• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-resolution simulation for rotorcraft aerodynamics in hovering and vertical descending flight using a hybrid method

    2018-05-17 10:07:02LiangquanWANGGuohuaXUYongjieSHI
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Liangquan WANG,Guohua XU,Yongjie SHI

    National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    1.Introduction

    Rotorcraft plays an important role in aviation for its unique ability in hovering and vertical descending flight.However,an accurate prediction of the rotor flow field remains a challenging problem.The three-dimensional rotor wake is unsteady and complex.In a hovering condition,highly energetic tip vortices shed from the blade tip region,swirl downward,and then undergo vortex breakdown in the far wake.In descending flight,tip vortices constantly persist near the rotor disk and interact with the blades,which may cause a high level of fuselage vibration and remarkable induced power consumption.Moreover,when a rotorcraft is operated over certain ranges of descent rate,convection of the wake would be inhibited.It results in a doughnut-shaped ring around the rotor disk,which is known as the Vortex Ring State1(VRS,see Fig.1).The VRS is regarded as the roughest flight regime of a rotorcraft.According to statistical data,2at least 32 helicopter accidents were attributed to this dangerous regime between 1982 and 1997.

    Over the past few decades,studies about the unsteady characteristics of rotor wake in hovering and descending flight have been focused on experiments3–11and qualitative analysis.12–15Meanwhile,relatively sparse numerical simulations have been paralleled.The aerodynamics near the blade surface,like compressible and viscous effects,are predicted well by conventional Eulerian-based CFD methods, but they are computationally expensive,and inherent numerical dissipation makes the rotor wake diffuse too early.16To date,conventional CFD methods are insufficient in far wake capturing of the rotor.

    Lagrangian-based models can address the problem of nonphysical wake diffusion,and they are more computationally efficient than CFD.In recent years,coupled Eulerian/Lagrangian simulation methods have shown promise in rotor wake simulations and received much attention.17–20However,simple Lagrangian models(e.g.,prescribed wake models21and free wake models22)rely heavily on empirical parameters such as vortex core size and decay factor.Furthermore,they cannot provide detailed information of the wake structure.Due to the progress in wake modeling techniques,more advanced Lagrangian models have been developed.Those models are referred to as Vorticity Transport Models(VTMs).23–25They can explicitly conserve wake vorticity without any artificial dissipation and cancel the restriction of empirical parameters.

    The main work of the present study is to couple a novel Lagrangian-based VTM model with an Eulerian-based CFD solver.The hybrid solver proposed in this paper combines the merits of CFD and the VTM.A CFD module is used to resolve the compressible blade near body aerodynamics and a VTM module is used to predict the complex wake convection.Details of the CFD/VTM hybrid solver are described in Section 2.Numerical simulations of rotorcraft in hovering and vertical descending flight are performed in Section 3.Results show good predictions of both the blade near body aerodynamics and the wake structure in hover.Induced in flow and time history of rotor thrust in descending flight are also investigated.Main conclusions are summarized in Section 4.

    2.CFD/VTM model description

    The computational zone is decomposed into two domains(Fig.2):the blade body- fitted Eulerian domain,which covers a relatively small region near the blade and follows a C-O topology grid(Fig.3),and the background Lagrangian domain,which employs a set of particles to model the wake vorticity.These two domains are solved by CFD and a VTM,respectively.Since the VTM only solves incompressible flow,the C-O grid of the Eulerian domain extends far enough(over two chord lengths)to ensure that outside the grid,air compressibility could be neglected.

    2.1.CFD solution of blade body- fitted Eulerian domain

    The simulation of the rotor blade near flow field follows the Eulerian description,which relates to the grid-based solutions of compressible Reynold Averaged Navier-Stokes(RANS)equations.RANS equations are solved in terms of the conservation forms of mass,momentum,and energy,and can be written in tensor form as26

    where ρ,uj,p, τij,E,and qjare the fluid density,the velocity,the pressure,the stress tensor,the total energy per unit mass,and the heat flux,respectively.

    In general,the blade rotates at a constant speed,so Eqs.(1)–(3)can be expressed as

    where Q is the conservative variable vector,Fc,Gc,and Hcare the convective fluxes,and Fv,Gv,and Hvare the viscous fluxes as follows:

    where u,v,w are the velocity components.

    A structured,cell-centered finite volume scheme is employed for CFD calculation and to model the formation of blade tip vortices.The spatial discretization is based on Roe’s flux-difference splitting scheme.27Convective fluxes are evaluated at the face of the control volume by solution reconstruction from the cell center,e.g.,

    where ARoeis the Roe matrix,and the Spalart-Allmaras oneequation model is chosen for turbulence modeling.

    The dual time stepping technique is applied for unsteady simulation,and the implicit Lower-Upper Symmetric Gauss-Seidel(LU-SGS)scheme is adopted for pseudo time discretization.This discretization scheme is defined by

    where D is the diagonal matrix,L the strictly lower triangular matrix,U the strictly upper triangular matrix,and R the residual.The implementation of the LU-SGS scheme consists of the following two steps:

    Forward sweep:

    Backward sweep:

    Finally,the conservative variables are updated by

    2.2.VTM solution of background Lagrangian domain

    There are two categories of VTMs:one is grid-based and uses an adaptive Cartesian grid to model the rotor wake,23,24while in the other category,wake vorticity is represented by a set of viscous vortex particles.25In the current study,the grid-free Lagrangian description that utilizes vortex particles is adopted.The governing vorticity dynamics equation is written as follows:

    The above equation is derived from incompressible Navier-Stokes equations and is written in a vorticity-velocity form.The first term on the right-hand side ω ·?u is the so-called vortex stretching term,which denotes the dilation and rotation effects of the vortex filaments within the flow.The second term ν?2ω is the viscous diffusion term,which expresses the effects of air viscosity.In Eq.(10),ω=?×u is the vorticity,denotes the material derivative,ν is the air kinematic viscosity coefficient,and the source S is the vorticity shed and trailed from each rotor blade segment as

    where Γbis the blade bound circulation vector,and ubis the local velocity of the blade segment relative to the air.

    Assume that at time t and position x,the vorticity of the ith particle is defined by

    The velocity vector is computed by the application of the Poisson equation as

    Substituting Green’s function G(x′)into Eq.(14)yields the generalized Biot-Savart equation28as

    Green’s function is given by

    where the error function is written as

    The stretching term can be computed by substituting Eqs.(12)and(15)into ω ·?u,which gives rise to

    where subscript ‘st” denotes the vortex ‘stretching term”.Eq.(18)represents a dense algebraic system.If the Lagrangian domain consists of N vorticity-containing particles,25the task of calculating all the pairwise interactions by invoking Eq.(15)on each particle is equivalent to the classical N-body problem.The CPU requirements will be of the order O(N2)if no accelerating technique is utilized.Such a direct summation approach would quickly become prohibitive as the number of particles N increases.To address this problem,the Fast Multipole Method(FMM)29based on kernel evaluations is implemented in the current study.It does not require multipole expansions and works well for highly non-uniform particle distributions.Furthermore,it reduces the complexity from O(N2)to asymptotic O(N),and remarkably accelerates the computation.

    The Particle Strength Exchange(PSE)scheme30is selected to solve the viscous diffusion term.One significant advantage of PSE lies in that this scheme provides enough flexibility in dealing with viscous effects and does not require any viscous splitting.In addition,vorticity conservation is naturally satisfied when two particles ‘exchange” their strengths.This conservation property is crucial to simulation accuracy because a non-physical variation of vorticity can seriously influence the predicted wake structure.The rationale of the PSE scheme is to solve an approximate integral equation for the Laplacian operator,which can be expressed as follows:

    where ζεis the PSE kernel,which is identical to the Gaussian distribution in Eq.(13).The approximate manipulation of the Laplacian operator avoids any numerical differentiation,and the integral operator can be discretized by midpoint quadrature.

    In the present study,a predictor-corrector time marching scheme is used to determine the new position xn+1and vorticity of the particles ωn+1,and can be written as follows:

    (1)Predictor step

    (2)Corrector step

    where subscript ‘vdt”denotes the ‘viscous diffusion term”.

    2.3.Flowchart and coupling methodology

    The flowchart of CFD/VTM is shown in Fig.4.After flow field initialization,the iterative procedure is repeated until converged results are obtained.An interpolation algorithm allowing data communication on the interface between CFD and the VTM is implemented.The key idea of this data exchange process is as follows:the VTM module provides outer velocity boundary conditions vinfor the CFD module,and receives the updated vortex sources from the CFD solution.The time marching scheme is given in Fig.5.The Lagrangian description enables the VTM to adopt a larger time-step size than that of CFD(i.e.,ΔtVTM> ΔtCFD).When conducting unsteady simulations,CFD corresponds to an azimuthal time step of 1°and the VTM has a 4°time step.

    2.3.1.Transmission of vortex sources from CFD to VTM

    In the current study,distributed airloads along the blade span are treated as lifting line vorticity source generators.This technique is referred to as ‘integrated vorticity source method”by He and Zhao.25Integrating the blade surface pressure calculated from CFD,we obtain the blade local lift vector Lb.Then the blade bound circulation can be determined by the Kutta-Joukowski theorem as

    New viscous vortex particles are released into the flow field to account for blade bound circulation variations at each time step,and the vorticity strength of the new vortex particles is computed by Eq.(11).

    Table 1 Caradonna-Tung rotor parameters.

    2.3.2.Transmission of boundary conditions from VTM to CFD

    The VTM specifies flow variables on the outer boundary of the CFD gird.31The velocity components u,v,w of the wake can be directly sent to CFD.One the other hand,since the VTM resolution is based on incompressible Navier-Stokes equations,fluid density and pressure cannot be specified like the velocity components.Considering that the flow is approximately is entropic for low-Mach number flow simulation,the density and pressure of the fluid are calculated through the following is entropic equations:

    where γ is the ratio of specific heat coefficient,and Ma is the Mach number.

    3.Numerical results and discussions

    3.1.Code validation and wake kinematics

    In the following subsections,the proposed CFD/VTM solver is validated against hover cases of the Caradonna-Tung model rotor,an OH-13E full-scale helicopter rotor,and a scaled V-22 tiltrotor.Simulation results are compared with available test data to show the capability of the presented hybrid solver.

    3.1.1.Caradonna-Tung model rotor

    The main parameters of this two-bladed model rotor are listed in Table 1.This rotor has no blade twist and the chord length c is constant.The rotor is operated at a collective pitch setting θ0of 8°with two different blade tip Mach numbers Matip,0.612 and 0.877.The near-body C-O type grid for the Eulerian domain consists of 225×43×74 grid points,where 225 points are used in the wrap around direction,43 points in the normal direction,and 74 points in the spanwise direction.The spacing between the outer boundary of the C-O grid and the blade surface is 3c.The number of vortex particles in the Lagrangian domain is about 52000.

    In order to compare with the CFD/VTM coupling method,a full CFD simulation employing an overset grid system is also performed.Half of the overset grid system is shown in Fig.6.Blade chordwise pressure distributions at four representative spanwise locations(see Fig.7,r/R=0.68,0.80,0.89,and 0.96)are illustrated in Fig.8.The dots are from Caradonna and Tung’s experiment.32It can be seen that the results of both CFD/VTM(solid lines)and full CFD(dashed lines)methods are in good agreement with the experimental data,only with minor discrepancies at the blade leading edge.A Root Mean Square(RMS)analysis is carried out to evaluate the accuracy of these two methods,and the RMS is computed by

    where ΔCpis the difference between the predicted data and the measured data in the experiment at each pressure transducer position.Results of the RMS analysis are shown in Fig.9.It is demonstrated that the predicted Cpdistributions of CFD/VTM are slightly better than those of the full CFD method.

    Fig.10 presents the wake structure predicted by CFD/VTM.As shown in the 3D wake visualization(Fig.10(a)),concentrated tip vortices are preserved for a relatively long time.Both the near wake and the far wake could be clearly identified.In Fig.10(b)and(c),the rotor wake immediately contracts below the rotor disk plane,and demonstrates an ordered helicoidal structure in the first few revolutions.As the wake convects downstream further,the tip vortex filaments begin to bundle with each other.This mutual interaction phenomenon,or the so-called ‘vortex paring instability”,causes a breakdown of the vortex structure in the far wake.In contrast,only near-wake characteristics could be observed in the wake structure simulated by the full CFD method because of the well-known numerical dissipation (see Fig.11).The Lagrangian-based VTM model demonstrates its advantage on vortex tracking in the far wake.

    Fig.12 shows the tip vortex evolution in the blade near body domain at three selected planes downstream from the trailing edge(spacing=0.2c,0.5c,1.0c).On Slice 1,both the CFD/VTM and full CFD methods capture the tip vortex very well,while on Slices 2 and 3,CFD/VTM preserves the vorticity better than the full CFD method.Since the VTM captures the far wake structure better than CFD,it provides a more accurate feedback to the blade near body domain,and hence results in less diffused tip vortices.

    The simulation time of these two methods are documented in Table 2.Computations are carried out on Intel eight-core processors with a 3.4 GHz CPU speed.CFD/VTM and full CFD simulations are performed with the same blade bodyfitted C-O grid.The number of background grid nodes is about 5.14 million in full CFD simulation.As shown,it requires 28.7 h while CFD/VTM only needs 5.6 h.A noticeable reduction of the computation time is achieved by the CFD/VTM solver,which is mainly because that the wake structure is simulated by particles.A dense background gird33is no longer neededin this hybrid solver.In addition,a larger step size that the VTM allows is also conducive to improve the computational efficiency.

    Table 2 Simulation time of the CFD/VTM coupling method and the full CFD method.

    3.1.2.OH-13E helicopter rotor

    To further validate the CFD/VTM hybrid solver,the downwash of a full-scale OH-13E rotor is calculated.The main characteristics of this rotor are given in Table 3.The rotor is operated at a tip Mach number of 0.403 with two different collective pitches,6.25°and 10.75°.Fig.13 shows the radial distributions of the down wash at four sampling stations below the rotor disk(Z=-0.1R,-0.3R,-0.5R,-0.7R),and videnotes the velocity of the down wash.As shown,the calculated data agrees well with the measured data.34The wake contracted near the radial position at r/R=0.8,and the downwash distributions are characterized by sharp velocity peaks at this location.Comparisons between the axial and radial components of tip vortex positions are given in Fig.14.As shown,correlations between the predicted and measured data are favorable.

    Table 3 OH-13E rotor parameters.

    3.1.3.Scaled V22 ‘Osprey”tiltrotor

    Table 4 0.658-scale V22 rotor parameters.

    Anothervalidation caseisa 0.658-scaleisolated V-22‘Osprey” tiltrotor.The rotor parameters are tabulated in Table 4.This scaled tiltrotor has a very high blade twist angle of-47.5°and with a precone angle of 2.5°.More information about this rotor con figuration can be seen in Ref.35Fig.15 compares the figure of merit when the tiltrotor is operated at various hover conditions,where CTand σ represent the rotor thrust and solidity,respectively.It can be clearly seen that CFD/VTM-predicted results match well with the test data.36A typical wake structure for this three-bladed model tiltrotor is shown in Fig.16.

    3.2.Descending flight simulation

    From Fig.17,it is seen that the non-dimensional thrust time histories of the two rotor con figurations are similar.However,the tiltrotor con figuration is less susceptible to the VRS with a higher vi0.At a low descent rate(μz< 0.4),the rotor thrust is not significantly in fluenced,and it is slightly higher than that in hover.As the descent rate increases,the rotor thrust starts to fluctuate,but a nearly converged solution can still be obtained(an incipient VRS).When the descent rate is higher than 1.0,a remarkable thrust loss occurs,which indicates the emergence of a deep VRS.

    Fig.18 shows the normalized mean in flow of the rotor disk.As shown,the classical momentum theory is no more valid in descending flight.Predicted data matches well with the flight test of Taghizad et al.,9the wind tunnel test of Betzina,5and the empirical relation given by Castles and Gray.12Rotorinduced flow increases as the descent rate increases,and it grows faster than the opposing descent rate.Fig.19 shows the difference between hover and the VRS at a specific blade section.Compared with the hovering state,the high induced flow in the VRS dramatically reduces the effective Angle of Attack(AOA),and causes sudden loss of the rotor thrust.

    Fig.20 shows the snapshots of particle distributions at different descent rates around the rotor disk.As shown,the vortex particles tend to move toward the disk plane,and hence the convection of vortices is inhibited.The accumulated vortices interact with rotor blades,which leads to a fluctuation of the rotor thrust.Furthermore,they can dramatically increase the induced velocity(as shown in Fig.18).At a descent rate of μz=1.2,most particles are transported above the rotor disk plane.Fig.21 shows the flow regime at this fully developed VRS.The wake structure is characterized by a toroidal‘vortex ring”.This‘vortex ring” lingers within the vicinity of the rotor disk(Fig.21(a)),and induces a large-scale recirculating flow(Fig.21(b)),which corresponds to the schematic of air flow shown in Fig.1.

    4.Conclusions

    An Eulerian-Lagrangian hybrid solver that combines a vorticity transport model with a CFD model has been developed in this paper.From numerical cases of hovering and vertical descending flight,the following conclusions can be drawn:

    (1)In the hovering state,the blade surface pressure distribution,tip vortex position,induced velocity,and figure of merit predicted by the presented hybrid solver are in close agreement with experimental data,which indicates that it provides a high- fidelity analytical tool for rotorcraft application.

    (2)The CFD/VTM coupling method demonstrates its exclusive capability in far wake modeling and vortex tracking.Rotor wake instabilities(i.e.,bundling of vortex filaments and wake breakdown in the far field)in hover that are hard to be captured by conventional CFD methods,are successfully simulated in the current study.In addition,since the far wake is modeled by viscous vortex particles,the computational cost of the hybrid solver is not expensive.The present coupling method will be added to the Chinese Laboratory of Rotorcraft Navier-Stokes(CLORNS)code in the near future.37

    (3)In respect of vertical descending flight with a fixed collective pitch,the rotor thrust time history shows that the thrust starts to fluctuate at a moderate descent rate.A sudden loss of the thrust manifests the emergence of a deep VRS.Non-dimensional thrust behaviors of different rotor con figurations are similar.

    (4)When the descent rate increases,the wake vorticity tends to move upward to the rotor disk plane.In contrast with the helicoidal wake structure in hover,the deep VRS is characterized by a toroidal vortex ring.This ring induces a largescale recirculating flow around the rotor disk,which dramatically reduces the blade effective angle of attack,and eventually causes the sudden loss of the rotor thrust.

    Acknowledgements

    This work was co-supported by the Funding of Jiangsu Innovation Program for Graduate Education of China(No.KYLX16_0389)and the Fundamental Research Funds for the Central Universities of China.

    References

    1.Brand A,Dreier M,Kisor R,Wood T.The nature of vortex ring state.J Am Helicopter Soc 2011;56(2):1–14.

    2.Varnes DJ,Duren RW,Wood ER.An onboard warning system to prevent hazardous ‘vortex ring state” encounters.Proceedings of the 26th European rotorcraft forum;2000 Sep 26–29;The Hague,The Netherlands.2000.

    3.Landgrebe AJ.The wake geometry of a hovering helicopter rotor and its in fluence on rotor performance.J Am Helicopter Soc 1972;17(4):3–15.

    4.Brotherhood P.Flow through a helicopter rotor in vertical descent.London:Her Majesty’s Stationery Office;1949.Report No.:N2735.

    5.Betzina MD.Tiltrotor descent aerodynamics:a small scale experimental investigation of vortex ring state.Proceedings of the 57th American Helicopter Society annual forum;2001 May 9–11;Washington,D.C.,USA.Alexandria:The AHS International,Inc.;2001.

    6.Washizu K,Azuma A,Koo J,Oka T.Experiments on a model helicopter rotor operating in the vortex ring state.J Aircr 1966;3(3):225–30.

    7.Xin H,Gao ZH.A prediction of the vortex-ring state boundary based on model tests.Trans Nanjing Univ Aeronaut Astronaut 1994;11(2):159–64.

    8.Green RB,Gillies EA,Brown RE.The flow field around a rotor in axial descent.J Fluid Mech 2005;534:237–61.

    9.Taghizad A,Jimenez J,Binet L,HeuzéD.Experimental and theoretical investigations to develop a model of rotor aerodynamics adapted to steep descents.Proceedings of the 58th American Helicopter Society annual forum;2002 Jun 11–13;Montréal,Canada.Alexandria:The AHS International,Inc.;2002.

    10.Kisor R,Blyth R,Brand A,MacDonald T.V–22 low-speed/high rate of descent(HROD)test results.Proceedings of the 60th American Helicopter Society annual forum;2004 Jun 7-10;Baltimore,USA.Alexandria:The AHS International,Inc.;2004.

    11.Brand A,Kisor R,Blyth R,Mason D,Host D.V–22 high rate of descent(HROD)test procedures and long record analysis.Proceedings of the 60th American Helicopter Society annual forum;2004 Jun 7–10;Baltimore,USA.Alexandria:The AHS International,Inc.;2004.

    12.Castles W,Gray R.Empirical relation between induced velocity,thrust,and rate of descent of a helicopter rotor as determined by wind tunnel test on four model rotors.Washington,D.C.:NACA;1951.Report No.:NACA TN 2474.

    13.Wang SC.Analytical approach to the induced flow of a helicopter rotor in vertical descent.J Am Helicopter Soc 1990;35(1):92–8.

    14.Basset PM,Prasad JVR.Study of the vortex ring state using bifurcation theory.Proceedings of the 58th American Helicopter Society annual forum;2002 Jun 11–13;Montréal,Canada.Alexandria:The AHS International,Inc.;2002.

    15.Basset P,Chen C,Prasad JVR,Kolb S.Prediction of vortex ring state boundary of a helicopter in descending flight by simulation.J Am Helicopter Soc 2008;53(2):139–51.

    16.Hoinville E,Renaud T.CFD simulation of helicopter rotor in the vortex ring state regime.Proceedings of the 63th American Helicopter Society annual forum;2007 May 1–3;Virginia Beach,US.Alexandria:The AHS International,Inc.;2007.

    17.Cao YH,Yu ZQ,Su Y,Kang K.Combined free wake/CFD methodology for prediction transonic rotor flow in hover.Chin J Aeronaut 2002;15(2):65–71.

    18.Shi YJ,Zhao QJ,Fan F,Xu GH.A new single-blade based hybrid CFD method for hovering and forward- flight rotor computation.Chin J Aeronaut 2011;24(2):127–35.

    19.Tan JF,Wang HW.Panel/full-span free-wake coupled method for unsteady aerodynamics of helicopter rotor blade.Chin J Aeronaut 2013;26(3):535–43.

    20.Stock M,Gharakhani A,Stone CP.Modeling rotor wakes with a hybrid OVERFLOW-vortex method on a GPU cluster.Proceedings of the 63th AIAA applied aerodynamics conference;2010 Jun 28–Jul 1.Chicago,USA.Reston:AIAA;2010.

    21.Sugiura M,Tanabe Y,Sugawara H.Development of a hybrid method of CFD and prescribed wake model for helicopter BVI noise prediction.Proceedings of the 69th American Helicopter Society annual forum;2013 May 21–23;Phoenix,USA.Alexandria:The AHS International,Inc.;2013.

    22.Leishman JG,Bhagwat MJ,Ananthan S.Free-vortex wake predictions of the vortex ring state for single-rotor and multirotor con figurations.Proceedings of the 58th American Helicopter Society annual forum;2002 Jun 11–13;Montréal,Canada.Alexandria:The AHS International,Inc.;2002.

    23.Brown RE,Line AJ.efficient high-resolution wake modeling using the vorticity transport equation.AIAA J 2005;43(7):1434–43.

    24.White house GR.Investigation of hybrid grid–based computational fluid dynamics methods for rotorcraft flow analysis.J Am Helicopter Soc 2011;56(3):1–10.

    25.He CJ,Zhao JG.Modeling rotor wake dynamics with viscous vortex particle method.AIAA J 2009;47(4):902–15.

    26.Conlisk AT.Modern helicopter rotor aerodynamics.Prog Aerosp Sci 2001;37(5):419–76.

    27.Roe PL.Approximate Riemann solvers,parameter vectors,and difference schemes.J Comput Phys 1981;43(2):357–72.

    28.Yokota R,Narumi T,Sakamaki R,Yasuoka K.Fast multipole methods on a cluster of GPUs for the meshless simulation of turbulence.Comput Phys Commun 2009;180(11):2066–78.

    29.Ying LX,Biros G,Zorin D.A kernel-independent adaptive fast multipole algorithm in two and three dimensions.J Comput Phys 2004;196(2):591–626.

    30.Eldredge JD,Leonard A,Colonius T.A general deterministic treatment of derivatives in particle methods.J Comput Phys 2002;180(2):686–709.

    31.Shi YJ,Xu Y,Xu GH,Wei P.A coupling VWM/CFD/CSD method for rotor airload prediction.Chin J Aeronaut 2017;30(1):204–15.

    32.Caradonna FX,Tung C.Experimental and analytical studies of a model helicopter rotor in hover.Vertica 1980;5(2):149–61.

    33.Ye L,Zhang Y,Yang S,Zhu XL,Dong J.Numerical simulation of aerodynamic interaction for a tilt rotor aircraft in helicopter mode.Chin J Aeronaut 2016;29(4):843–54.

    34.Boat wright DW.Measurements of velocity components in the wake of a full-scale helicopter rotor in hover.Virginia:U.S.Army Air Mobility Research and Development Laboratory;1972.Report No.:TR 72–33.

    35.Acree CW.JVX proprotor performance calculations and comparisons with hover and airplane-mode test data.Washington,D.C.:NASA;2009.Report No.:NASA/TM–2009-215380.

    36.Felker FF,Signor DB,Young LA,Betzina MD.Performance and loads data from a hover test of a 0.658-scale V-22 rotor and wing.Washington,D.C.:NASA;1987.Report No.:NASA-TM-89419.

    37.Zhao QJ,Zhao GQ,Wang B,Wang Q,Shi YJ,Xu GH.Robust Navier-Stokes method for predicting unsteady flow field and aerodynamic characteristics of helicopter rotor.Chin J of Aeronaut 2018;31(2):214–24.

    成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 欧美精品亚洲一区二区| 搡老熟女国产l中国老女人| 99香蕉大伊视频| 久久精品成人免费网站| 久久亚洲真实| 亚洲国产精品成人综合色| 亚洲精品粉嫩美女一区| 国产精品香港三级国产av潘金莲| 欧美+亚洲+日韩+国产| 一级a爱视频在线免费观看| 日日爽夜夜爽网站| 两个人看的免费小视频| 国产成人啪精品午夜网站| 法律面前人人平等表现在哪些方面| 国产97色在线日韩免费| 黄色片一级片一级黄色片| 十八禁人妻一区二区| a级毛片在线看网站| 亚洲一码二码三码区别大吗| 国产伦人伦偷精品视频| 成人免费观看视频高清| 黄色视频不卡| 亚洲中文av在线| 久久久久久国产a免费观看| 国产精品免费一区二区三区在线| 一进一出好大好爽视频| 久热这里只有精品99| 男女下面进入的视频免费午夜 | 日本三级黄在线观看| 亚洲第一欧美日韩一区二区三区| 美女扒开内裤让男人捅视频| 久久久精品国产亚洲av高清涩受| 在线观看日韩欧美| tocl精华| 国产色视频综合| 国产熟女午夜一区二区三区| 级片在线观看| 首页视频小说图片口味搜索| 亚洲人成伊人成综合网2020| 狂野欧美激情性xxxx| 中文字幕色久视频| 国产精品 欧美亚洲| 我的亚洲天堂| 在线国产一区二区在线| 咕卡用的链子| 超碰成人久久| 精品福利观看| 一级黄色大片毛片| 午夜两性在线视频| 激情视频va一区二区三区| 丝袜在线中文字幕| 欧美日韩黄片免| 午夜福利高清视频| av天堂在线播放| 啦啦啦免费观看视频1| 亚洲国产毛片av蜜桃av| 国产三级在线视频| 美女免费视频网站| av欧美777| 人人妻人人爽人人添夜夜欢视频| 亚洲久久久国产精品| 久久久水蜜桃国产精品网| 午夜福利免费观看在线| 天天添夜夜摸| 满18在线观看网站| 国产亚洲av嫩草精品影院| 两性夫妻黄色片| 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| 国产精品永久免费网站| 两个人看的免费小视频| 国产1区2区3区精品| 亚洲一区二区三区不卡视频| 黄色成人免费大全| 国产一区二区三区视频了| 嫩草影视91久久| 精品久久久久久,| 男女下面进入的视频免费午夜 | 成人特级黄色片久久久久久久| 精品国产亚洲在线| 亚洲 国产 在线| 悠悠久久av| 在线观看66精品国产| 日本免费一区二区三区高清不卡 | 99久久精品国产亚洲精品| 亚洲avbb在线观看| 多毛熟女@视频| 国产精品电影一区二区三区| 真人做人爱边吃奶动态| 亚洲av片天天在线观看| 中文字幕精品免费在线观看视频| 欧美精品亚洲一区二区| 国产一级毛片七仙女欲春2 | 精品一区二区三区视频在线观看免费| 999久久久国产精品视频| 国产欧美日韩一区二区三区在线| 久久婷婷成人综合色麻豆| 久久欧美精品欧美久久欧美| 国产真人三级小视频在线观看| 男女下面进入的视频免费午夜 | 又黄又爽又免费观看的视频| 国产精品亚洲一级av第二区| 国产精品久久久久久亚洲av鲁大| 啦啦啦免费观看视频1| 国产精品久久久av美女十八| 少妇被粗大的猛进出69影院| 欧美激情 高清一区二区三区| 久久香蕉国产精品| 亚洲aⅴ乱码一区二区在线播放 | 精品电影一区二区在线| 亚洲欧美日韩无卡精品| 亚洲片人在线观看| 一二三四社区在线视频社区8| 嫩草影院精品99| 亚洲国产精品成人综合色| 91国产中文字幕| av片东京热男人的天堂| 国产成人啪精品午夜网站| 九色国产91popny在线| 在线十欧美十亚洲十日本专区| 不卡一级毛片| 国产真人三级小视频在线观看| АⅤ资源中文在线天堂| 搡老妇女老女人老熟妇| 桃红色精品国产亚洲av| 美女国产高潮福利片在线看| 亚洲av五月六月丁香网| 国产精品影院久久| 99精品欧美一区二区三区四区| 日日干狠狠操夜夜爽| x7x7x7水蜜桃| 精品一区二区三区av网在线观看| 一边摸一边抽搐一进一出视频| 成人av一区二区三区在线看| 亚洲国产毛片av蜜桃av| 国产一区二区三区综合在线观看| 99国产精品一区二区蜜桃av| 99在线视频只有这里精品首页| 亚洲欧洲精品一区二区精品久久久| 男男h啪啪无遮挡| 精品国产超薄肉色丝袜足j| 人人妻人人澡欧美一区二区 | 首页视频小说图片口味搜索| 高潮久久久久久久久久久不卡| 好看av亚洲va欧美ⅴa在| 国产一区二区三区视频了| 国产精品久久久久久精品电影 | 午夜亚洲福利在线播放| 一区在线观看完整版| 欧洲精品卡2卡3卡4卡5卡区| 在线国产一区二区在线| 黄网站色视频无遮挡免费观看| 日本欧美视频一区| 亚洲中文av在线| 一本久久中文字幕| 熟女少妇亚洲综合色aaa.| 国产成+人综合+亚洲专区| 国产高清视频在线播放一区| 久久精品aⅴ一区二区三区四区| 51午夜福利影视在线观看| 日本一区二区免费在线视频| 国产精品 欧美亚洲| 不卡av一区二区三区| 国产高清视频在线播放一区| 免费av毛片视频| 日本a在线网址| 三级毛片av免费| 最新美女视频免费是黄的| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 久久香蕉国产精品| 午夜精品在线福利| 午夜成年电影在线免费观看| 757午夜福利合集在线观看| 亚洲国产精品999在线| 国产欧美日韩精品亚洲av| 亚洲aⅴ乱码一区二区在线播放 | av在线播放免费不卡| 国产欧美日韩精品亚洲av| 最近最新免费中文字幕在线| 在线av久久热| 我的亚洲天堂| 岛国在线观看网站| 涩涩av久久男人的天堂| 亚洲精品美女久久av网站| 亚洲精品久久国产高清桃花| 久久久久久亚洲精品国产蜜桃av| 丁香六月欧美| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲| 国产亚洲精品久久久久5区| 美女 人体艺术 gogo| 久久人妻av系列| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 叶爱在线成人免费视频播放| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 国产精品1区2区在线观看.| 在线视频色国产色| 一个人免费在线观看的高清视频| 91国产中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频| 国产三级在线视频| 精品人妻在线不人妻| 性色av乱码一区二区三区2| 99久久国产精品久久久| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 日本在线视频免费播放| 一边摸一边抽搐一进一出视频| 巨乳人妻的诱惑在线观看| 免费女性裸体啪啪无遮挡网站| 久久草成人影院| 国产亚洲精品一区二区www| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 久久九九热精品免费| 日本三级黄在线观看| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品秋霞免费鲁丝片| 九色国产91popny在线| 九色亚洲精品在线播放| 国产不卡一卡二| 18禁美女被吸乳视频| 最新在线观看一区二区三区| 成人永久免费在线观看视频| 日韩欧美国产一区二区入口| 大陆偷拍与自拍| 桃色一区二区三区在线观看| 真人做人爱边吃奶动态| 久久婷婷成人综合色麻豆| 亚洲成av片中文字幕在线观看| 国产成人影院久久av| 欧美大码av| 亚洲成人免费电影在线观看| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 精品福利观看| 国产97色在线日韩免费| 国产成人免费无遮挡视频| 波多野结衣高清无吗| 久久中文字幕一级| 国产单亲对白刺激| www日本在线高清视频| 国产不卡一卡二| 男女下面插进去视频免费观看| 欧美成人免费av一区二区三区| 又黄又粗又硬又大视频| 国产在线观看jvid| 男女下面插进去视频免费观看| svipshipincom国产片| 精品不卡国产一区二区三区| 国产一卡二卡三卡精品| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 精品国产一区二区三区四区第35| 男女下面插进去视频免费观看| 正在播放国产对白刺激| 亚洲精品国产区一区二| 国产精品一区二区三区四区久久 | 丝袜美腿诱惑在线| 最新在线观看一区二区三区| 无限看片的www在线观看| 亚洲美女黄片视频| 久久久久久大精品| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 亚洲国产精品999在线| 大型av网站在线播放| 法律面前人人平等表现在哪些方面| 岛国在线观看网站| av视频免费观看在线观看| 免费搜索国产男女视频| 国产片内射在线| 身体一侧抽搐| 久久久久久国产a免费观看| 97超级碰碰碰精品色视频在线观看| 欧美日本视频| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 欧美成人免费av一区二区三区| 久热爱精品视频在线9| 免费av毛片视频| 在线观看免费日韩欧美大片| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| 亚洲成a人片在线一区二区| 国产精品国产高清国产av| 亚洲片人在线观看| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频| 久久婷婷成人综合色麻豆| 欧美日韩中文字幕国产精品一区二区三区 | 动漫黄色视频在线观看| 亚洲成av片中文字幕在线观看| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 村上凉子中文字幕在线| 51午夜福利影视在线观看| svipshipincom国产片| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 国产一卡二卡三卡精品| 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清 | 可以在线观看的亚洲视频| www.熟女人妻精品国产| 变态另类成人亚洲欧美熟女 | 国产人伦9x9x在线观看| 国产精品综合久久久久久久免费 | 亚洲人成伊人成综合网2020| 亚洲一区中文字幕在线| 美女高潮喷水抽搐中文字幕| 免费在线观看亚洲国产| 成人国产综合亚洲| 国产精品,欧美在线| 操出白浆在线播放| 亚洲国产日韩欧美精品在线观看 | av电影中文网址| 他把我摸到了高潮在线观看| av在线天堂中文字幕| 欧美一级毛片孕妇| 国产精品亚洲一级av第二区| 亚洲男人天堂网一区| 国内精品久久久久久久电影| 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| x7x7x7水蜜桃| 亚洲色图av天堂| 91精品三级在线观看| 国产亚洲欧美98| 在线观看66精品国产| 久久久久久国产a免费观看| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| 午夜福利免费观看在线| 久久伊人香网站| 成人国产一区最新在线观看| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 999久久久国产精品视频| 国产一区二区三区在线臀色熟女| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕在线视频| 免费看美女性在线毛片视频| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 身体一侧抽搐| 免费女性裸体啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 国产男靠女视频免费网站| 欧美成人一区二区免费高清观看 | 麻豆久久精品国产亚洲av| 日韩欧美免费精品| 国产日韩一区二区三区精品不卡| 久久人人97超碰香蕉20202| 大型av网站在线播放| 99精品在免费线老司机午夜| 国产一区在线观看成人免费| 久久久国产成人免费| 欧美日韩瑟瑟在线播放| 美女高潮到喷水免费观看| 久久狼人影院| 欧美成人性av电影在线观看| 免费观看精品视频网站| 午夜影院日韩av| 午夜免费激情av| 一本大道久久a久久精品| 美女高潮喷水抽搐中文字幕| 在线av久久热| 成人特级黄色片久久久久久久| or卡值多少钱| 久久人妻av系列| 国产三级在线视频| 黄片大片在线免费观看| 国产成+人综合+亚洲专区| 老汉色av国产亚洲站长工具| 亚洲一区高清亚洲精品| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 免费观看精品视频网站| 精品一品国产午夜福利视频| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| av在线天堂中文字幕| 久久影院123| 国产亚洲精品第一综合不卡| 十八禁人妻一区二区| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| 91国产中文字幕| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 一级作爱视频免费观看| 曰老女人黄片| 90打野战视频偷拍视频| 黄片播放在线免费| 美女午夜性视频免费| 在线观看免费午夜福利视频| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女| 久久久久国内视频| 午夜福利视频1000在线观看 | 91av网站免费观看| 亚洲色图综合在线观看| av视频免费观看在线观看| 成人国语在线视频| 身体一侧抽搐| 最近最新免费中文字幕在线| 一本综合久久免费| АⅤ资源中文在线天堂| 在线播放国产精品三级| 久久欧美精品欧美久久欧美| 好男人在线观看高清免费视频 | 精品国产超薄肉色丝袜足j| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av | 丝袜人妻中文字幕| 欧美精品啪啪一区二区三区| 久久久国产精品麻豆| 国产精品一区二区免费欧美| 国产不卡一卡二| 两人在一起打扑克的视频| 在线观看www视频免费| 亚洲av熟女| 丝袜美足系列| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 国产精品影院久久| 麻豆国产av国片精品| av免费在线观看网站| 免费观看人在逋| 波多野结衣巨乳人妻| 久久中文看片网| 国产激情久久老熟女| 久久国产乱子伦精品免费另类| 国产成人av教育| 老司机靠b影院| 又大又爽又粗| 激情在线观看视频在线高清| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 在线观看一区二区三区| 国内精品久久久久久久电影| 老汉色∧v一级毛片| 久久精品91无色码中文字幕| 熟妇人妻久久中文字幕3abv| 国产成人精品在线电影| 黄片播放在线免费| 久热这里只有精品99| 99久久综合精品五月天人人| 婷婷精品国产亚洲av在线| 日韩有码中文字幕| 亚洲精品在线美女| 欧美在线一区亚洲| 丁香六月欧美| 国产成年人精品一区二区| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 久久久久国内视频| av免费在线观看网站| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 国产一区二区激情短视频| 国内精品久久久久精免费| 在线免费观看的www视频| 国产av一区在线观看免费| 精品国产一区二区三区四区第35| 十分钟在线观看高清视频www| 免费在线观看影片大全网站| 91国产中文字幕| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看 | 老司机靠b影院| 黄片大片在线免费观看| 在线观看66精品国产| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 搡老妇女老女人老熟妇| 久久精品亚洲精品国产色婷小说| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 国产精品久久久人人做人人爽| 校园春色视频在线观看| 免费少妇av软件| 99久久综合精品五月天人人| 久久人人精品亚洲av| 亚洲人成伊人成综合网2020| 97碰自拍视频| 日本一区二区免费在线视频| 亚洲全国av大片| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 一级作爱视频免费观看| 色哟哟哟哟哟哟| 男人操女人黄网站| 亚洲一区二区三区色噜噜| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 青草久久国产| 999久久久精品免费观看国产| 国产亚洲av嫩草精品影院| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 99国产精品一区二区三区| а√天堂www在线а√下载| 亚洲色图综合在线观看| 制服人妻中文乱码| avwww免费| 国产精品 欧美亚洲| 精品人妻在线不人妻| 国产av一区在线观看免费| 欧美午夜高清在线| svipshipincom国产片| 国产欧美日韩一区二区三| 国产人伦9x9x在线观看| 在线免费观看的www视频| 亚洲在线自拍视频| www.999成人在线观看| 成人欧美大片| 久久久国产精品麻豆| 亚洲国产日韩欧美精品在线观看 | 999久久久国产精品视频| 国产成人av教育| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站| 欧美av亚洲av综合av国产av| 国产单亲对白刺激| 一a级毛片在线观看| 亚洲国产精品久久男人天堂| 久久精品国产清高在天天线| 日本在线视频免费播放| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清 | 久久青草综合色| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 国产一区二区三区在线臀色熟女| 好看av亚洲va欧美ⅴa在| 中文字幕另类日韩欧美亚洲嫩草| 女性被躁到高潮视频| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 91国产中文字幕| 老熟妇仑乱视频hdxx| 免费在线观看亚洲国产| 久久人人精品亚洲av| 亚洲男人的天堂狠狠| 91麻豆精品激情在线观看国产| 一级毛片女人18水好多| 国产精品爽爽va在线观看网站 | 99在线视频只有这里精品首页| 国产免费男女视频| 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 一级黄色大片毛片| 久久人妻熟女aⅴ| 黄色a级毛片大全视频| 欧美在线黄色| 人人妻人人澡人人看| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 国产成+人综合+亚洲专区| 国产高清有码在线观看视频 | 女性生殖器流出的白浆| 国产亚洲精品综合一区在线观看 | 日本黄色视频三级网站网址| 久久久国产成人免费| 一级a爱视频在线免费观看| 嫁个100分男人电影在线观看| 亚洲一区二区三区色噜噜| 三级毛片av免费| 啦啦啦免费观看视频1| 高清在线国产一区| 99精品欧美一区二区三区四区| 国产1区2区3区精品| 叶爱在线成人免费视频播放| 久久久久国产精品人妻aⅴ院| 免费看十八禁软件| 亚洲精品国产区一区二| 人人妻人人澡人人看| 色在线成人网| 国产成人啪精品午夜网站| 国产私拍福利视频在线观看| 日日爽夜夜爽网站| 国产精品影院久久| 日本一区二区免费在线视频| 精品久久久久久,| 高清在线国产一区| 变态另类丝袜制服| 久久精品亚洲精品国产色婷小说| 69av精品久久久久久| 又紧又爽又黄一区二区| 久久香蕉激情| 美女大奶头视频|