• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical investigation of shock stand-offdistance for non-equilibrium flows over spheres

    2018-05-17 10:06:16HuSHENChihYungWEN
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Hu SHEN,Chih-Yung WEN

    aExtreme Computing Research Center,Computer Electrical and Mathematical Science and Engineering Division,King Abdullah University of Science and Technology,Thuwal 23955-6900,Saudi Arabia

    bDepartment of Mechanical Engineering,The Hong Kong Polytechnic University,Kowloon 999077,Hong Kong Special Administrative Region,China

    1.Introduction

    When a supersonic/hypersonic flow over a blunt body like a sphere,a detached bow shock forms around the body,and the level of the non-equilibrium of the flow is measured by the following dimensionless reaction rate parameter,1where α is the dissociation fraction,D the diameter of the sphere,u the velocity;and the subscripts ‘∞” and‘s”means the corresponding quantities at freestream and immediately behind the shock,respectively.Depending on the value of Ω,the flow can be categorized into nearly frozen flow(Ω ? 1),nearly equilibrium flow(Ω ?1),and nonequilibrium flow(otherwise).The distance between the bow shock and the stagnation point of the nose was referred to as the Shock Stand-off Distance(SSD).The SSD is much smaller than the size of the tested model,and hence experimental measurement admits large errors.Generally speaking,if there is no significant dissociation in the free stream,a larger free stream kinetic energy leads a smaller SSD,due to a higher level of vibrational excitation and chemical dissociation.But an increased SSD is observed in high enthalpy shock tunnels under the same free stream velocity and this phenomenon is attributed to the inevitable free stream dissociation in such facilities.2,3In order to understand the physics behind,it is crucial to explore the effects of the important flow parameters through theoretical analysis.Olivier et al.2first gave an estimation of the effect of free stream dissociation on SSD,but no quantitative solution was provided.

    For frozen flows,Lobb4performed extensive experiments on the SSD for spheres of various diameters using a schlieren photography technique and derived the following correlation

    where Δ is the SSD,ρ density,L a constant with a value of 0.41 for spheres.For dissociating flows,the accuracy of Lobb’s correlation is significantly degraded.5,6

    which implies the SSD is independent of all parameters other than L.Meanwhile,the equilibrium-side solution is given by

    which implies the importance of the density ratio ρs/ρe(note that the subscript ‘e” denotes the corresponding quantities at fully equilibrium states).This simple correlation is well validated by experiments,5,7CFD results8,9and a quasi-oned imensional model.10However,it relies on the semiempirical parameter L measured by experiments,and therefore cannot completely reveal the embedded physics.

    Based on a differential analysis of the governing conservation equations,Olivier11proposed the following analytic solution for the SSD in frozen and equilibrium flows:

    In view of the discussions above,the present study has two aims:(A)to derive a comprehensive analytic solution for the whole non-equilibrium flow regime without using the semiempirical parameter L;(B)to investigate the effect of two fundamental flow parameters,namely the frees tream kinetic energy,and the freestream dissociating level,on the SSD using a simple Ideal Dissociating Gas(IDG)model.13,14

    2.Analytic solution for shock stand-off distance

    Consider the control volume ΔV in the stagnation region between the shock and the body,as shown in Fig.1.The rate at which mass enters the control volume from the left-hand side is equal to ρ∞u∞b or ρ∞u∞b2,depending on whether the flow is two-dimensional or axisymmetric,respectively.Meanwhile,the rate at which mass leaves the control volume through the right-hand side is equal to

    where uτis the tangential velocity(i.e.,the component of velocity normal to the ray from the center of curvature),R is the radius of the sphere and dr is the differential element of the radius.Consequently,the mass balance is given as

    and

    for two-dimensional and axisymmetric flows,respectively.The integral terms in Eqs.(1)and(2)can be approximated using the average value,i.e.,

    and

    Furthermore,let only the flow region very close to the stagnation streamline be considered.Therefore,the following approximations can be applied:

    As a result,the solution method is restricted to this area since only the stand-off distance at the stagnation point is of interest and Eqs.(1)and(2)can be re-written as

    and

    with solutions

    and

    respectively,where

    Substituting Eq.(11)into Eq.(9)yields the following simple solution for SSD in axisymmetric flow:

    Obviously,the parameter χ is the measurement of the product of density and the tangential velocity gradient.Eqs.(8)and(12)imply that the dimensionless SSD is inversely proportional to χ.The above derivations using integral analyses are obviously more succinct than Olivier’s correlation derived from the differential analyses.Comparing Eqs.(8)and(12),the SSD for a cylinder exhibits the same qualitative behavior as that for a sphere.However,the tangential velocity gradient for a cylinder is smaller than that for a sphere,12and thus the SSD is more than twice that of a sphere.The following derivation will be focused on the SSD for spheres.

    To determine the SSD for spheres using Eq.(9)or(12),the tangential velocity gradient must be solved.At the point immediately behind the shock,the velocity gradient can be determined from the conserved tangential velocity component across the shock,i.e.,

    Meanwhile,from the momentum equation in the tangential direction at the body,we have15

    where p is the pressure.Utilizing the approximation of velocity in Eq.(5)and assuming a Newtonian pressure distribution over the surface,i.e.,,Eq.(14)can be written as

    From Eqs.(5)and(15),we can get the solution of tangential velocity gradient as

    Following Olivier,11an assumption is made here that the tangential velocity gradient pro file varies linearly with distance between the body and shock wave.For frozen flows and fully equilibrium flows,the density in the stagnant region can be treated constant and the expression of χ can be simply written as

    whereρavgis the average density along the stagnant line which is equal to ρsand ρefor frozen flows and fully equilibrium flows,respectively.For hypervelocity frozen air flows,ρs/ρb=1 and ρs/ρ∞=6.Hence,Eqs.(9)and (12)yield SSDs of~Δ=0.38 and 0.40,respectively.Both solutions are in good agreement with there sultsobtained from Lob b’s approximation and Olivier’s model,i.e.,0.41 and0.40,respectively.TheSSDof~Δ=0.38derived by the morerigorous Eq.(9)is slightly less than Lobb’s approximation and Olivier’s model.Nevertheless,it is interesting to note that for the frozen nitrogen flows,Hornung1derived a value for SSD of~Δ=0.39 which is also slightly less than that given by Lobb’s approximation.Moreover,~Δ calculated from Eqs.(9)and(12)has only a weak dependence on ρs/ρ∞for hypersonic frozen flows which is consistent with that first reported by Olivier.11When free stream Mach number Ma∞→∞,the value of ρs/ρ∞depends on the value of γ(adiabatic index).In order to compare the present model with Oliver’s model11,the dimensionless SSDs for different gases are listed in Table1.It is observed that the present model is not as sensiti veto ρs/ρ∞as Olivier’s model.For large value of ρs/ρ∞,the present theory agrees well with Olivier’s theory.But for the monoa to mic gas flow(γ=5/3,ρs/ρ∞=4.0),the difference between the two theories is more obvious.

    The values of ρ/ρ∞for non-equilibrium and fully equilibrium flows are larger than that for frozen flows,and the solutions obtained from Eqs.(9)and(12),respectively,tend to converge.Therefore,only the concise correlation Eq.(12)is employed in the following calculations.Eqs.(12)and(17)show that the density ratio ρs/ρbplays an important role in determining the SSD in non-equilibrium dissociating flows,which is consistent with the observations of Wen and Hornung5and Olivier,11respectively.

    Table 1Dimensionless SSDof frozen flows for gases with different values of ρs/ρ∞.

    Table 1Dimensionless SSDof frozen flows for gases with different values of ρs/ρ∞.

    Model Dimensionless SSD(~Δ)CO2(ρs/ρ∞=7.67)Ideal dissociating gas(ρs/ρ∞=7.0)Present,Eq.(9)Monoatomic gas(ρs/ρ∞=4.0)0.38 0.38 0.38 Present,Eq.(12)0.40 0.41 0.40 Olivier110.38 0.44 0.39

    Table 2Dimensionless SSD(~Δ)of fully equilibrium flows for gases with different values of ρs/ρbprovided with ρs/ρ∞=6.0.

    3.Correlation between shock stand-off distance and reaction rate parameter

    Eqs.(10)and(12)imply that if ρs/ρ∞is known,the SSD can be determined from the average value ofNote that,the tangential velocity gradient is already solved in the last section.On the other hand,the generalized reaction rate parameter,i.e.,can be rewritten as

    where y denotes the horizontal direction.In other words,the reaction rate parameter is governed by the spatial gradient of the density immediately behind the shock.As a result,the SSD can be correlated with the generalized reaction rate parameter by means of the density pro file between the shock and the body.

    3.1.A correlation using exponential density pro file

    Wen and Hornung5used a piecewise linear function to approximate the density pro file.They pointed out that the use of a piecewise linear function to approximate the density pro file between the shock and the body results in an overestimation of the average density,and hence an underestimation of the SSD.This error can be reduced by replacing the piecewise linear function with the following exponential function:

    where λ ranges from zero to infinity.As shown,Eq.(19)is a monotonic function for ρ with respect to λ and the density reduces to ρs(frozen flows)and ρe(fully equilibrium flows)when λ =0 and ∞,respectively.In other words,every flow regime within the range of the frozen flow to the fully equilibrium flow is represented by a specific value of λ between 0 and∞.

    Using Eq.(19),the density ratio between the shock and the body and the product of density and tangential velocity gradient and can be given as

    and

    respectively.From Eq.(19),we can easily verify that

    which represents the dimensionless density gradient right after the shock.Clearly,an explicit correlation is no longer possible.But the following uniform implicit correlation can be derived

    3.2.Comparison and discussion

    Eq.(23)shows that the correlation betweenanddepends on the values of ρs/ρ∞and ρs/ρe,respectively.Fig.2 shows the variation ofwith~Ω as a function of ρs/ρegiven a constant ρs/ρ∞=6.Notably,the physical significance ofis the ratio between the energy absorption rate by chemistry and the input rate of free stream kinetic energy.5For small,no chemical reaction occurs in the flow and thus the scaled SSD remains constant.However,asincreases,the amount of energy absorbed by vibrational excitations and chemical reactions also increases.As a result,the average density increases,while~Δ decreases.As expected for the non-equilibrium regime,using exponential density approach gives a higher value of SSD than Wen and Hornung’s correlation5using linear density approach.

    As described above,the scaled SSD is dependent on ρs/ρ∞and ρs/ρe.For an ideal dissociating gas with no frees tream dissociation,ρs/ρ∞is equal to 7.For CO2withis equal to 7.67.Fig.3 plotsandversusfor different values of ρs/ρ∞.It is seen that whilehas a very weak dependence on ρs/ρ∞,has a strong dependence on ρs/ρ∞.For a constant~Ω,when ρs/ρ∞increases,decrease significantly,but~Δ almost remains the same.In other words,is a more universal dimensionless parameter thanin estimating the SSD.

    4.Analytic solution for stand-off distance of nitrogen flows using ideal dissociating gas model

    4.1.Basic equations

    The analytic solutions derived in the previous section are not restricted to any specific gas model,and show thatdetermined by both ρs/ρ∞and ρs/ρe.However,in experimental and simulation studies,the free stream condition is usually expressed in terms of free stream values of ρ∞,u∞,T∞and α∞(T∞is the free stream temperature).Wen and Hornung5qualitatively described the effect of free stream kinetic energy on the scaled SSD~Δ.However,no quantitative relation was derived.Thus,in the present study,the simple IDG model is used to quantify the effects of the main flow parameters on the scaled SSD analytically,for the illustrative case of nitrogen flows.The analysis is also suitable for other pure dissociating diatomic gases and can be extended to multi-component gases by using the approach proposed by Olivier and Gartz.16

    The boundary conditions on the shock wave can be determined by enforcing the conservation of energy,momentum,mass and dissociation fraction across the shock,i.e.,

    where his the specific enthalpy.In general,the equation of state for a mixture of molecular and atomic nitrogen is given as

    where Mis the molecular weight of N2,Tis the temperature and Ruis the universal gas constant.Meanwhile,the specific enthalpy for an IDG is given by

    where θdis the characteristic dissociating temperature for nitrogen and has a value of 113200 K.The boundary condition for h at the shock is then expressed as follows:

    where the velocity component normal to the shock is neglected in the shock layer.

    Utilizing the state equation and the definition of enthalpy,the temperature immediately behind the shock can be obtained from Eq.(27)with αs=α∞as

    From equilibrium theory of Lighthill,14the equilibrium dissociation fraction αecan be determined as

    Here,ρdis the characteristic dissociation density,and was reported by Lighthill14to have a value of 1.3×105kg/m3for nitrogen.

    To solve αe,ρeand Tefrom Eq.(30),two more equations are required.The first equation can be derived by enforcing the conservation of the total enthalpy,i.e.,

    Meanwhile,the second equation can be derived directly from the state equation,i.e.,

    From Eqs.(30)–(32), αe, ρeand Tecan all be solved.Although explicit solutions are impossible,they nevertheless demonstrate the roles of the dimensionless parameters T∞/θd,ρd/ρ∞,μ and α∞in determining the shock stand-off position.Notably,T∞and α∞can be very different from the real flight conditions in a free-piston shock tunnels.

    4.2.Effects of μ and α∞on SSD

    In the following discussions,ρs/ρ∞and ρs/ρeare derived from(29)and(30)–(32),respectively.Then they are used as the inputs of the correlation ofand

    Fig.4 shows the variation ofwithas a function of μ givenand α∞=0.It is seen that the scaled SSDdepends very weakly on μ on the frozen side(~Ω?1).However,reduces significantly with increasing μ on the equilibrium side(~Ω?1).When μ=0.15(u∞=3175 m/s),~Δ on the frozen side and equilibrium side are almost equal.It indicates that when the free stream velocity of nitrogen flow is smaller than 3175 m/s,the dissociating reactions in the flow can be neglected.Notably,although when the freestream velocity decreases to around 3.2 km/s,the dissociation is very weak,the vibrational excitation may decrease a few percentages of(see Houwing et al.17).When μ increases to 1 and beyond,the correspondingcurves are approximately superimposed.From the physics perspective,for nearly frozen flow,no chemical reaction occurs to increase the average density.As a consequence,~Δ is effectively independent of~Ω and remains almost constant.For non-equilibrium and nearly equilibrium flows,the amount of energy absorbed by chemical dissociation increases with increasing the freestream kinetic energy parameter μ.As a result,ρe/ρsincreases and~Δ decreases.For the particular case of μ=1.0,the freestream kinetic energy is equal to the specific dissociation energy of the gas and the amount of energy absorbed by chemical dissociation reaches to the upper limit.Consequently, ρe/ρsno longer increases even when μ increases,and~Δ reaches its minimum value.Overall,Fig.4 infers that the change in the scaled SSDis due primarily to the energy absorption caused by chemical reactions.

    The solution shown in Fig.4 is based on α∞=0 which is the case for the ballistic range experiment.18However,in the high enthalpy free-piston shock tunnel tests,19,20the freestream dissociation level is not zero anymore.Using the IDG model,we can quantitatively estimate the in fluence of freestream dissociation level on the SSD.Belouaggadia et al.12investigated the effect of the freestream dissociation level,α∞,on the shock stand-off distance for the cases of frozen flows and fully equilibrium flows.In the present study,the effect of α∞onis investigated over the entire non-equilibrium flow regime.As shown in Fig.5,α∞has only a weak effect onfor the case of nearly frozen flows,which is the case presented by Belouaggadia,et al..12In addition,it is seenincreases significantly with increasing α∞for moderate values of μ,but is insensitive to α∞at larger values of μ.When α∞=0.3 and μ =0.4,the SSD is even larger than that of α∞=0 and μ=0.3.It means the two opposite acting effects,decrease of the SSD by high freestream kinetic effects and increase of the SSD by free stream dissociation,may even cancel each other.2This finding is reasonable since in higher α∞flows,dissociating chemical reactions occur less readily due to the absence of educts,and hence the density change is less obvious than that in the case of flows with low α∞.When μ is sufficiently large(e.g.,μ=1),dissociation anyway takes place easily,for α∞ranging from 0 to 0.3,and hence no change ofcurve occurs.In general,the curves presented in Fig.5 imply that the effects of possible freestream dissociation in high-enthalpy wind tunnels must be considered,particularly for the case of moderate μ.

    5.Conclusions

    A comprehensive analytical solution has been derived to calculate the SSD and to correlate the SSD of hypervelocity nonequilibrium flows with the average density between the shock and the body without the need for any specific gas model or empirical parameters.Furthermore,using an exponential function to approach the density distribution between the shock and the body,the scaled SSD~Δ has been correlated with the reaction rate parameterIn general,the results have shown that:

    (1)the correlation curve is strongly dependent on ρs/ρe,but is only weakly dependent on ρs/ρ∞.

    Acknowledgements

    This study was co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)and the National Natural Science Foundation of China(No.11372265).

    References

    1.Hornung HG.Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders.J Fluid Mech 1972;53:149–76.

    2.Olivier H,Walpot L,Merri field J,Molina R.On the phenomenon of the shock stand-off distance in hypersonic,high enthalpy facilities.In:Jiang Z,editor.Proceedings of the first international conference on high temperature gas dynamics;2012 Oct 15–17;Beijing,China.Beijing:Institute of Mechanics,Chinese Academy of Sciences;2012.p.92–100.

    3.Hashimoto T,Komuro T,Sato K,Itoh K.Experimental investigation of shock stand-off distance on spheres in hypersonic nozzle flows.In:Hannemann K,Seiler F,editors.Shock waves.Heidelberg:Springer;2009.p.961–6.

    4.Lobb RK.Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities.In:Nelson WC,editor.The high temperature aspects ofhypersonic lf ow.Oxford:Pergamon Press;1964.p.519–27.

    5.Wen CY,Hornung HG.Non-equilibrium dissociating flow over spheres.J Fluid Mech 1995;299:389–405.

    6.Nonaka S,Mizuno H,Takayama K,Park C.Measurement of shock standoff distance for sphere in ballistic range.J Thermophys Heat Transf 2000;14(2):225–9.

    7.Sarma GSR.Physico-chemical modelling in hypersonic flow simulation.Prog Aerosp Sci 2000;36(3–4):281–349.

    8.Gerdroodbary MB,Hosseinalipour SM.Numerical simulation of hypersonic flow over highly blunted cones with spike.Acta Astronaut 2010;67(1–2):180–93.

    9.Shen H,Wen CY,Massimi HS.Application of CE/SE method to study hypersonic non-equilibrium flows over spheres.Reston:AIAA;2014.Report No.:AIAA-2014-2509.

    10.Chen S,Sun Q.A quasi-one-dimensional model for hypersonic reactive flow along the stagnation streamline.Chin J Aeronaut 2016;29(6):1517–26.

    11.Olivier H.A theoretical model for the shock stand-off distance in frozen and equilibrium flow.J Fluid Mech 2000;413:345–53.

    12.Belouaggadia N,Olivier H,Brun R.Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows.J Fluid Mech 2008;607:167–97.

    13.Freeman NC.Non-equilibrium flow of an ideal dissociating gas.J Fluid Mech 1958;4(4):407–25.

    14.Lighthill MJ.Dynamics of a dissociating gas—Part I:Equilibrium flow.J Fluid Mech 1957;2(1):1–32.

    15.Anderson JD.Hypersonic and high-temperature gas dynamics.2nd ed.Reston:AIAA;2006.p.311.

    16.Olivier H,Gartz R.Extension of Lighthill’s gas model for multicomponent air.5th European conference for aeronautics and space sciences;2013.p.1–8.

    17.Houwing AFP,Nonaka S,Mizuno H,Takayama K.Effects of vibrational relaxation on now shock standoff distance for nonequilibrium flows.AIAA J 2000;38(9):1760–3.

    18.Nonaka S,Mizuno H,Takayama K.Ballistic range measurement of shock shapes in intermediate hypersonic range.Reston:AIAA;1999.Report No.:AIAA-1999-1025.

    19.Wen CY.Hypervelocity flow over spheres[dissertation].Pasadena:California Institute of Technology;1994.142–58.

    20.Belouaggadia N,Hashimoto T,Nonaka S,Takayama K,Brun R.Shock detachment distance on blunt bodies in nonequilibrium flow.AIAA J 2007;45(6):1424–9.

    久久天躁狠狠躁夜夜2o2o| av欧美777| 国产又爽黄色视频| 午夜福利乱码中文字幕| 人妻一区二区av| 国产免费av片在线观看野外av| 男女午夜视频在线观看| 91字幕亚洲| 老熟女久久久| 国产在线一区二区三区精| 国产男靠女视频免费网站| 日韩制服丝袜自拍偷拍| 丁香欧美五月| h视频一区二区三区| 国产精品久久久人人做人人爽| 一区二区日韩欧美中文字幕| 日韩欧美三级三区| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 又黄又粗又硬又大视频| 日韩免费av在线播放| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 亚洲欧洲日产国产| 2018国产大陆天天弄谢| 午夜老司机福利片| 日韩有码中文字幕| 午夜激情久久久久久久| 久久青草综合色| 下体分泌物呈黄色| 午夜免费成人在线视频| 亚洲精品一二三| 免费观看av网站的网址| 69精品国产乱码久久久| 国产精品欧美亚洲77777| 在线观看免费高清a一片| 麻豆成人av在线观看| 欧美日韩亚洲高清精品| 午夜福利视频在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 黄色成人免费大全| 精品亚洲成国产av| 一本一本久久a久久精品综合妖精| 午夜福利,免费看| 国产欧美亚洲国产| 亚洲国产欧美一区二区综合| 欧美日韩一级在线毛片| 欧美一级毛片孕妇| 后天国语完整版免费观看| 亚洲免费av在线视频| 最黄视频免费看| 国产熟女午夜一区二区三区| www.精华液| 日韩免费高清中文字幕av| 免费在线观看影片大全网站| avwww免费| 欧美在线黄色| 色综合欧美亚洲国产小说| 国产成人免费观看mmmm| 777米奇影视久久| 一个人免费在线观看的高清视频| 久久av网站| 99re6热这里在线精品视频| 黑丝袜美女国产一区| 极品教师在线免费播放| 交换朋友夫妻互换小说| 免费人妻精品一区二区三区视频| 亚洲人成电影免费在线| 首页视频小说图片口味搜索| 欧美日韩亚洲国产一区二区在线观看 | 妹子高潮喷水视频| 新久久久久国产一级毛片| 国产一卡二卡三卡精品| 日韩欧美免费精品| 久久午夜亚洲精品久久| 精品国产一区二区久久| 日本一区二区免费在线视频| 制服诱惑二区| 欧美精品一区二区大全| 汤姆久久久久久久影院中文字幕| 亚洲精品自拍成人| 日韩有码中文字幕| 成年女人毛片免费观看观看9 | 汤姆久久久久久久影院中文字幕| 在线观看免费午夜福利视频| 精品午夜福利视频在线观看一区 | 蜜桃国产av成人99| 国产又色又爽无遮挡免费看| 欧美激情极品国产一区二区三区| 精品国产一区二区三区久久久樱花| 操美女的视频在线观看| 香蕉久久夜色| 在线观看一区二区三区激情| 99精国产麻豆久久婷婷| 少妇的丰满在线观看| 在线 av 中文字幕| 国产伦理片在线播放av一区| 亚洲国产av影院在线观看| 色综合婷婷激情| 成人国产一区最新在线观看| 亚洲av日韩在线播放| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区久久久樱花| 国产成人欧美在线观看 | 国产xxxxx性猛交| av网站免费在线观看视频| 国产高清videossex| 亚洲中文字幕日韩| 国产三级黄色录像| 91麻豆av在线| 老司机在亚洲福利影院| 亚洲 国产 在线| 丁香六月天网| 国产xxxxx性猛交| 国产三级黄色录像| 视频在线观看一区二区三区| 精品国产乱码久久久久久小说| 搡老乐熟女国产| 美女国产高潮福利片在线看| 欧美+亚洲+日韩+国产| 男女床上黄色一级片免费看| 最近最新中文字幕大全免费视频| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 高清欧美精品videossex| 不卡一级毛片| 男女无遮挡免费网站观看| 成年人免费黄色播放视频| 制服人妻中文乱码| 老司机深夜福利视频在线观看| 精品一区二区三区视频在线观看免费 | 精品一区二区三卡| 国产在线视频一区二区| a在线观看视频网站| 黄色a级毛片大全视频| 每晚都被弄得嗷嗷叫到高潮| 大陆偷拍与自拍| 久久香蕉激情| 欧美乱码精品一区二区三区| 国产av一区二区精品久久| 国产黄频视频在线观看| 精品国产国语对白av| 欧美精品高潮呻吟av久久| 欧美在线一区亚洲| 免费在线观看日本一区| 国产又爽黄色视频| 麻豆国产av国片精品| 成人精品一区二区免费| 国产不卡一卡二| 汤姆久久久久久久影院中文字幕| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区三| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 好男人电影高清在线观看| 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 老汉色∧v一级毛片| 免费高清在线观看日韩| 国产日韩一区二区三区精品不卡| 欧美+亚洲+日韩+国产| 免费高清在线观看日韩| 国产麻豆69| 欧美日韩福利视频一区二区| 99在线人妻在线中文字幕 | 日本欧美视频一区| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 777米奇影视久久| 大片免费播放器 马上看| 免费日韩欧美在线观看| 大型黄色视频在线免费观看| 亚洲精品一二三| cao死你这个sao货| 女人精品久久久久毛片| av国产精品久久久久影院| 亚洲三区欧美一区| 亚洲成人国产一区在线观看| 母亲3免费完整高清在线观看| 人妻久久中文字幕网| 国产精品1区2区在线观看. | 黄频高清免费视频| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃| 日韩三级视频一区二区三区| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 免费在线观看影片大全网站| 视频区欧美日本亚洲| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 乱人伦中国视频| 久久中文字幕人妻熟女| 91麻豆av在线| 国产精品1区2区在线观看. | 久久久久久人人人人人| 精品人妻熟女毛片av久久网站| 亚洲人成电影免费在线| 咕卡用的链子| 一个人免费看片子| 丝袜美腿诱惑在线| 嫁个100分男人电影在线观看| 日本av手机在线免费观看| 大型黄色视频在线免费观看| 国产成人精品在线电影| 少妇的丰满在线观看| 国产精品久久久久久精品电影小说| 国产淫语在线视频| cao死你这个sao货| 国产高清国产精品国产三级| 老司机靠b影院| 亚洲精品国产精品久久久不卡| 久久久久久久精品吃奶| 欧美成人免费av一区二区三区 | 咕卡用的链子| 欧美av亚洲av综合av国产av| 日韩熟女老妇一区二区性免费视频| 亚洲熟女精品中文字幕| 成人18禁在线播放| 免费日韩欧美在线观看| 欧美精品高潮呻吟av久久| 99精国产麻豆久久婷婷| 99热网站在线观看| 国产成人免费无遮挡视频| 每晚都被弄得嗷嗷叫到高潮| 精品乱码久久久久久99久播| 丝袜人妻中文字幕| √禁漫天堂资源中文www| 精品少妇一区二区三区视频日本电影| 久久天堂一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美网| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 丰满饥渴人妻一区二区三| 99国产综合亚洲精品| 两个人看的免费小视频| 午夜福利乱码中文字幕| 日韩大片免费观看网站| 自线自在国产av| 久久久久久久久久久久大奶| 咕卡用的链子| www.999成人在线观看| 亚洲国产欧美在线一区| 国产精品影院久久| 精品国产乱码久久久久久小说| 曰老女人黄片| 亚洲av第一区精品v没综合| 人人妻人人添人人爽欧美一区卜| 99re在线观看精品视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品在线美女| 国产精品 国内视频| 咕卡用的链子| av有码第一页| xxxhd国产人妻xxx| 蜜桃在线观看..| av片东京热男人的天堂| 久久精品亚洲熟妇少妇任你| 久久久精品免费免费高清| 国产欧美日韩综合在线一区二区| 日韩一区二区三区影片| 欧美在线一区亚洲| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 久久久久久久久免费视频了| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 精品人妻1区二区| 中文欧美无线码| av不卡在线播放| 国产在线视频一区二区| 91老司机精品| kizo精华| 亚洲精品国产一区二区精华液| 十八禁高潮呻吟视频| 一区二区三区精品91| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 怎么达到女性高潮| 亚洲av美国av| 成人影院久久| 在线观看免费视频网站a站| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 在线观看66精品国产| 丝袜美腿诱惑在线| 欧美日韩国产mv在线观看视频| 欧美黑人欧美精品刺激| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 成年女人毛片免费观看观看9 | 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线| 久久久国产成人免费| 水蜜桃什么品种好| 亚洲国产欧美一区二区综合| 亚洲一区中文字幕在线| 亚洲av第一区精品v没综合| 国产免费视频播放在线视频| 国产精品国产av在线观看| 99香蕉大伊视频| 免费在线观看视频国产中文字幕亚洲| 乱人伦中国视频| 亚洲av日韩在线播放| svipshipincom国产片| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 欧美乱码精品一区二区三区| 亚洲av电影在线进入| 一级毛片女人18水好多| 亚洲成av片中文字幕在线观看| 午夜激情久久久久久久| 99re在线观看精品视频| av又黄又爽大尺度在线免费看| 97在线人人人人妻| 欧美人与性动交α欧美精品济南到| 又紧又爽又黄一区二区| 最近最新免费中文字幕在线| 精品福利观看| 啪啪无遮挡十八禁网站| 美女国产高潮福利片在线看| 亚洲av日韩在线播放| av电影中文网址| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| av天堂久久9| 久久久精品免费免费高清| 精品欧美一区二区三区在线| 美女午夜性视频免费| 夜夜夜夜夜久久久久| 午夜视频精品福利| av福利片在线| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 国产精品98久久久久久宅男小说| 满18在线观看网站| 亚洲色图av天堂| 日本a在线网址| 成人影院久久| 免费一级毛片在线播放高清视频 | 国产精品久久电影中文字幕 | 一级毛片电影观看| 美女视频免费永久观看网站| 欧美日本中文国产一区发布| 两人在一起打扑克的视频| 欧美国产精品va在线观看不卡| 日韩欧美一区二区三区在线观看 | 久久中文字幕人妻熟女| 欧美黄色淫秽网站| 少妇 在线观看| 亚洲av日韩精品久久久久久密| 一级片'在线观看视频| 亚洲美女黄片视频| 日韩大片免费观看网站| 99久久人妻综合| 精品国产乱码久久久久久小说| 妹子高潮喷水视频| 国产熟女午夜一区二区三区| 免费在线观看影片大全网站| 久9热在线精品视频| 变态另类成人亚洲欧美熟女 | 老司机午夜福利在线观看视频 | 成在线人永久免费视频| 最新美女视频免费是黄的| av视频免费观看在线观看| 久久精品国产99精品国产亚洲性色 | 成人影院久久| 欧美午夜高清在线| 桃花免费在线播放| 99国产极品粉嫩在线观看| 亚洲人成电影免费在线| 亚洲全国av大片| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 在线看a的网站| 天天躁日日躁夜夜躁夜夜| 色94色欧美一区二区| 怎么达到女性高潮| 深夜精品福利| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产 | 天天操日日干夜夜撸| 香蕉久久夜色| 久久久国产精品麻豆| 窝窝影院91人妻| 亚洲第一青青草原| 久久青草综合色| 男女床上黄色一级片免费看| 欧美大码av| 91麻豆精品激情在线观看国产 | 日韩欧美三级三区| 最新在线观看一区二区三区| 天堂俺去俺来也www色官网| 一二三四社区在线视频社区8| 亚洲精品乱久久久久久| 精品福利观看| 亚洲久久久国产精品| 国产成人欧美在线观看 | 热99国产精品久久久久久7| 国产不卡av网站在线观看| 久久久精品国产亚洲av高清涩受| 欧美精品亚洲一区二区| 一个人免费在线观看的高清视频| 久久久久精品国产欧美久久久| 视频区欧美日本亚洲| 中文字幕最新亚洲高清| 精品人妻1区二区| 中亚洲国语对白在线视频| 啦啦啦视频在线资源免费观看| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 亚洲精品国产区一区二| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| √禁漫天堂资源中文www| 1024香蕉在线观看| 看免费av毛片| 久久中文字幕人妻熟女| 国产老妇伦熟女老妇高清| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 深夜精品福利| 精品少妇内射三级| 久久人妻福利社区极品人妻图片| 成年人午夜在线观看视频| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽 | 精品久久蜜臀av无| 国产又爽黄色视频| 国产精品久久电影中文字幕 | 国产免费现黄频在线看| 我要看黄色一级片免费的| 国产福利在线免费观看视频| 亚洲欧美精品综合一区二区三区| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 午夜激情av网站| 最新的欧美精品一区二区| 建设人人有责人人尽责人人享有的| 青草久久国产| 日本五十路高清| 一本色道久久久久久精品综合| 亚洲全国av大片| 亚洲av国产av综合av卡| 欧美日韩亚洲国产一区二区在线观看 | 亚洲中文日韩欧美视频| 丝瓜视频免费看黄片| 视频在线观看一区二区三区| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 国产又色又爽无遮挡免费看| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 最新的欧美精品一区二区| 美女国产高潮福利片在线看| 国产伦人伦偷精品视频| 久久精品亚洲精品国产色婷小说| 日韩熟女老妇一区二区性免费视频| 久久热在线av| 欧美午夜高清在线| 亚洲avbb在线观看| 久久久国产欧美日韩av| 99香蕉大伊视频| 丝袜在线中文字幕| 大香蕉久久成人网| 亚洲欧美日韩另类电影网站| 欧美精品一区二区大全| 中文字幕精品免费在线观看视频| 亚洲精品av麻豆狂野| 久久亚洲精品不卡| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕日韩| 欧美激情高清一区二区三区| 精品国产国语对白av| 18禁国产床啪视频网站| 亚洲综合色网址| 97在线人人人人妻| 亚洲avbb在线观看| 亚洲精品美女久久av网站| 在线观看舔阴道视频| 午夜福利在线免费观看网站| 精品国产乱子伦一区二区三区| 久久精品aⅴ一区二区三区四区| 免费久久久久久久精品成人欧美视频| 久久av网站| netflix在线观看网站| cao死你这个sao货| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲av一区麻豆| 亚洲国产看品久久| 黄色a级毛片大全视频| 丝袜美腿诱惑在线| 亚洲五月色婷婷综合| 亚洲人成电影免费在线| 国产淫语在线视频| 精品少妇久久久久久888优播| 欧美激情高清一区二区三区| 国产亚洲av高清不卡| 国产成人av教育| 啦啦啦免费观看视频1| 青青草视频在线视频观看| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 黄色片一级片一级黄色片| 啦啦啦免费观看视频1| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区在线臀色熟女 | 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 日本av手机在线免费观看| 亚洲精品美女久久av网站| xxxhd国产人妻xxx| 国产三级黄色录像| 成人影院久久| 久热这里只有精品99| 黄色丝袜av网址大全| av视频免费观看在线观看| svipshipincom国产片| 久久天堂一区二区三区四区| 国产精品久久电影中文字幕 | 午夜视频精品福利| 在线观看免费午夜福利视频| 老熟妇仑乱视频hdxx| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 亚洲国产av新网站| 十八禁高潮呻吟视频| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 国产亚洲欧美精品永久| 精品人妻在线不人妻| 色尼玛亚洲综合影院| 女人久久www免费人成看片| 757午夜福利合集在线观看| 国产熟女午夜一区二区三区| 日本欧美视频一区| 国产精品电影一区二区三区 | 91麻豆av在线| 国产欧美日韩精品亚洲av| 夜夜骑夜夜射夜夜干| 香蕉国产在线看| 亚洲国产毛片av蜜桃av| 久久人人爽av亚洲精品天堂| 日韩欧美免费精品| 热re99久久精品国产66热6| 国产单亲对白刺激| 中文字幕人妻丝袜一区二区| www日本在线高清视频| 成人手机av| 巨乳人妻的诱惑在线观看| 亚洲欧美日韩高清在线视频 | 另类精品久久| 亚洲成国产人片在线观看| 亚洲av美国av| 在线十欧美十亚洲十日本专区| 制服诱惑二区| av欧美777| 国产1区2区3区精品| 国产精品av久久久久免费| 欧美性长视频在线观看| 久久狼人影院| 一区在线观看完整版| 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美激情在线| 男人操女人黄网站| 999久久久国产精品视频| 久久中文字幕一级| 黄片播放在线免费| 国产精品二区激情视频| 午夜免费鲁丝| 欧美日韩中文字幕国产精品一区二区三区 | 色94色欧美一区二区| 成人永久免费在线观看视频 | 色老头精品视频在线观看| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡| 久久性视频一级片| 国产高清视频在线播放一区| 精品国产一区二区久久| 巨乳人妻的诱惑在线观看| 男女高潮啪啪啪动态图| av欧美777| 亚洲精品久久午夜乱码| 国产亚洲欧美在线一区二区| 国产亚洲精品一区二区www | 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 777久久人妻少妇嫩草av网站| 国产麻豆69| 99精品欧美一区二区三区四区| 在线十欧美十亚洲十日本专区| 99久久国产精品久久久| 国产不卡av网站在线观看| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻熟女乱码| 蜜桃在线观看..| 免费在线观看视频国产中文字幕亚洲| 99热国产这里只有精品6|