大尺度在线免费看| 爱豆传媒免费全集在线观看| 国产欧美另类精品又又久久亚洲欧美| 色婷婷av一区二区三区视频| 99热国产这里只有精品6| 国产精品偷伦视频观看了| 高清黄色对白视频在线免费看| 国产男女超爽视频在线观看| 中文字幕制服av| 国内精品宾馆在线| 卡戴珊不雅视频在线播放| 黑人猛操日本美女一级片| 久久久国产一区二区| 久久久久久伊人网av| av免费在线看不卡| 国产av码专区亚洲av| 亚洲中文av在线| 国产免费现黄频在线看| 亚洲成人av在线免费| 边亲边吃奶的免费视频| 高清黄色对白视频在线免费看| 交换朋友夫妻互换小说| 欧美变态另类bdsm刘玥| 亚洲精品乱码久久久久久按摩| 看免费成人av毛片| .国产精品久久| 人人妻人人澡人人爽人人夜夜| 欧美精品高潮呻吟av久久| 久久婷婷青草| 91精品一卡2卡3卡4卡| 欧美日本中文国产一区发布| 大香蕉久久网| 色网站视频免费| 肉色欧美久久久久久久蜜桃| 国产av码专区亚洲av| 一级毛片黄色毛片免费观看视频| 久久久久久久久久人人人人人人| 亚洲成人av在线免费| 男女免费视频国产| 国产精品 国内视频| 亚洲精品日韩在线中文字幕| 男女啪啪激烈高潮av片| 一区二区三区精品91| 久久久久精品久久久久真实原创| 成人黄色视频免费在线看| 一区在线观看完整版| 亚洲天堂av无毛| av福利片在线| 亚洲国产av新网站| 日韩制服骚丝袜av| av福利片在线| 国产亚洲欧美精品永久| 成人18禁高潮啪啪吃奶动态图 | 18禁在线播放成人免费| 欧美国产精品一级二级三级| 在线观看国产h片| 91久久精品国产一区二区三区| 制服人妻中文乱码| 午夜免费鲁丝| av电影中文网址| 亚洲av免费高清在线观看| 日韩 亚洲 欧美在线| 如何舔出高潮| 日日啪夜夜爽| 亚洲av成人精品一区久久| 国产午夜精品一二区理论片| 伦精品一区二区三区| 亚洲人成77777在线视频| 亚洲精品aⅴ在线观看| 少妇被粗大猛烈的视频| 26uuu在线亚洲综合色| 亚洲国产av新网站| 日韩中文字幕视频在线看片| 国产亚洲最大av| 人人妻人人添人人爽欧美一区卜| 亚洲四区av| 亚洲av综合色区一区| 久久久a久久爽久久v久久| 精品人妻熟女毛片av久久网站| 全区人妻精品视频| 日韩av不卡免费在线播放| 国产 一区精品| 美女国产视频在线观看| 91久久精品国产一区二区三区| 美女福利国产在线| 五月天丁香电影| 久久久久久久大尺度免费视频| 国产高清三级在线| 另类亚洲欧美激情| 你懂的网址亚洲精品在线观看| 欧美精品一区二区大全| 国产一区二区三区av在线| 亚洲美女视频黄频| 久久ye,这里只有精品| 一二三四中文在线观看免费高清| 久久精品夜色国产| 欧美日韩av久久| a级毛色黄片| 国产一级毛片在线| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 亚洲中文av在线| 人妻夜夜爽99麻豆av| 一级,二级,三级黄色视频| 亚洲av.av天堂| 一级毛片电影观看| 久久人人爽av亚洲精品天堂| 久久午夜福利片| 香蕉精品网在线| 日韩一区二区视频免费看| 久久久久久久久久成人| 99视频精品全部免费 在线| 男女边摸边吃奶| 日韩精品有码人妻一区| 国产视频首页在线观看| 美女cb高潮喷水在线观看| 亚洲怡红院男人天堂| 亚洲一区二区三区欧美精品| 精品国产一区二区三区久久久樱花| 男女免费视频国产| 日韩av在线免费看完整版不卡| av免费观看日本| 亚洲av.av天堂| 久久久久久久精品精品| 免费日韩欧美在线观看| 欧美成人精品欧美一级黄| 精品一品国产午夜福利视频| 麻豆成人av视频| 久久人妻熟女aⅴ| 91aial.com中文字幕在线观看| 国产一区亚洲一区在线观看| 啦啦啦中文免费视频观看日本| 国产精品熟女久久久久浪| 久久99热6这里只有精品| 三上悠亚av全集在线观看| 精品人妻在线不人妻| 免费看光身美女| 高清黄色对白视频在线免费看| 最新中文字幕久久久久| 精品久久国产蜜桃| 久久 成人 亚洲| 久久久久网色| 亚洲国产欧美日韩在线播放| 免费黄频网站在线观看国产| 成人午夜精彩视频在线观看| 中国美白少妇内射xxxbb| 亚洲人成77777在线视频| 黄片无遮挡物在线观看| 亚洲伊人久久精品综合| 亚洲精品国产色婷婷电影| 久久青草综合色| 我要看黄色一级片免费的| 九九爱精品视频在线观看| 精品视频人人做人人爽| 女性生殖器流出的白浆| 日韩人妻高清精品专区| 亚洲伊人久久精品综合| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区国产| videos熟女内射| 亚洲国产精品999| 国产免费一级a男人的天堂| 欧美人与性动交α欧美精品济南到 | 日日啪夜夜爽| 两个人免费观看高清视频| av.在线天堂| 欧美日韩精品成人综合77777| 国产国拍精品亚洲av在线观看| 啦啦啦中文免费视频观看日本| 下体分泌物呈黄色| 亚洲精品第二区| 亚洲国产精品国产精品| 少妇被粗大的猛进出69影院 | 久久久精品区二区三区| 久久久久久久国产电影| 国产一区有黄有色的免费视频| av视频免费观看在线观看| 久久人妻熟女aⅴ| 一区在线观看完整版| 美女国产视频在线观看| 综合色丁香网| 日韩一区二区三区影片| 亚洲第一av免费看| 日韩熟女老妇一区二区性免费视频| av网站免费在线观看视频| 最新中文字幕久久久久| 又粗又硬又长又爽又黄的视频| av卡一久久| 国产欧美日韩一区二区三区在线 | 七月丁香在线播放| 丰满乱子伦码专区| 久久午夜福利片| 99热这里只有是精品在线观看| 精品人妻一区二区三区麻豆| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 亚洲综合色惰| 能在线免费看毛片的网站| 国产亚洲一区二区精品| 欧美变态另类bdsm刘玥| 伊人亚洲综合成人网| 亚洲av男天堂| 国精品久久久久久国模美| 久久久久久人妻| 麻豆成人av视频| 亚洲国产精品一区二区三区在线| 少妇被粗大猛烈的视频| 多毛熟女@视频| 久久97久久精品| 欧美xxxx性猛交bbbb| 久久精品久久久久久久性| 久久狼人影院| 三级国产精品欧美在线观看| 国产男人的电影天堂91| 少妇人妻精品综合一区二区| 国产又色又爽无遮挡免| 午夜av观看不卡| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| av网站免费在线观看视频| 男女国产视频网站| 亚洲欧美日韩另类电影网站| 免费看不卡的av| 视频在线观看一区二区三区| 18禁在线播放成人免费| 飞空精品影院首页| 成年人免费黄色播放视频| 国产一区二区三区av在线| 在线观看免费高清a一片| 最后的刺客免费高清国语| 99热6这里只有精品| 亚洲精华国产精华液的使用体验| av播播在线观看一区| 亚洲av电影在线观看一区二区三区| 国内精品宾馆在线| 精品视频人人做人人爽| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 欧美xxxx性猛交bbbb| 亚洲精品一二三| av播播在线观看一区| 日韩成人av中文字幕在线观看| 午夜精品国产一区二区电影| 久久久久久久久久成人| 美女主播在线视频| 亚洲欧美日韩卡通动漫| 少妇精品久久久久久久| 国产成人精品久久久久久| 精品一区二区免费观看| 插阴视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 成人毛片60女人毛片免费| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 在线播放无遮挡| 街头女战士在线观看网站| 视频中文字幕在线观看| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 亚洲精品日韩av片在线观看| 99九九在线精品视频| 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 午夜91福利影院| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区国产| a级片在线免费高清观看视频| 亚洲美女黄色视频免费看| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 男女国产视频网站| 欧美亚洲日本最大视频资源| 成人亚洲精品一区在线观看| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 国产成人午夜福利电影在线观看| 91国产中文字幕| 大片免费播放器 马上看| 老女人水多毛片| 我的老师免费观看完整版| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| 国产69精品久久久久777片| 成人免费观看视频高清| 十分钟在线观看高清视频www| 狂野欧美激情性bbbbbb| 人妻一区二区av| 亚洲精品日韩av片在线观看| 亚洲综合精品二区| 一区二区日韩欧美中文字幕 | 黑人巨大精品欧美一区二区蜜桃 | 女性生殖器流出的白浆| 91国产中文字幕| 中文字幕av电影在线播放| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 99热这里只有是精品在线观看| 亚洲中文av在线| 精品久久久久久久久av| 免费看av在线观看网站| 色网站视频免费| 中文精品一卡2卡3卡4更新| 丰满饥渴人妻一区二区三| 亚洲精品久久成人aⅴ小说 | 久久人人爽人人爽人人片va| 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区 | 免费播放大片免费观看视频在线观看| 插阴视频在线观看视频| 久热这里只有精品99| 亚洲精品,欧美精品| 欧美日韩国产mv在线观看视频| 日韩视频在线欧美| 久久99精品国语久久久| 99九九在线精品视频| 欧美97在线视频| av免费观看日本| 免费日韩欧美在线观看| 18+在线观看网站| 极品人妻少妇av视频| av不卡在线播放| 国产毛片在线视频| 亚洲综合色网址| 在线观看www视频免费| 九九在线视频观看精品| 欧美少妇被猛烈插入视频| 婷婷成人精品国产| 大陆偷拍与自拍| 国产精品一区二区在线不卡| 成年av动漫网址| 欧美精品一区二区大全| 91在线精品国自产拍蜜月| 天天影视国产精品| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 亚洲国产毛片av蜜桃av| 亚洲天堂av无毛| 男人爽女人下面视频在线观看| 免费av不卡在线播放| 欧美另类一区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品一区二区三区在线| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 亚洲精品乱码久久久久久按摩| 国产高清有码在线观看视频| 免费少妇av软件| 日韩精品有码人妻一区| 一边摸一边做爽爽视频免费| 久久久久久久久久人人人人人人| 国产精品女同一区二区软件| 哪个播放器可以免费观看大片| 欧美精品一区二区大全| 国产免费视频播放在线视频| 久久国产精品男人的天堂亚洲 | 如日韩欧美国产精品一区二区三区 | 狂野欧美激情性xxxx在线观看| 欧美成人午夜免费资源| 久久免费观看电影| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 简卡轻食公司| 亚洲av二区三区四区| 国产精品欧美亚洲77777| 丝袜喷水一区| av免费观看日本| 美女国产高潮福利片在线看| 久久久久久久久久久免费av| 国产国拍精品亚洲av在线观看| 黑人巨大精品欧美一区二区蜜桃 | 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 国产探花极品一区二区| 国产精品免费大片| 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| av电影中文网址| 九草在线视频观看| 搡老乐熟女国产| 国产乱人偷精品视频| 国产 一区精品| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区| av一本久久久久| 国产亚洲av片在线观看秒播厂| 欧美日韩精品成人综合77777| 亚洲人与动物交配视频| 永久网站在线| 99九九在线精品视频| 亚洲性久久影院| 精品久久久久久久久av| 亚洲精品一区蜜桃| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 大话2 男鬼变身卡| 大片免费播放器 马上看| 免费看光身美女| 一级二级三级毛片免费看| 免费人成在线观看视频色| av又黄又爽大尺度在线免费看| 中文字幕制服av| 中文欧美无线码| 日本黄色片子视频| 大话2 男鬼变身卡| 国产av国产精品国产| 日韩在线高清观看一区二区三区| 成人国产av品久久久| 美女国产高潮福利片在线看| av有码第一页| 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 少妇精品久久久久久久| 超色免费av| 91久久精品国产一区二区成人| 在线观看www视频免费| 久久精品熟女亚洲av麻豆精品| 免费看光身美女| 国产在线免费精品| 黄色一级大片看看| 日韩人妻高清精品专区| 黑人猛操日本美女一级片| 18禁观看日本| 人妻夜夜爽99麻豆av| av不卡在线播放| 久久鲁丝午夜福利片| 欧美另类一区| 在线观看免费视频网站a站| 亚洲av福利一区| 欧美精品高潮呻吟av久久| 美女国产视频在线观看| 亚洲国产成人一精品久久久| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 日韩中字成人| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 五月天丁香电影| 欧美日韩一区二区视频在线观看视频在线| 国产成人免费无遮挡视频| 亚洲无线观看免费| 久久久精品94久久精品| 美女中出高潮动态图| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 亚洲av成人精品一区久久| 久久久久久久久大av| 黑人巨大精品欧美一区二区蜜桃 | 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 天堂中文最新版在线下载| 春色校园在线视频观看| 国产精品一区二区三区四区免费观看| 久久午夜综合久久蜜桃| 男女无遮挡免费网站观看| 日日撸夜夜添| 九九爱精品视频在线观看| 少妇人妻 视频| 亚洲少妇的诱惑av| 亚洲国产av新网站| 国产在线一区二区三区精| 精品久久久久久电影网| 成年av动漫网址| 草草在线视频免费看| 亚洲精品一区蜜桃| 久久久久久久久大av| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 草草在线视频免费看| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看| 国产色爽女视频免费观看| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 精品视频人人做人人爽| 国产成人精品婷婷| 久久婷婷青草| 多毛熟女@视频| 久久毛片免费看一区二区三区| 有码 亚洲区| 国产又色又爽无遮挡免| 9色porny在线观看| 十八禁网站网址无遮挡| 啦啦啦中文免费视频观看日本| 成年人免费黄色播放视频| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| av卡一久久| 插逼视频在线观看| 99久久精品国产国产毛片| 欧美三级亚洲精品| 亚洲国产精品成人久久小说| 日韩av不卡免费在线播放| 亚洲精品第二区| 18+在线观看网站| 亚洲av电影在线观看一区二区三区| 久久久久久久久久成人| 成人无遮挡网站| 交换朋友夫妻互换小说| 欧美丝袜亚洲另类| 国产一区二区在线观看av| 男人添女人高潮全过程视频| 黄片播放在线免费| 国产成人精品福利久久| 亚洲综合精品二区|