• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme

    2018-05-17 10:06:36PeixunYUJunqingBAIHiYANGSongCHENKiPAN
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Peixun YU,Junqing BAI,Hi YANG,Song CHEN,Ki PAN

    aNorthwestern Polytechnical University,Xi’an 710072,China

    bAircraft Strength Research Institute of China,Laboratory of Aeronautical Acoustics and Dynamics,Xi’an 710065,China

    cHubei Space Aircraft Research Institute,Wuhan 430040,China

    1.Introduction

    In the past few decades,high order finite difference methods have been developed in ComputationalAeroAcoustics(CAA).Most of these methods evolve from the Dispersion-Relation-Preserving(DRP)scheme proposed by Tam and Webb,1or the compact finite difference scheme by Lele.2Though having gained great success in CAA,the high order finite difference methods cannot be applied to practical CAA multi-scale problems with complex geometry difficultly,since it requires that the flux across the grid interface has to be continuous.When facing aeroacoustics problems with complex geometries,multi-size structured grids are usually employed,which greatly improves the capability of application in some practical engineering problems such as aircraft high lift systems and landing gears.However,how to construct the interface flux efficiently and stably is still a hot issue.

    Aimed at multi-scale CAA problems,Tam and Kurbatskii3proposed low-dissipation&low-dispersion DRP scheme by optimizing the interpolation parameters with comparing multiple grid scales ratio.Besides,Tam improved the stencil DRP scheme and artificial selective damping terms which are used in the interface flux construction,in order to compute the flux accurately.

    WENO scheme was initially proposed by Liu and Osher4based on Essentially Non-Oscillatory(ENO)scheme.5The weights depend on the local smoothness of the data.Smoothness measurements cause stencils that span large flow field gradients to have relative small weights; any candidate stencil containing a shock receives a nearly zero weight.In completely smooth regions,weights revert to optimal values,where optimal value is defined by maximum order of accuracy or maximum bandwidth.In the following years,Jiang and Shu6,7cast WENO scheme in to finite difference form.This scheme,which is referred to as WENO-JS hereinafter,can be capable of resolving shocks with high resolution.However,WENO-JS is too dissipative for the detailed simulation of turbulent flow.Martin et al.8,9developed two new formulations of a symmetric WENO method for the direct numerical simulation of compressible turbulence.The schemes are designed to maximize order of accuracy and bandwidth,while minimizing dissipation.The formulations and the corresponding coefficients are introduced.Numerical solutions to canonical flow problems are used to determine the dissipation and bandwidth properties of the numerical schemes.In addition,the suitability and accuracy of the bandwidth-optimized schemes for direct numerical simulations of turbulent flows are assessed in decaying isotropic turbulence and supersonic turbulent boundary layers. Wu et al.10presenteda maximum order preserving optimized WENO scheme which is a weighted average of the maximum order scheme and an optimized scheme.Hou et al.11modified the weights of WENO scheme to be smoother,which can eliminate the fluctuation within the grid variation.Lin and Hu12presented two groups of WENO schemes based on the dissipation and dissipation,which are investigated for computational aeroacoustics.

    In this paper,the modified WENO scheme is deduced firstly.Then,we apply modified WENO scheme to establish the model of interface flux.On this basis,the accuracy of the model in multi-scale grid problems has been verified by several standard verification cases.The numerical simulation results with interface flux method are presented in Section 5,and the brief conclusions are given in Section 6.

    2.Optimized WENO scheme

    In the design of a traditional WENO scheme,the practice is to maximize the order of accuracy of the WENO scheme given the size of the difference stencil.However,high order schemes may not be the best for CAA problems.Aimed at short waves,the finite difference scheme needs to maintain its lowdissipation and low-dispersion property,as shown by Tam and Webb.To fix the idea,the initial value problem associated with the scalar wave equation is considered as follows:

    where x is coordinate,t is time,u is function of x and t,a is constant number.

    Given a uniform grid xi=iΔx with the same grid spacing Δx,the semi-discretized form of Eq.(1)is

    where i is integer number,aui+1/2and aui-1/2are numerical fluxes which depend on k(r+s+1=k,r≥0,s≥0;r and s are different integer numbers respectively)grid points including xiitself,i.e.,

    Here crjcould be obtained by achieving k-th order accuracy in Taylor series truncation expansion.Considering five-point stencil WENO-JS scheme,according to Ref.6,it would be divided to 3 candidate stencils{S1,S2,S3}.Each of candidate stencils has three nodes,as shown in Fig.1.The second order polynomial approximation uk(x)=akx2+bkx+ckcould be obtained by using the function value of u(x)in each candidate stencil,where k=1,2,3.

    In each candidate stencil,the formula for uk(x)could be obtained by Taylor series expansion at xjas follows:

    When x=Δx/2,Eq.(4)can be approximated by

    Then the numerical flux in five-point-stencil WENO scheme could be denoted with weights as

    where ω is weight coefficient.

    As for CAA problems,it is very important to simulate the short waves with a limited stencil scheme as much as possible.We may equate Eq.(6)and Eq.(1)to yield

    Table 1 Different free parameter ω0and λ.

    where

    Consider the Fourier transform of the left-hand and right-hand sides of Eq.(7).Then using a Taylor expansion,we can find

    When function u(x)is discontinuous,smoothness factor has to be defined to change the redistribution of weights,which could guarantee that the node value approximation is essentially non-oscillatory around the discontinuity.Due to the design method proposed by Jiang and Shu6,in this fivepoint-stencil WENO scheme,the smoothness factor βmcould be denoted as

    Then the non-linear weights are

    In order to avoid the denominator being zero,ε=10-6,m=0,1,2.

    By calculating the non-linear weighting parameters,the flux term of Eq.(6)could be denoted as

    For numerical stability,modification has been made to the flux term of WENO scheme by the Lax-Friedrichs flux-vector splitting method,and the flux term of Eq.(1)could be denoted as

    3.Modified WENO scheme verification

    In this section,the comparison of dispersion and dissipation between the modified WENO scheme and the DRP scheme has been conducted with 1D convection equation,in which multiple initial conditions and different weights have been taken into account.

    Consider 1D linear convection equation

    The initial condition is

    values,the dissipation of the scheme would be different.The scheme acts as central when β=0,and acts as upwind when β=1.According to the β definition in Ref.12,the definition of β within[s1,s2]has been modified as shown below:

    The grid scale has been set as Δx=0.004,with time step Δt=0.0001 and the number of iterations being 10000.The time marching method used is six-level four-order HALERK6 scheme.13,14Fig.4 shows the comparison of different spatial discretion schemes with analytical solution with grid scale as Δx=0.004.It is also shown in these two figures that:(A)the DRP scheme could induce serious oscillations.Though the oscillation could be attenuated by adding artificial dissipation,the oscillation near the discontinuity is still very severe.(B)All the WENO scheme solutions match the analytical solutions very well,with the accuracy getting better when spatial grid scale is smaller.(C)As for the same WENO scheme,the computational result varies very little while using different flux splitting methods.

    4.Interface flux reconstruction

    DRP spatial discretion scheme coupled with artificial dissipation is usually applied to the computation of flux at the interface.With the function test results in Part 3,when the magnitude of discontinuity at the interface is unknown,the amount of the artificial dissipation could not be determined with this method.The flux dissipation would be too much when the artificial dissipation is excessive,while it could result in oscillations when the dissipation is inadequate.In this paper,modi fied WENO scheme is applied at the interface,with hybrid Lax-Friedirchs flux-vector splitting method15,16used for flux splitting,and high order DRP scheme has been used inside the grid elements,as shown in Fig.5.F is flux term.The flux at grid node A of the interface of Block 1 could be discreetly solved.The grid node variable of Block 2 could be interpolated from the neighbor grid nodes.

    WENO schemes are applied at the interface of blocks,which well keep the numerical stability without damaging the overall computational accuracy.Besides,in order to further improve the computational stability,WENO_opt6 is applied at node C,while WENO_opt4 is applied at node B and WENO_opt1 at node A.

    5.Numerical simulation

    In order to verify the feasibility of the interface flux reconstruction in multi-block patch/non-patch interface,two study cases have been conducted.

    5.1.Gauss impulse propagation

    One Gauss impulse sound source has been set at the center of the computational domain,as shown in Fig.6,with the background Mach number as zero.At the initial time t=0,the initial value of the Gauss sound source is set as

    where u′and v′are component of fluctuation velocity,ρ′is fluctuation density,p′is fluctuation pressure.

    In order to avoid the numerical contamination from the sound wave reflection,Perfect Match Layer(PML)nonreflection boundary condition17has been applied at the farfield.The unified unitless time step dt=0.5 has been used in sound field computation.Three different grid topologies have been used,which are named as Case 1(Δd1=1,Δd2=1),Case 2 (Δd1=1,Δd2=1/2), and Case 3 (Δd1=1/2,Δd2=1).As shown in the right part of Fig.6,it is the grid topology of Case 2 con figuration.

    Figs.7 and 8 includes the sound pressure distribution contour of the Gauss impulse at t=100Δt and the sound pressure curve at the location of y=0 station.It is shown in the sound propagation contour that sound wave could propagate uniformly to the space with constant speed in different kinds of patched grids.From the comparison of the computational results and the analytical solutions,it could be concluded that the interface flux reconstruction method could be effectively applied in sound wave propagation.Fig.9 is comparison of sound pressure by using three grid topologies.Compared to Case 1,the calculation results of Case 2 and Case 3 are more closer to analytical solution.

    5.2.A Harmonic energy source scattering from multiple cylinders

    In order to further prove the simulation capability of the interface flux reconstruction method applied to complex con figuration problems,the periodical point sound source propagation across triple 2D cylinder test case from the NASA 4th CAA workshop18–20has been selected for verification.

    As shown in Fig.10,three cylinders of various diameters have been laid out in the computational domain.The left cylinder is at(x=-4,y=0)with diameter being 1,the upper right and lower right cylinder are at (x=3,y=4) and(x=3,y=-4)respectively,with both of the diameters being 0.75.At the center of the computational domain,(x=0,y=0)is a periodical point sound source,the formula of which is as follows:

    where S is sound source term.Slide wall boundary has been applied in order to simulate the interference,diffraction and other complex phenomenon of the sound waves,while the PML non-reflection boundary condition17has been used at the far- field.Seven-point four-order DRP scheme is used for spatial discretion,seven-point stencil dissipation scheme is used inside the grid block,the flux reconstruction scheme with modified WENO scheme is applied at the interface,and time advancing method used is the 6-level 4-order Runge-Kutta scheme.21The size of the complete computational domain is(x ∈ [-9,9],y ∈ [-9,9]),the topology of the grid domain is shown in Fig.10.Two different grid distribution methods have been used in this case.At the interface near the three cylinders,1–1 grid node matching and 1–2 patch are both used,with the grid details at the cylinder as shown in Fig.11.Grid scale Δx=0.025 has been used for non-patch grid sound field simulation,with unified unitless time step Δt=0.002 and the number of iterations as 105.

    Figs.12–14 are the sound pressure distribution contour of the periodical sound source propagation procedure at different moments.From the comparison,it could be shown that(A)interference always occur between the sound waves regardless of any grid subdivision methodology,so does the diffraction;(B)the computational results by 1–2 patch grid could obtain higher definition of sound wave compared to the 1–1 node matching results.

    In order to quantitatively analyze the capability of interface flux reconstruction in the program,the RMS of the sound pressure distribution on the centroid line y=0 together with that on the cylinder surface is presented,as shown in Figs.15 and 16.From the comparison,it is shown that the peak value of the sound wave computed in this paper is slightly less than that of exact solution.In Fig.16,the sound wave peak value on the right cylinder surface is also slightly less than that of exact solution.The possible reason that causes the discrepancy might be that interface of block had more large dissipation.However,the total trend has shown that the current results well match that of the references,and the patch grid could even obtain better results.

    6.Conclusions

    For multi-scale grid problems,interface flux reconstruction method based on modi fied WENO scheme has been introduced.Based on the methodology of DRP scheme,the modified WENO scheme has been deduced.

    (1)For different weights of the phase errors and amplitude errors,the influence of this scheme on the grid definition and dissipation has been analyzed.Then a hybrid flux vector splitting method with treatment to grid discontinuity has been developed and verified using sine wave function and hybrid wave function.The results have shown that modified WENO scheme could effectively simulate non-discontinuous wave and continuous wave problems with enough grid definition.

    (2)According to the characteristic of the dissipation of the modified WENO scheme, flux reconstruction method has been developed using amplitude error accumulation at the discrete grid node on the interface.The feasibility and accuracy of the developed flux reconstruction method applied in multi-scale grid problem have been verified by comparing the numerical result of Gauss impulse sound source radiation with the analytical solutions.

    (3)The accuracy of the developed method based on multiscale grid applied to complex con figuration problems has been verified by analysis of triple cylinder interference case.

    References

    1.Tam CKW,Webb JC.Dispersion-relation-preserving finite difference schemes for computational acoustics.J Comput Phys 1993;107(2):262–81.

    2.Lele SK.Compact finite difference schemes with spectral-like resolution.J Comput Phys 1992;103(1):16–42.

    3.Tam CKW,Kurbatskii KA.Multi-size-mesh multi-time-step dispersion-relation-preserving scheme for multiple-scales aeroacoustics problems.Int J Comput Fluid Dynam 2014;17(2):119–32.

    4.Liu XD,Osher S,Chan T.Weighted essentially non-oscillatory schemes.J Comput Phys 1994;115(1):200–12.

    5.Shu CW,Osher S.efficient implementation of essentially nonoscillatory shock capturing schemes.J Comput Phys 1988;77(2):439–71.

    6.Jiang GS,Shu CW.efficient implementation of weighted ENO schemes.J Comput Phys 1996;126(1):202–28.

    7.Zhang SH,Jiang GS,Shu CW.Improvement of convergence to steady state solutions of Euler equations of Euler equations with the WENO schemes.J Sci Comput 2011;47(2):216–38.

    8.Martin MP,Taylor EM,Wu M.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence.J Comput Phys 2006;220(1):270–89.

    9.Martin MP.DNS of hypersonic turbulent boundary layers.Part I:Initialization and comparison with experiments.J Fluids 2007;570(1):347–64.

    10.Wu CH,Zhao N,Tian LL.An improved hybrid compact WENO scheme.Acta Aerodynamica Sinica 2013;31(4):477–81[Chinese].

    11.Hou ZX,Yi SH,Li H.Analysis and improvement of high precision,high resolution WENO schemes.J Nat Univ Defense Technol 2003;25(1):17–20[Chinese].

    12.Lin SY,Hu JJ.Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics.AIAA J 2001;39(3):1002–14.

    13.Allampalli V,Hixon R,Nallasamy M.High-accuracy large-step explicit Runge-Kutta(HALE-RK)schemes for computational aeroacoustics.J Comput Phys 2009;228(18):3837–50.

    14.Calvo M,Franco JM.A new minimum storage Runge-Kutta scheme for computational acoustics.J Comput Phys 2004;201(2):1–12.

    15.Kang L,Lee CH.A non- flux-splitting WENO scheme with low numerical dissipation.Sci China Tech Sci 2011;41(4):460–73.

    16.Zhu HJ,Yan ZG,Liu HY.Properties of Osher flux with entropy fix with entropy fix in high-order WCNS.Acta Aeronautica et Astronautica Sinica 2017;38(5):1–10[Chinese].

    17.Hu FQ,Li XD,Lin DK.Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique.J Comput Phys 2008;227(1):4398–424.

    18.Dahl MD.Fourth computational aeroacoustics(CAA)workshop on benchmark problems.Washington D.C.:NASA Glenn Research Center;2004.Report No.:NASA/CP-2004-212954.

    19.Gao JH.A block interface flux reconstruction method for numerical simulation with high order finite difference scheme.J Comput Phys 2014;241(3):1–17.

    20.Gao JH,Yang ZG,Li XD.An optimized spectral difference method for CAA problems.J Comput Phys 2013;231(1):4848–66.

    21.Liu L,Li XD,Hu FQ.Non-uniform time-step explicit Runge-Kutta discontinuous Galerkin method for computational aeroacoustics.J Comput Phys 2010;229(19):6874–97.

    美女高潮的动态| 韩国高清视频一区二区三区| 女的被弄到高潮叫床怎么办| 人人妻人人看人人澡| 老司机影院毛片| 人人妻人人澡欧美一区二区| 国产亚洲91精品色在线| 99在线视频只有这里精品首页| 中文字幕亚洲精品专区| 中国美白少妇内射xxxbb| a级一级毛片免费在线观看| 岛国毛片在线播放| 国产爱豆传媒在线观看| 亚洲伊人久久精品综合 | 内地一区二区视频在线| 色综合色国产| 少妇丰满av| 国产精品爽爽va在线观看网站| 少妇猛男粗大的猛烈进出视频 | 一本一本综合久久| 午夜激情欧美在线| 别揉我奶头 嗯啊视频| 成人无遮挡网站| 简卡轻食公司| 久久99精品国语久久久| 亚洲精品亚洲一区二区| 久久久午夜欧美精品| 菩萨蛮人人尽说江南好唐韦庄 | 女人十人毛片免费观看3o分钟| 水蜜桃什么品种好| 99久国产av精品| 老女人水多毛片| 亚洲精华国产精华液的使用体验| 大香蕉久久网| 亚洲av日韩在线播放| 久久热精品热| 深夜a级毛片| 精品久久国产蜜桃| 亚洲精品影视一区二区三区av| 在线免费观看不下载黄p国产| 国产在线一区二区三区精 | 五月伊人婷婷丁香| 国产精品日韩av在线免费观看| 国产精品久久视频播放| 久久久久性生活片| 又黄又爽又刺激的免费视频.| 中文资源天堂在线| 国产精品久久久久久久电影| 婷婷色综合大香蕉| 高清日韩中文字幕在线| 狠狠狠狠99中文字幕| 男人和女人高潮做爰伦理| 久久久久久久国产电影| 联通29元200g的流量卡| 亚洲色图av天堂| 91久久精品电影网| 色噜噜av男人的天堂激情| 久久久久久久午夜电影| 91久久精品国产一区二区成人| 18禁裸乳无遮挡免费网站照片| 在线免费十八禁| 午夜激情福利司机影院| 欧美丝袜亚洲另类| 国产av一区在线观看免费| 国产亚洲精品av在线| 中文天堂在线官网| 日韩制服骚丝袜av| 久久久精品94久久精品| 91精品伊人久久大香线蕉| a级毛色黄片| 99久久人妻综合| 亚洲国产日韩欧美精品在线观看| 国产午夜福利久久久久久| eeuss影院久久| 综合色av麻豆| 亚洲av熟女| 最近的中文字幕免费完整| 午夜久久久久精精品| 国产免费男女视频| 日产精品乱码卡一卡2卡三| 亚洲熟妇中文字幕五十中出| 97热精品久久久久久| 99热这里只有是精品在线观看| av黄色大香蕉| 国产探花极品一区二区| 国产免费福利视频在线观看| ponron亚洲| 亚洲熟妇中文字幕五十中出| 欧美激情在线99| 青春草国产在线视频| 99热精品在线国产| 亚洲成色77777| 国产av在哪里看| a级毛片免费高清观看在线播放| 亚洲av福利一区| 免费大片18禁| 51国产日韩欧美| 中文字幕亚洲精品专区| 中文字幕av在线有码专区| 精品不卡国产一区二区三区| 成人国产麻豆网| 九九热线精品视视频播放| 1024手机看黄色片| 三级毛片av免费| 亚洲不卡免费看| 搞女人的毛片| 国内揄拍国产精品人妻在线| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 身体一侧抽搐| 免费大片18禁| 晚上一个人看的免费电影| av专区在线播放| www.av在线官网国产| www.av在线官网国产| 夫妻性生交免费视频一级片| 国产 一区精品| 国产亚洲最大av| 性色avwww在线观看| 久久精品国产99精品国产亚洲性色| 中文字幕人妻熟人妻熟丝袜美| 内射极品少妇av片p| 永久网站在线| 久久精品国产自在天天线| 色哟哟·www| 69人妻影院| av女优亚洲男人天堂| 欧美成人免费av一区二区三区| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 亚洲成人精品中文字幕电影| 有码 亚洲区| 中文乱码字字幕精品一区二区三区 | 一卡2卡三卡四卡精品乱码亚洲| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花 | 美女xxoo啪啪120秒动态图| 国产成人a∨麻豆精品| 女人被狂操c到高潮| 国产成人精品一,二区| 久久久久国产网址| 欧美精品一区二区大全| 国产女主播在线喷水免费视频网站 | 波野结衣二区三区在线| 国内揄拍国产精品人妻在线| 最近中文字幕高清免费大全6| 美女高潮的动态| 中文字幕av在线有码专区| 日本黄大片高清| 国产精品国产三级国产av玫瑰| 一个人观看的视频www高清免费观看| 成年免费大片在线观看| 赤兔流量卡办理| 日本-黄色视频高清免费观看| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 男人狂女人下面高潮的视频| av在线亚洲专区| 国产三级中文精品| АⅤ资源中文在线天堂| 一夜夜www| 国产黄色视频一区二区在线观看 | 亚洲精品乱久久久久久| 精品久久久久久久久av| 久久久久久久午夜电影| 亚洲欧美日韩卡通动漫| 久久久久性生活片| 亚洲国产日韩欧美精品在线观看| 欧美精品一区二区大全| 亚洲精品色激情综合| 综合色丁香网| 国产精品日韩av在线免费观看| 天美传媒精品一区二区| 国产精品久久视频播放| 成人毛片a级毛片在线播放| 亚洲天堂国产精品一区在线| 少妇猛男粗大的猛烈进出视频 | 永久免费av网站大全| 久久久久久大精品| 欧美高清成人免费视频www| 听说在线观看完整版免费高清| 人人妻人人看人人澡| 欧美性感艳星| 国产欧美另类精品又又久久亚洲欧美| av在线老鸭窝| 我要看日韩黄色一级片| 天堂网av新在线| 我要搜黄色片| 国产黄a三级三级三级人| 美女黄网站色视频| 搡女人真爽免费视频火全软件| 三级国产精品欧美在线观看| 亚洲在久久综合| 国产欧美日韩精品一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲婷婷狠狠爱综合网| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清无吗| 日本熟妇午夜| 国产在线男女| 亚洲国产精品成人久久小说| 日本与韩国留学比较| 麻豆一二三区av精品| 狂野欧美白嫩少妇大欣赏| 大香蕉97超碰在线| 国产成人aa在线观看| 国产久久久一区二区三区| 欧美人与善性xxx| 国产精品国产三级专区第一集| av在线天堂中文字幕| 国产精品一区www在线观看| 亚洲欧美一区二区三区国产| 波多野结衣巨乳人妻| 亚洲乱码一区二区免费版| 综合色av麻豆| 亚洲精品国产av成人精品| 美女高潮的动态| 国产激情偷乱视频一区二区| 精品不卡国产一区二区三区| 日本午夜av视频| 最近视频中文字幕2019在线8| 建设人人有责人人尽责人人享有的 | 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 国产一级毛片在线| 青春草视频在线免费观看| 寂寞人妻少妇视频99o| 99在线人妻在线中文字幕| 亚洲av免费高清在线观看| 国产成人精品一,二区| 国产色婷婷99| av在线老鸭窝| 小说图片视频综合网站| 国产 一区精品| 丰满乱子伦码专区| 男女视频在线观看网站免费| 免费在线观看成人毛片| 大又大粗又爽又黄少妇毛片口| 两个人的视频大全免费| 国产成人精品婷婷| 日本欧美国产在线视频| 亚洲欧美精品综合久久99| 天美传媒精品一区二区| 久久国内精品自在自线图片| 午夜老司机福利剧场| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 校园人妻丝袜中文字幕| 在线免费观看不下载黄p国产| 最近2019中文字幕mv第一页| 少妇熟女欧美另类| 内射极品少妇av片p| 精品一区二区免费观看| 久久午夜福利片| 亚洲在线观看片| 波多野结衣高清无吗| 日韩av在线大香蕉| 精品无人区乱码1区二区| 不卡视频在线观看欧美| 日韩欧美精品v在线| 亚洲av熟女| 男人狂女人下面高潮的视频| 国产av一区在线观看免费| 一个人看视频在线观看www免费| 久久精品91蜜桃| 日本午夜av视频| 两个人视频免费观看高清| 欧美高清性xxxxhd video| 黄色配什么色好看| 26uuu在线亚洲综合色| or卡值多少钱| 女人被狂操c到高潮| 亚洲国产精品合色在线| 国产精品,欧美在线| 男人的好看免费观看在线视频| 桃色一区二区三区在线观看| 国产老妇伦熟女老妇高清| 美女被艹到高潮喷水动态| 欧美最新免费一区二区三区| 岛国毛片在线播放| 亚洲成人中文字幕在线播放| 国产亚洲最大av| 国产单亲对白刺激| 天堂网av新在线| 久久亚洲国产成人精品v| 免费看a级黄色片| 欧美zozozo另类| 又黄又爽又刺激的免费视频.| 91久久精品电影网| 免费看美女性在线毛片视频| 精品人妻一区二区三区麻豆| 欧美一区二区精品小视频在线| av在线天堂中文字幕| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看| 伊人久久精品亚洲午夜| 男女下面进入的视频免费午夜| 久久6这里有精品| 国产乱人偷精品视频| 国产成人精品久久久久久| 亚洲av免费在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲在线观看片| 久久久久久九九精品二区国产| 变态另类丝袜制服| av女优亚洲男人天堂| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 成人午夜精彩视频在线观看| 2022亚洲国产成人精品| av国产久精品久网站免费入址| 成人美女网站在线观看视频| 午夜福利在线在线| 国产精品久久久久久av不卡| 国产 一区 欧美 日韩| 午夜日本视频在线| 能在线免费观看的黄片| 午夜福利高清视频| 国产精品美女特级片免费视频播放器| 日本免费在线观看一区| 亚洲国产最新在线播放| 最近中文字幕2019免费版| 少妇猛男粗大的猛烈进出视频 | 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 汤姆久久久久久久影院中文字幕 | 一级av片app| av在线观看视频网站免费| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看| 97热精品久久久久久| 白带黄色成豆腐渣| 性插视频无遮挡在线免费观看| 日韩国内少妇激情av| 偷拍熟女少妇极品色| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| 亚州av有码| 高清在线视频一区二区三区 | 青春草国产在线视频| av天堂中文字幕网| 中国国产av一级| 国产精品永久免费网站| 成人三级黄色视频| 简卡轻食公司| 日本黄大片高清| 毛片女人毛片| 两个人的视频大全免费| 国产美女午夜福利| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产| 男的添女的下面高潮视频| 99在线视频只有这里精品首页| 永久网站在线| 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 亚洲国产色片| 亚洲精品自拍成人| 国产精品一二三区在线看| 欧美又色又爽又黄视频| 久久精品久久久久久久性| 2021天堂中文幕一二区在线观| 最近的中文字幕免费完整| 国产乱人视频| a级毛色黄片| 国产av在哪里看| 久久人人爽人人片av| 午夜日本视频在线| 国产成年人精品一区二区| a级毛色黄片| 男女啪啪激烈高潮av片| 性插视频无遮挡在线免费观看| 伊人久久精品亚洲午夜| 青春草亚洲视频在线观看| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 国产中年淑女户外野战色| 欧美日韩一区二区视频在线观看视频在线 | 深爱激情五月婷婷| 毛片女人毛片| 秋霞伦理黄片| 亚洲美女搞黄在线观看| 亚洲成人av在线免费| 亚洲av男天堂| 99热这里只有是精品在线观看| 别揉我奶头 嗯啊视频| 大话2 男鬼变身卡| 国产亚洲午夜精品一区二区久久 | 一级黄色大片毛片| 国产成人91sexporn| 毛片女人毛片| 日日摸夜夜添夜夜添av毛片| 蜜臀久久99精品久久宅男| 国产亚洲最大av| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 欧美bdsm另类| 热99re8久久精品国产| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 99热这里只有是精品50| 国产 一区精品| 大香蕉97超碰在线| 亚洲成av人片在线播放无| 男女下面进入的视频免费午夜| 春色校园在线视频观看| 国产伦在线观看视频一区| 菩萨蛮人人尽说江南好唐韦庄 | 色视频www国产| 亚洲丝袜综合中文字幕| 国产av在哪里看| 久久久久九九精品影院| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 国产成人a∨麻豆精品| 十八禁国产超污无遮挡网站| av播播在线观看一区| 毛片女人毛片| 99久久九九国产精品国产免费| av播播在线观看一区| 91久久精品国产一区二区成人| 亚洲图色成人| 男的添女的下面高潮视频| 最近视频中文字幕2019在线8| 国产久久久一区二区三区| 国产亚洲5aaaaa淫片| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 日韩中字成人| 人妻系列 视频| 一区二区三区高清视频在线| 欧美zozozo另类| 国产伦在线观看视频一区| АⅤ资源中文在线天堂| 国产单亲对白刺激| 久久精品人妻少妇| av卡一久久| 国产伦理片在线播放av一区| 黑人高潮一二区| 99热这里只有精品一区| 2021天堂中文幕一二区在线观| 老司机影院成人| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 国产又黄又爽又无遮挡在线| 一区二区三区高清视频在线| 一夜夜www| 赤兔流量卡办理| 五月玫瑰六月丁香| 一卡2卡三卡四卡精品乱码亚洲| 91aial.com中文字幕在线观看| 成人av在线播放网站| 九九在线视频观看精品| 69人妻影院| 18+在线观看网站| www.色视频.com| 18禁动态无遮挡网站| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 国产精品精品国产色婷婷| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 五月伊人婷婷丁香| 久久国内精品自在自线图片| 成年版毛片免费区| 69人妻影院| 亚洲国产日韩欧美精品在线观看| 国产精品三级大全| 亚洲美女搞黄在线观看| 久久精品人妻少妇| 午夜精品在线福利| h日本视频在线播放| 欧美性感艳星| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 国产乱来视频区| 国产成人精品久久久久久| 色播亚洲综合网| 精品酒店卫生间| 我要搜黄色片| 日韩在线高清观看一区二区三区| 婷婷六月久久综合丁香| 最近2019中文字幕mv第一页| av在线蜜桃| 男人和女人高潮做爰伦理| 成年版毛片免费区| 精品久久久久久久久av| 尤物成人国产欧美一区二区三区| 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 三级男女做爰猛烈吃奶摸视频| 精品免费久久久久久久清纯| av在线亚洲专区| 亚洲av一区综合| 97超碰精品成人国产| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 精品久久久久久电影网 | 18禁在线播放成人免费| 尤物成人国产欧美一区二区三区| 国内揄拍国产精品人妻在线| 成人二区视频| 亚洲精品成人久久久久久| 超碰97精品在线观看| 欧美日韩在线观看h| 久久久国产成人精品二区| 日韩欧美精品v在线| 久久人人爽人人片av| 午夜福利高清视频| 亚洲欧美日韩高清专用| 精品国产露脸久久av麻豆 | 婷婷六月久久综合丁香| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| 麻豆精品久久久久久蜜桃| 波多野结衣高清无吗| 免费在线观看成人毛片| 精品人妻偷拍中文字幕| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 国产片特级美女逼逼视频| 纵有疾风起免费观看全集完整版 | 久久精品夜夜夜夜夜久久蜜豆| 国产综合懂色| 国产精品无大码| 91精品国产九色| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 日本与韩国留学比较| 国产美女午夜福利| 亚洲精品久久久久久婷婷小说 | 日韩在线高清观看一区二区三区| 中文字幕熟女人妻在线| 欧美高清成人免费视频www| 欧美性猛交╳xxx乱大交人| 中文资源天堂在线| 男女国产视频网站| 国产伦在线观看视频一区| 成人午夜高清在线视频| 国内精品一区二区在线观看| av在线播放精品| 看十八女毛片水多多多| 精品久久久久久久末码| av天堂中文字幕网| 欧美成人一区二区免费高清观看| 黄色日韩在线| 国模一区二区三区四区视频| 一级黄色大片毛片| av国产久精品久网站免费入址| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 在线观看66精品国产| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 久久午夜福利片| 日本免费在线观看一区| 日本欧美国产在线视频| 91久久精品电影网| 久久精品国产亚洲网站| 亚洲精品成人久久久久久| 九九爱精品视频在线观看| 国产精品久久久久久精品电影| 国产大屁股一区二区在线视频| 草草在线视频免费看| videos熟女内射| 黑人高潮一二区| 国产在线男女| 听说在线观看完整版免费高清| 欧美激情国产日韩精品一区| 搡老妇女老女人老熟妇| 亚洲经典国产精华液单| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区性色av| 久久久久网色| 久久久午夜欧美精品| 国产精品国产三级国产专区5o | 国产精品嫩草影院av在线观看| 精品熟女少妇av免费看| 久久久久九九精品影院| 欧美三级亚洲精品| 亚洲欧美日韩高清专用| 纵有疾风起免费观看全集完整版 | 九色成人免费人妻av| 免费一级毛片在线播放高清视频| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费| 国产成人a∨麻豆精品| 国产精品.久久久| 欧美xxxx黑人xx丫x性爽| 99视频精品全部免费 在线| 亚洲国产色片| 日产精品乱码卡一卡2卡三| 男人狂女人下面高潮的视频| 午夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 长腿黑丝高跟| 欧美人与善性xxx| 日韩av在线大香蕉| 国产一级毛片七仙女欲春2| 国产精品一区www在线观看| 天天躁夜夜躁狠狠久久av| 韩国av在线不卡| 2021天堂中文幕一二区在线观| 免费看av在线观看网站| 成人三级黄色视频| 国产大屁股一区二区在线视频| 国产国拍精品亚洲av在线观看|