• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Reliability of Double Generalized Petersen Graph?

    2018-05-15 00:04:00MAShengdongMENGJixiang

    MA Shengdong,MENG Jixiang

    (School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830046,China)

    0 Introduction

    Throughout this paper,we consider only f i nite undirected graphs without loops or multiple edges.For notation and terminology not def i ned here,we refer the reader to[1].LetGbe a graph with vertex setV=V(G)and edge setE=E(G).For anyx∈V(G),the set{y∈V(G){x}|xy∈E(G)}is the neighborhood ofxinG,which is denoted byNG(x).The minimum degree ofGis the parameter δ(G)=min{dG(x)|x∈V(G)},wheredG(x)=|NG(x)|is the degree ofxinG.Analogously,the maximum degree Δ(G)ofGcan be def i ned.A graphGisr-regular if Δ(G)= δ(G)=r.Fore=xy∈E(G),the degree of the edgeeis def i ned as ξG(e)=d(x)+d(y)?2.The minimum edge degree of a graphGis ξ(G)=min{ξG(e)|e∈E(G)}.The path onnvertices and(n?1)edges is denoted byPn.

    The connectivity κ(orλ)of a graphGis the minimum cardinality|S|of a setSof vertices(edges)whose deletion fromGresults in either a disconnected graph or a trivial graph.In this case,the setSis a vertex-cut(edge-cut)ofG.If κ= δ,then the graph is maximally connected.If λ = δ,then the graph is maximally edge connected.Harary[2]def i ned the conditional connectivity κ(G,P)as the minimum cardinality of a set of vertices,if it exists,whose deletion disconnectsGand where every remaining component has property P.This led to the study of a number of variations to the classical nation of connectivity,such as super-connectivity and super-edge-connectivity.The super-connectivity(super-edge-connectivity)of a connected graphGis the minimum number of vertices(edges)that need to be deleted fromGin order to disconnectGwithout creating isolated vertices.In the same paper,Harary also asked about the conditional connectivity of some interesting families of graphs,such as the complete multipartite graphs,the cubes,and the generalized Petersen graphs.In this work,we address his question by establishing the super-connectivity and super-edge-connectivity of the family of double generalized Petersen graphs.

    Anh-connected graphGhas connectivity κ(G)≥h,for someh∈ N.A graphGis super-connected(or simply super-κ),ifGis connected and the deletion of every minimum vertex-cut yields an isolated vertex.Thus,a necessary condition for a graphGto be super-κ is thatGis maximally connected.However,the converse is not necessarily true.In general,super-vertex-cut or super-edge-cut do not always exist.The super connectivity κ1(G)(respectively,superedge-connectivity λ1(G))is the minimum cardinality over all super vertex-cuts(respectively,super-edge-cuts)inGif any,and,by convention,is+∞ otherwise.For a non-trivial graphG,if λ1(G)=ξ(G),thenGis optimal.

    The generalized Petersen graphsGP[n,k](see Fig 1),f i rst introduced by Coxeter[3]in 1950,although the name was only coined in 1969 by Watkins[4],are a natural generalization of the well-known Petersen graph.

    Fig 1 The double generalized Petersen graph GP[11,3]and GP[17,5]

    Def i nition 1Given an integern≥3 andk∈Zn{0},2≤2k<n,the generalized Petersen graphGP(n,k)is def i ned to have vertex set{ui,vi|i∈Zn}and edge set the union ?∪Σ∪I,where

    A natural generalization of the generalized Petersen graphs are the double generalized Petersen graphsDP[n,t],which were f i rst introduced by Zhou and Feng(2012)by modifying the generalized Petersen graphs in[5].In[6],Zhou and Feng(2014)determined all non-Cayley vertex-transitive graphs and all vertex-transitive graphs among double generalized Petersen graphs.They are def i ned as follows(two examples are given in Fig 2).

    Fig 2 The double generalized Petersen graph DP[5,2]and DP[8,3]

    Def i nition 2Given an integern≥3 andk∈Zn{0},2≤2k<n,the double generalized Petersen graphDP[n,k]is def i ned to have vertex set{xi,yi,ui,vi|i∈Zn}and edge set the union ?∪Σ∪I,where

    In this work,it is implicitly assumed that all the subscripts of the vertices ofDP[n,k]are taken modulon.

    The double generalized Petersen graphDP[n,k]is made up of an outer cycle on the outer vertices;linner cycle each of lengthon the inner vertices,since the subgraph ofGinduced by inner vertices is a bipartite graph,thustis even andt≥4;and spokes connecting an outer vertexxi,yiwith an inner vertexui,vi,wherei∈Zn(refer to Fig 2).The edges of the outer cycle are referred to as the outer edges,where as those of the inner cycle are the inner edges.In this study,the α-cycle is the inner cycle containing the vertexuα.We remark that if a vertexuiis on the α-cycle,thenvi+kandvi?kare also on the α-cycle.Ifn=3k,thenDP[n,k]haskinner cycles each of lengtht=6.

    The connectivity and the super-connectivity of various families of graphs have been studied in literature,including circulant graphs[7],hypercubes(see[8]),and products of various graphs(see[9,10]).In[11],Ferrero and Hanusch establishedlowerandupper-boundsforther-componentedge-connectivityofthegeneralizedPetersengraphsGP[n,k],wheregcd(n,k)=1.In[12],BoruzanliandGaucideterminedwhenGP[n,k]aresuper-connected,superedge-connected and show that their super-connectivity and their super-edge-connectivity are both equal to four whenn?{2k,3k}.In[13],Kutar and Petecki characterized the automorphism groups and investigated the hamiltonicity,vertex-coloring and edge-coloring properties of double generalized Petersen graph.Our result that the double generalized Petersen graphs are super-connected and super edge-connected emphasizes further their suitability for interconnection networks,even though their super-connectivity and super-edge-connectivity are not particularly high.

    1 Super-connectivity of DP[n,k]

    In this section,we prove that forn>kandk≥1,the graphDP[n,k]is super-connected and κ1(DP[n,k])=4,whenn?{2k,3}.We do this by f i rst showing that providedn?{2k,3},any vertex-cut of cardinality three isolates a vertex,then we exhibit a super vertex-cut of cardinality four which disconnectsDP[n,k]without isolating any vertex.

    Lemma 1LetG=DP[n,k]forn>3 andn>k≥1.IfSis a vertex-cut ofG,thenScontains at least one outer vertex ofG.

    ProofSuppose that all the vertices ofSare inner vertices ofG.InG?S,all the remaining inner vertices are adjacent to an outer vertex and each outer vertex lies on the outer cycles.Thus,G?Sis connected,a contradiction.Hence,Scontains at least one outer vertex ofG.

    Inthefollowingtheoremweshowthatforn>kandk≥1,thegraphDP[n,k]issuper-connectedandκ1(DP[n,k])=4,whenn?{2k,3};The idea behind the proof is to show that if a vertex-cutSofG=DP[n,k]has only three vertices,thenG?Sis either connected or has an isolated vertex.

    Theorem 1LetG=DP[n,k]fork≥1 andn>k.The super-connectivity κ1ofGis given by

    ProofItis easyto seethatDP[3,1]andDP[3,2]are notsuper-κ,since notevery vertex-cutwith cardinalitythree isolates a vertex.A possible vertex-cut with three vertices which create an isolated vertex isS={uα,xα+1,xα+2},where α∈{0,1,2}.Another kind of vertex-cut with three vertices that does not create an isolated vertex isS={u0,u1,u2}.Hence κ1(DP[3,1])= κ1(DP[3,2])=3.

    In the double generalized Petersen graphDP[2k,k],the inner vertices generate a union of 2kvertex-disjoint inner edges.Since the deletion of the two outer vertices which are neighbours of the vertices joined by the same inner edge disconnectsDP[2k,k].It is easy to see that its connectivity κ(DP[2k,k])=2 and thatDP[2k,k]is not super-κ.

    Letn>2kandn≠3.We suppose thatSbe a super vertex-cut such that|S|=κ1=3.Thus,G?Sis disconnected and has no isolated vertices.By Lemma 1,Scontains at least one outer vertex and we only need to consider the following three cases.

    Case 1SupposeSconsists of one outer vertex and two inner vertices.In this case,all the remaining outer vertices lie on a pathPn?1or a cycleCn.

    Case 1.1We suppose f i rst that these two inner vertices ofSare incident to the outer verticesxioryj,wherei,j∈ Zn.Without loss of generality,we letS={xα,uβ,uγ},then β ≠ γ.where α,β,γ ∈ {0,1,···,n?1}.

    (i)we suppose f i rst that either α = β or α = γ,without loss of generality,we let α = β,then all the remaining inner vertices are joined by spokes to the outer pathPn?1and outer cycleCn,respectively.

    (ii)If α ≠ β and α ≠ γ.The remaining inner vertices are all joined by spokes to the outer path and outer cycle,except foruα.IfNG?S(uα)={vα+k,vα?k},then the verticesvα+kandvα?kare joined by spokes to the outer cycleCn.Thus,there be must exist a inner vertexvτand it’s neighborsuτ+kanduτ?k,which are joined by a spoke to the outer path.Hence,in either case,G?Sis connected,contradiction.

    Thus,we can assume thatS={xα,vβ,vγ},then β ≠ γ.The remaining inner vertices are all joined by spokes to the outer path and outer cycle,except foruα.IfNG(uα)={xα,vβ,vγ},thenuαis an isolated vertex inG?S,a contradiction.If not,then there is an inner vertexuτis adjacent tovα,where τ≠β or τ≠γ.In this case,the vertexuτis adjacent to an outer cycle and henceG?Sis connected,a contradiction.

    Case 1.2We suppose that the two inner vertices ofSare incident to the outer vertexxβandyγ,respectively,sayS={xα,uβ,vγ},where α,β,γ ∈ {0,1,···,n?1}.Ifuα≠uβ,then all the remaining inner vertices are joined by spokes to the outer cycleCnand outer pathPn?1,a contradiction.If not,thenuα=uβ,and the remaining inner vertices are all joined by spoke to the outer cycle and outer path,excepted foruα.However,uαis adjacent to at least one of the verticesvα+kandvα?k,which is joined by a spoke to the outer cycleCn.Hence,G?Sis connected,a contradiction.

    Case 2Suppose thatSconsists of two outer vertices and one inner vertexuiorvj,wherei,j∈{0,1,···,n?1}.

    Case 2.1If these two outer vertices in same outer cycle,without loss of generality,we letS={xα,xβ,uγ},then α≠β,where α,β,γ ∈{0,1,···,n?1}.

    If we suppose thatxαis adjacent toxβ,then all the remaining outer vertices lie on a pathPn?2and a outer cycleCn,respectively.

    (i)If either γ = α or γ = β,without loss generality,we let γ = β,thenuαis adjacent to inner verticesvγ?kandvγ+kinG?Sand all the remaining inner vertices except foruγare joined by spokes to the outer pathPn?2and a outer cycle

    Cn.

    (ii)If γ ≠ β and α ≠ γ,then,all the inner vertices except foruβanduγare joined by spokes to the outer pathPn?2and a outer cycleCn,respectively.Since,the two inner verticesuβanduγare adjacent to the inner verticesvβ+k,vβ?k,vγ+kandvγ?kinG?S,respectively.

    Hence,in either case,G?Sis connected,contradiction.

    Thus,we can assume thatxαandxβare not adjacent,that is,the outer cycle is divided into two disjoint paths.Letxτbelong to the outer path,and ifNG(xτ)={xα,xβ,uγ},thenxτis an isolated vertex inG?S,a contradiction.If not,there is no common neighbor betweenxαandxβ.If the two paths are in the same component,then a similar argument to that made above implies that all the remaining inner vertices are also in the same component.ThusG?Sis connected,a contradiction.Hence,the two paths must be in two diあerent components.

    Case 2.1.1We suppose that either γ = β or α = γ,without loss of generality,say α = γ.The outer vertices{xβ+1,xβ+2,···,xα?1}lie on a path and are adjacent to the inner vertices{uβ+1,uβ+2,···,uα?1}.We let these vertices be in one component,sayC1.Similarly,the vertices{xα+1,xα+2,···,xα?1,uα+1,uα+2,···,uβ?1}belong to the same component.Suppose that this is diあerent fromC1,sayC2.Also,the vertices{v0,v1,···,vn?1,y0,y1,···,yn?1}belong to the same component.Suppose that this is diあerent fromC2,sayC3.

    Since every inner verticesuiinC1andC2all have two neighbor verticesvi+kandvi?kbelong toC3,wherei∈ Znandi? {α,β}.Thus,componentsC1,C2andC3are connected.We consider the vertexuβ,sinceNG?S(uβ)={vβ+k,vβ?k}and the verticesvβ+kandvβ?kbelong toC3.Then,all the remaining vertices ofG?Sare in the same componentC3.HenceG?Sis connected,a contradiction.

    Case 2.1.2Thus γ ≠ β and α ≠ γ,without loss generality,we assume that α < γ < β.The outer vertices{xα+1,xα+2,···,xγ,···,xβ?1}lie on a path in one component,sayC1.The inner vertices{uα+1,uα+2,···,uγ?1,uγ+1,···,uβ?1}are joined by spokes toC1.Similarly,the vertices{xβ+1,···,xα?1,uβ+1,···,uα?1}belong to the same component,suppose that this is diあerent fromC1,sayC2.Also,the vertices{v0,v1,···,vn?1,y0,y1,···,yn?1}belong to the same component.Suppose that this is diあerent from bothC1andC2,sayC3.

    Since all neighbors of each vertex inC1andC2,contain inC3,then,the componentC1,C2andC3are connected.In the following,we consider the inner verticesuαanduβ,sinceNG?S(uα)={vα+k,vα?k},NG?S(uβ)={vβ+k,vβ?k},and the verticesvα+k,vα?k,vβ+k,vβ?kbelong toC3,we have all the remaining vertices ofG?Sare in the same componentC3.Hence,G?Sis connected,a contradiction.

    Case 2.1.3ForS={xα,xβ,vγ},where α,β,γ ∈ {0,1,···,n? 1}.If we suppose thatxαis adjacent toxβ.The remaining inner vertices,except foruαanduβare all joined by spokes to the outer pathPn?2and outer cycleCn,respectively.Assume that these vertices contain in one component,sayC.Since,NG?S(uα)={vα+k,vα?k},NG?S(uβ)={vβ+k,vα?k},then at least three vertices are belong toC.Hence,all the remaining vertices ofG?Scontain in the same component,a contradiction.Thus,we can assume thatxαandxβare not adjacent.Then,a similar argument to that made above implies that all the remaining vertices are also in the same component.Hence,G?Sis connected,a contradiction.

    Case 2.2If this two outer vertices in diあerent outer cycles.Without loss of generality,we letS={xα,yβ,uγ},where α,β,γ ∈ {0,1,···,n?1}.Then,all the remaining outer vertices lie on two pathsrespectively.

    (i)If α = γ,the remaining inner vertices are all joined by spokes to the outer paths,except forvβ.We consider the vertexvβ.SinceNG(vβ)={yβ,uβ?k,uβ+k},there exist at least one of the verticesuβ?koruβ+k.Which is joined by spoke to the outer pathIn the following,we consider the vertexuτ,where γ ≠ τ.SinceNG?S(uτ)={xτ,vτ+k,vτ?k},then,the two outer paths are connected.

    (ii)If α ≠ γ,then a similar argument to that made above implies that all the other remaining inner vertices are joined by spokes to the outer paths,except foruβandvα.SinceNG(uα)={xα,vα?k,vα+k},NG(vβ)={yβ,uβ?k,uβ+k},andSdoes not contain any vertices of the setNG(uα),then,uαis joined byvα?kandvα+kto the outer path.Forvβ,its neighborsuβ?kanduβ+khave at least one not inS,thus,vβis connected with all remaining vertices ofG?S.

    Hence,in either case,G?Sis connected,a contradiction.

    Case 3Suppose thatSconsists of three outer vertices,then the inner cycles are intact inG?S.

    Case 3.1We suppose f i rst that these three outer vertices lie on a same outer cycle.If,without loss of generality,we letS={xα,xβ,xγ},where α,β,γ ∈ {0,1,···,n?1},neither two of which are equal.Without loss of generality,we assume that α<β<γ.

    The outer verticesxα+1,···,xβ?1all lie on a path inG?Sand are adjacent to the corresponding inner verticesuα+1,···,uβ?1.Thus,they all belong to the same component,sayC1.Similarly,the verticesxβ+1,···,xγ?1,uβ+1,···,uγ?1belongtothesamecomponent.SupposethatthisisdiあerentfromC1,sayC2.Also,theverticesxγ+1,···,xα?1,uγ+1,···,uα?1belongtothesamecomponent.SupposethatthisisdiあerentfrombothC1andC2,sayC3.Letthevertices{v0,v1,···,vn?1,y0,y1,···,yn?1}belong to the same component.Suppose that this is diあerent fromC1,C2andC3,sayC4.

    SinceSconsists of only outer vertices,which is lie on same outer cycle,then another outer cycle and inner cycles are intact.However,the verticesuiof componentC1,C2andC3all have neighbors in componentC4,wherei∈ {0,1,···,α?1,α+1,···,β?1,β+1,···,γ?1,γ+1,···,n?1}.Thus,the componentC1,C2,C3andC4(even if any two of these component,or all the three component are empty)are connected.In the following,we consider the verticesuα,uβ,uγ.SinceNG?S(uα)={vα?k,vα+k},NG?S(uβ)={vβ?k,vβ+k}andNG?S(uγ)={vγ?k,vγ+k},then,uα,uβanduγare also belongs toC4.Hence,G?Sis connected,a contradiction.

    Case 3.2LetS={xα,xβ,yγ},where α,β,γ ∈ {0,1,···,n?1}and α ≠ β.Then,the inner cycles are intact inG?S.

    (i)If we suppose thatxαis adjacent toxβthen the outer verticesxβ+1,xβ+2,···,xα?1all lie on a path inG?Sand are adjacent to the corresponding inner verticesuβ+1,uβ+2,···,uα?1.Thus,they all belong to the same component sayC1.Similarly,the verticesyγ+1,yγ+2,···,yγ?1,vγ+1,vγ+2,···,vγ?1belong to the same component.Suppose that this component diあerent fromC1,sayC2.But every inner verticesuihave at least one neighborvjinC2,wherei,j∈ {0,1,···,n?1}andj≠γ,then,uαanduβbelongs toC2.Thus,C1andC2are connected.In the following,we consider the vertexvγ.IfNG(vγ)={yγ,uα,uβ},then sinceuαanduβalso belong toC2,thenvγbelong toC2.If not,vγhave at least one neighbor inC1.Hence,G?Sis connected,contradiction.

    (ii)If we suppose thatxαis not adjacent toxβ,then a similar argument to that made from above that the verticesxα+1,···,xβ?1,uα+1,···,uβ?1belong to the same component,sayC1.Similarly,the verticesxβ+1,···,xα?1,uβ+1,···,uα?1belong to the same component.Suppose that this is diあerent fromC1,sayC2.Also,the verticesvγ+1,···,vγ?1,yγ+1,···,yγ?1belong to the same component.Suppose that this is diあerent from bothC1andC2,sayC3.Since every inner verticesuiall have at least one neighborvjinC3,wherei,j∈ {0,1,···,n?1}andj≠ γ.Thus,the componentC1,C2andC3are connected.Then,the verticesuα,uβanduγbelong toC3.Hence,G?Sis connected,a contradiction.

    In either case,G?Sis connected,a contradiction.Thus,Case 3 is also not possible.

    Hence,|S|≠ 3 and the super-connectivity κ1is at least four.A possible vertex-cut with four vertices that does not create an isolated vertex isS={xα,xα+3,uα+1,uα+3}and thus κ1≤ 4.

    The case whenn<2kfollows sinceDP[n,k]is isomorphic toDP[n,n?k].

    2 Super-edge-connectivity of DP[n,k]

    In this section,we prove that for all values ofn>k,k≥1 andn?{2k,3},the graphDP[n,k]is super edgeconnected and optimal.We do this by f i rst showing that,providedn?{2k,3},any edge-cut with cardinality three isolates a vertex.We then exhibit a super edge-cut of cardinality four which disconnectsDP[n,k]without isolating any vertex.

    Lemma 2LetG=DP[n,k]forn≥3,k≥1.IfSis an edge-cut ofG,thenScannot be a subset of inner edges.

    ProofSuppose thatSconsists of only inner edge andG?Sis disconnected.The outer cycle is intact and each inner vertex is connected to the outer cycle by a spoke,a contradiction.

    Since the degree of any vertex inGP[n,k]is three,deleting the three edges incident to a vertex necessary isolates that vertex.Hence,we have the following result.

    Lemma 3LetG=DP[n,k]fork≥1,n>kandn≠2k.IfSis a super edge-cut ofG,thenScannot be contain a set of three edges which are incident to the same vertex.

    The second theorem in this paper are given in the following.

    Theorem 2LetG=DP[n,k]fork≥1 andn>k.The super-edge-connectivity λ1ofGis given by

    Furthermore,ifn?{3,2k},thenGis optimal.

    ProofIt is easy to see that ifn=3,then deleting the three spokes incident to the verticesxi(oryi)disconnectsDP[3,k]without isolating a vertex,wherei∈ {0,1,2}andk∈ {1,2}.ThusDP[3,k]is not super-λ.In the double generalized Petersen graphDP[2k,k],the inner vertices generate a union of 2kvertex-disjoint inner edges.Since the deletion of the two spokes adjacent to any inner edge also disconnectsDP[2k,k].Thus,λ(DP[2k,k])=2 andDP[2k,k]is not super-λ.

    In the following,we letn>2kandn≠3.Suppose that the super-edge-connectivity λ1is three and letSbe a super edge-cut such that|S|=λ1=3.Thus,G?Sis connected and has no isolated vertices.

    In the sequel,forj∈ {0,1,···,n?1},we use the notioneij,eojandesjto denote an inner edge,an outer edge and a spoke,respectively,which is incident to the vertexxj(oryj).Lettis the length of inner cycle ofDP[n,k]andt≥4.

    Claim 1Scontains at least one outer edge.

    Proof of Claim 1Suppose that the outer cycle is intact.By Lemma 2,Sis one of the following three sets of edges.

    Case 1LetS={esα,esβ,esγ}for some α,β,γ ∈ {0,1,···,n? 1},every inner cycle is intact and there aret≥ 4 vertices in each inner cycle.

    Case 1.1We suppose f i rst thatSconsists of three spokes,which are incident to the outer verticesxi(yi),wherei,j∈ {0,1,···,n?1}.Since the length of inner cyclet≥ 4,then each inner cycle contains at least two verticesuiandvjwhich are joined by spokes to the outer cycles or outer cycle.We note that this argument holds even if any two of these spokes,or all the three spokes are adjacent to the same inner cycle.Hence,G?Sis connected,a contradiction.

    Case 1.2Thus we suppose thatSconsists of two outer spokes and one inner spoke,which are incident to the outer verticesxα,xβand another spoke incident to the outer vertexyγ.Since the length of inner cyclet≥ 4,then each inner cycle contains at least one vertex,which is connected to outer cycles.This argument holds even if any two of these spokes,or all the three spokes are adjacent to the same inner cycle.Since the inner verticesuαanduβhave at least one neighbor ofviandvj,wherei,j≠γ,respectively.Hence,G?Sis connected,a contradiction.

    Case 2LetS={eiα,esβ,esγ}for some α,β,γ ∈ {0,1,···,n? 1}.All the inner cycles other than the α-cycle,are intact and the vertices of the α-cycle lie on a pathPt,sayP(1)and the outer cycles are intact.we only need to consider the following two cases.

    If we letesγandesβare incident to the outer verticesxγandxβ,respectively.Each of the inner cycles and the pathP(1)havet≥4 vertices.SinceScontains only two spokes(even if any two of these spokes are adjacent to the same inner cycle),each inner cycle and the pathP(1)contain at least two vertices which are connected to the outer cycles,a contradiction.

    If we letesβandesγare incident to the outer verticesxβandyγ,respectively.Each of the inner cycles and the pathP(1)havet≥4 vertices.SinceScontains only two spokes(even if any two of these spokes are adjacent to the same inner cycle or these three edges ofSare adjacent),each inner cycles and the pathP(1)contain at least two vertices which are connected to the outer cycles,a contradiction.

    Case 3LetS={eiα,eiβ,esγ}for some α,β,γ ∈ {0,1,···,n?1},then the outer cycles are intact.There are two cases to consider as follows.

    Ifeiαandeiβare on diあerent inner cycles,then the α-cycle and the β-cycle are distinct.SinceScontains only one spoke,each inner cycle and path contain at least two vertices which are connected to the outer cycle,a contradiction.

    Thuseiαandeiβare on the same inner cycle,say the α-cycle.We suppose f i rst that they are not adjacent.In this case,the subgraph induced by the remaining edge of the α-cycle has two components and the number of vertices in each component is greater than or equal to two.SinceShas only one spoke,each component of the α-cycle and each inner cycle is connected to the outer cycles,a contradiction.Suppose thateiαandeiβare adjacent.There is an inner vertex,sayvγ,which is incident to botheiαandeiβ.Since by Lemma 3,esγcannot be incident tovγ,thenvγis connected to the outer cycle.The other vertices of the α-cycle lie on a pathPt?1,sayP(2).SinceSconsists of only one spoke andt≥4,each inner cycle and pathP(2)contain at least one vertex which is connected to the outer cycle,a contradiction.

    Claim 2Scontains at least one spoke.

    Proof of Claim 2Suppose thatSdose not contain a spoke.By Claim 1,Sis one of the following

    Case 1IfS={eoα,eoβ,eoγ}for some α,β,γ ∈ {0,1,···,n? 1},then the inner cycles are intact.SinceDP[n,k]have two outer cycles.First,we suppose thateoα,eoβ,eoγare all incident to the outer verticesxα,xβandxγ,respectively.Then,another outer cycle is intact.Upon deleting three outer edge from the graphG,the subgraph ofG?Sinduced by outer edges has three components and at least one of them hasconsecutive outer vertices.We let this path be in a componentCand note thatthere exist at least one outer vertexxzcontained inC,thenuz∈C,anduz-cycle is intact,thus,the verticesviandyiare all contained inC,wherei∈ {0,1,···,n?1}.This implies that all the outer verticesxiare joined by spoke to the inner cycles.Thus,all the vertices ofG?Sare also in the same componentC,a contradiction.

    If the outer edgeseoα,eoβandeoγare lie on diあerent outer cycles,without loss of generality,we leteoαandeoβlie on outer cyclex0x1,···,xα,···,xβ,···,xn?1x0andeoγlie on outer cycley0y1···yγ···yn?1y0.Since every inner cycle is intact,then,all inner vertices are joined by spoke to the outer vertices.Hence,all the vertices ofG?Sare in the same component,a contradiction.

    Case 2IfS={eiα,eoβ,eoγ},for some α,β,γ ∈ {0,1,···,n?1}.We suppose fi rst that these two outer edgeseoβandeoγbelongtothesameoutercycle,SinceDP[n,k]havetwooutercycles.Iftheouteredgeseoβandeoγarelieontheouter cyclex0x1,···,xα,···,xβ,···,xn?1x0,then the subgraph ofG?Sinduced by this outer edges has two components and at least one of them haswe let this path be in a componentC.Similarly,the verticesv0,v1,···,vn?1,y0,y1,···,yn?1belong to the same component,suppose that this is diあerent fromC,sayC′.We consider the vertexxz∈C.SinceNG(uz)={xz,vz+k,vz?k},the inner verticesvz+kandvz?kare connected with componentC′.Since all verticesviofC′are joined by inner edge or spokes to the remaining vertices,wherei∈ {0,1,···,n?1},all inner cycles are contained inC,a contradiction.

    If the outer edgeseoβandeoγbelong to diあerent outer cycle,then all the remaining outer edges lie on two pathsandrespectively.All the inner cycles,other than the α-cycle,are joined by spokes to the outer vertices.Sincet≥ 4,then,the vertices of α-cycle also joined by spokes to the outer vertices.Hence,G?Sare connected,a contradiction.

    Case 3IfS={eiα,eiβ,eoγ}for some α,β,γ ∈ {0,1,···,n?1},then all the inner vertices are connected by spokes to the outer vertices,and the other vertices generate a pathPnand a cycleCninG?S,a contradiction.

    We conclude our proof by considering the last three remaining cases.

    IfS={esα,eiβ,eoγ}for some α,β,γ ∈ {0,1,···,n?1}.We suppose that the outer edgeeoγincident to the outer vertexxγ.Then the outer verticesxiandyjinG?Slie on a pathPn(sayP(3))andCn,respectively.All the inner cycles other than the β-cycle are intact,and the vertices of the β-cycle generate a pathPt,sayP(4).SinceScontains only one spoke andt≥4,each inner cycle and the pathP(4)contain at least two vertices which are connected to the outer pathP(3)and outer cycleCn,respectively.Hence,G?Sis connected,a contradiction.

    IfS={esα,esβ,eoγ},for some α,β,γ ∈ {0,1,···,n?1}.We suppose that the outer edgeeoγincident to the outer vertexxγ,then the outer verticesxiinG?Slie on a pathPn,sayP(5).All the inner cycles are intact and havet≥ 4 vertices.SinceScontains only two spoke,each inner cycle is connected to the outer pathP(5)and outer cycleCn,respectively,a contradiction.

    IfS={esα,eoβ,eoγ},for some α,β,γ ∈ {0,1,···,n?1},then the inner cycles remain intact.We suppose f i rst that the two outer edgeseoβ,eoγare incident to a common vertexxz.By Lemma 3,the spokeesαcannot incident toxz,thenxzis connected to an inner cycle.InG?S,all the outer verticesxiexpected forxzlie on a pathPn?1.SinceScontains only one spoke and the outer pathPn?1is connected with at least one vertex of each inner cycle,but the another outer cycleCnofG?Sis intact,then the verticesyiofCnare joined by spoke to inner cycles,a contradiction.Thus the two outer edgeseoβ,eoγare not incident to a common neighbour and the subgraph ofG?Sinduced by the outer edges consists of two paths such that at least one of them hasvertices.We let this path be in a componentC.Then,there must exist a vertexxzin componentC,which joined by spoke to inner cycle.However another outer cycleCnis intact and these verticesyiofCnare adjacent to every inner cycles.Hence,all vertices ofG?Sbelong to the same componentC,a contradiction.

    Thus,we can assume that the outer edgeseoβandeoγare lie on diあerent outer cycle,then,the verticesxiandyiofG?Slie on two pathsrespectively.SinceShas only one spoke and all the inner cycles are intact.Then all the inner vertices of inner cycles are joined by spokes to the outer pathPnand outer cycle,respectively.Hence,G?Sis connected,a contradiction.

    Thus,|S|≠ 3 and the super-connectivity λ1≥ 4.A possible edge-cut with four edges which does not isolate a vertex is{xα?1xα,xα+1xα+2,xαuα,xα+1uα+2},for α ∈ {0,1,···,n?1}.Thus,λ1=4.

    The case whenn<2kfollows sinceDP[n,k]is isomorphic toDP[n,n?k].

    References:

    [1]Sengupta S,Korobkin C P.Graphs and Digraphs[M].New York:Springer,1994.

    [2]Harary F.Conditional connectivity[J].Networks,1983,13(3):347–357.

    [3]Coxeter H S M.Self-dual conf i gurations and regular graphs[J].Bulletin of the American Mathematical Society,1950,56(1950):413-455.

    [4]Mark E.Watkins.A theorem on tait colorings with an application to the generalized Petersen graphs[J].Journal of Combinatorial Theory,1969,6(2):152-164.

    [6]Zhou J X,Feng Y Q.Cubic Vertex-Transitive Non-Cayley Graphs of Order 8p[J].Electronic Journal of Combinatorics,2012,19(1):453-472.

    [6]Zhou J X,Feng Y Q.Cubic bi-Cayley graphs over abelian groups[J].European Journal of Combinatorics,2014,36(2):679-693.

    [7]Boesch F,Tindell R.Circulants and their connectivities[J].Journal of Graph Theory,2010,8(4):487-499.

    [8]Yang W H,Meng J X.Extraconnectivity of hypercubes(II)[J].Australas Journal of Combinatorics,2010,47:189-195.

    [9]Ekinci G B,K?rlangic?A.Super connectivity of Kronecker product of complete bipartite graphs and complete graphs[J].Discrete Mathematics,2016,339(7):1950-1953.

    [10]Min L,Chao W,Chen G,et al.On super connectivity of Cartesian product graphs[J].Networks,2010,52(2):78-87.

    [11]Ferrero D,Hanusch S.Component connectivity of generalized Petersen graphs[J].International Journal of Computer Mathematics,2014,91(9):1940-1963.

    [12]Boruzanl?EkinciG,GauciJB.OnthereliabilityofgeneralizedPetersengraphs[J].DiscreteAppliedMathematics,[2017-02-24],https://doi.org/10.1016/j.dam.2017.02.002.

    [13]Kutnar K,Petecki P.On automorphisms and structural properties of double generalized Petersen graphs[J].Discrete Mathematics,2016,339(12):2861-2870.

    久久精品国产亚洲av涩爱 | 观看免费一级毛片| 六月丁香七月| 美女xxoo啪啪120秒动态图| 在线天堂最新版资源| 18+在线观看网站| 亚洲三级黄色毛片| 乱码一卡2卡4卡精品| 成年av动漫网址| 高清毛片免费看| 精品午夜福利视频在线观看一区| 啦啦啦啦在线视频资源| 色视频www国产| 国产视频内射| 免费看av在线观看网站| 国产精品伦人一区二区| 亚洲欧美精品综合久久99| 久久久久久久亚洲中文字幕| av福利片在线观看| 国产成人91sexporn| 亚洲国产欧美人成| 床上黄色一级片| 国产一区二区在线av高清观看| 亚洲熟妇熟女久久| 变态另类丝袜制服| 日韩欧美三级三区| 久久久久久久久大av| av免费在线看不卡| av免费在线看不卡| 国产高清视频在线观看网站| 亚洲18禁久久av| 麻豆国产97在线/欧美| 色哟哟·www| 亚洲精品国产成人久久av| 搡老妇女老女人老熟妇| 中国美女看黄片| videossex国产| 高清毛片免费观看视频网站| 久久久久九九精品影院| 一本久久中文字幕| 久久国内精品自在自线图片| 午夜福利视频1000在线观看| 男人的好看免费观看在线视频| 99久久无色码亚洲精品果冻| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 久久草成人影院| 色视频www国产| 内地一区二区视频在线| 波野结衣二区三区在线| 日韩中字成人| 国产成人a∨麻豆精品| 最新在线观看一区二区三区| 欧美日本视频| 亚洲美女黄片视频| 亚洲精品国产成人久久av| 国产淫片久久久久久久久| 国产aⅴ精品一区二区三区波| 亚洲色图av天堂| 一级a爱片免费观看的视频| 国产av不卡久久| 99riav亚洲国产免费| 免费黄网站久久成人精品| 国产成人freesex在线 | 国产片特级美女逼逼视频| 真实男女啪啪啪动态图| 插逼视频在线观看| 日韩欧美三级三区| 午夜精品在线福利| 国内精品久久久久精免费| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 一区二区三区四区激情视频 | 国产成人一区二区在线| 精品久久久久久久久亚洲| 在线观看美女被高潮喷水网站| 99热6这里只有精品| 国产欧美日韩精品一区二区| 一进一出抽搐gif免费好疼| 国产国拍精品亚洲av在线观看| 禁无遮挡网站| av专区在线播放| 国产免费一级a男人的天堂| 亚洲av美国av| 日本欧美国产在线视频| 赤兔流量卡办理| 久久久午夜欧美精品| or卡值多少钱| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放 | 亚洲成人久久性| 国产男人的电影天堂91| 在线看三级毛片| 91在线观看av| 一a级毛片在线观看| 日韩av在线大香蕉| 日韩欧美国产在线观看| 熟女电影av网| 男女啪啪激烈高潮av片| 亚洲av中文av极速乱| av天堂在线播放| 99久久精品热视频| 亚洲欧美清纯卡通| 精品久久久噜噜| 身体一侧抽搐| 一级毛片电影观看 | 色综合亚洲欧美另类图片| 岛国在线免费视频观看| 在线播放国产精品三级| 搡老熟女国产l中国老女人| 小说图片视频综合网站| 欧美绝顶高潮抽搐喷水| 国产老妇女一区| 欧美日韩精品成人综合77777| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 国产午夜精品论理片| 国产男靠女视频免费网站| 久久人人爽人人爽人人片va| 三级毛片av免费| 国产伦精品一区二区三区四那| 12—13女人毛片做爰片一| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验 | 长腿黑丝高跟| 麻豆乱淫一区二区| 亚洲色图av天堂| 精品一区二区免费观看| 别揉我奶头~嗯~啊~动态视频| a级一级毛片免费在线观看| 在线观看av片永久免费下载| 日韩欧美免费精品| 国产在视频线在精品| 身体一侧抽搐| 欧美性猛交黑人性爽| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 久久这里只有精品中国| 老司机影院成人| 麻豆一二三区av精品| av在线观看视频网站免费| 欧美性感艳星| 天堂影院成人在线观看| 国产女主播在线喷水免费视频网站 | 免费观看的影片在线观看| 乱码一卡2卡4卡精品| 在线观看免费视频日本深夜| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 亚洲国产精品合色在线| 丰满人妻一区二区三区视频av| 春色校园在线视频观看| 午夜日韩欧美国产| 成人国产麻豆网| videossex国产| 丝袜喷水一区| 22中文网久久字幕| 91久久精品国产一区二区成人| 国产久久久一区二区三区| 久久精品91蜜桃| 床上黄色一级片| a级毛色黄片| 欧美激情久久久久久爽电影| 变态另类丝袜制服| 国产精品久久电影中文字幕| 国产女主播在线喷水免费视频网站 | 成人亚洲精品av一区二区| 白带黄色成豆腐渣| 欧美成人a在线观看| 久久久久久久亚洲中文字幕| 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 亚洲国产精品成人久久小说 | 在线观看av片永久免费下载| 男人舔女人下体高潮全视频| av视频在线观看入口| 成人二区视频| 小蜜桃在线观看免费完整版高清| 国产爱豆传媒在线观看| 久久中文看片网| av卡一久久| 美女高潮的动态| 搡老熟女国产l中国老女人| 人人妻人人澡欧美一区二区| a级毛片免费高清观看在线播放| 亚洲国产精品成人久久小说 | 免费人成在线观看视频色| 亚洲经典国产精华液单| 午夜影院日韩av| 噜噜噜噜噜久久久久久91| 在线免费观看不下载黄p国产| 日韩欧美在线乱码| 日本五十路高清| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 三级经典国产精品| 亚洲综合色惰| 午夜福利在线观看吧| 亚洲图色成人| 三级经典国产精品| eeuss影院久久| 99久久无色码亚洲精品果冻| 极品教师在线视频| 欧美激情国产日韩精品一区| 国产精品久久久久久亚洲av鲁大| 成人特级av手机在线观看| 99在线视频只有这里精品首页| 男女那种视频在线观看| 一区二区三区高清视频在线| 国产黄a三级三级三级人| av女优亚洲男人天堂| 国内精品久久久久精免费| 久久国产乱子免费精品| 美女 人体艺术 gogo| 亚洲专区国产一区二区| 欧美日韩乱码在线| 看片在线看免费视频| 看非洲黑人一级黄片| 亚洲国产色片| 全区人妻精品视频| 午夜亚洲福利在线播放| 午夜日韩欧美国产| 天堂√8在线中文| 如何舔出高潮| 大型黄色视频在线免费观看| 一本一本综合久久| 网址你懂的国产日韩在线| 成年女人永久免费观看视频| 级片在线观看| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 白带黄色成豆腐渣| 校园人妻丝袜中文字幕| 国产av麻豆久久久久久久| 男人舔女人下体高潮全视频| 在线看三级毛片| 成年女人看的毛片在线观看| 亚洲七黄色美女视频| 国产精品野战在线观看| 精品乱码久久久久久99久播| 国产精品久久电影中文字幕| 国产三级中文精品| 最后的刺客免费高清国语| 波多野结衣巨乳人妻| 国产男靠女视频免费网站| 国产亚洲91精品色在线| 九九热线精品视视频播放| 亚洲av一区综合| av黄色大香蕉| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区av网在线观看| 悠悠久久av| 丰满乱子伦码专区| 亚洲国产精品成人久久小说 | 亚洲欧美成人精品一区二区| 美女大奶头视频| 能在线免费观看的黄片| 成人高潮视频无遮挡免费网站| www.色视频.com| 一本一本综合久久| 亚洲最大成人手机在线| 女生性感内裤真人,穿戴方法视频| 男女之事视频高清在线观看| 免费观看的影片在线观看| 51国产日韩欧美| 丝袜喷水一区| 久久久久国产精品人妻aⅴ院| 一进一出抽搐gif免费好疼| 国产精品,欧美在线| av在线天堂中文字幕| 亚洲av免费高清在线观看| 国产人妻一区二区三区在| 亚洲人与动物交配视频| 最近2019中文字幕mv第一页| 国产成人a区在线观看| 99国产极品粉嫩在线观看| 一区二区三区四区激情视频 | 色尼玛亚洲综合影院| 国产精品国产高清国产av| 久久久久久久久大av| 久99久视频精品免费| 在线a可以看的网站| 精品午夜福利在线看| 51国产日韩欧美| 国产伦在线观看视频一区| 深夜精品福利| 啦啦啦啦在线视频资源| 成年女人看的毛片在线观看| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| 人人妻人人澡欧美一区二区| 成人无遮挡网站| 黄色配什么色好看| 长腿黑丝高跟| 蜜桃亚洲精品一区二区三区| 亚洲激情五月婷婷啪啪| 免费人成视频x8x8入口观看| 青春草视频在线免费观看| av免费在线看不卡| 成人鲁丝片一二三区免费| 一级黄色大片毛片| 激情 狠狠 欧美| 久久久精品大字幕| 久久6这里有精品| 亚洲第一电影网av| 91午夜精品亚洲一区二区三区| 乱人视频在线观看| 精品人妻熟女av久视频| 国产熟女欧美一区二区| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 在线观看66精品国产| 男女之事视频高清在线观看| 一级毛片aaaaaa免费看小| 成人三级黄色视频| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 99热网站在线观看| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸| 欧美在线一区亚洲| 午夜日韩欧美国产| 99久久中文字幕三级久久日本| 中出人妻视频一区二区| 久久热精品热| 欧美zozozo另类| 欧美高清成人免费视频www| 精品国产三级普通话版| 免费在线观看成人毛片| 欧美又色又爽又黄视频| 久久九九热精品免费| 国产成人一区二区在线| 国产精品人妻久久久影院| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 精品一区二区三区视频在线| 寂寞人妻少妇视频99o| 国产黄色小视频在线观看| 精品久久久久久久久久免费视频| 免费不卡的大黄色大毛片视频在线观看 | 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 九九爱精品视频在线观看| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 身体一侧抽搐| 18禁在线播放成人免费| 成人欧美大片| 精品久久久久久久久亚洲| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 亚洲高清免费不卡视频| 国产精品乱码一区二三区的特点| а√天堂www在线а√下载| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 在线观看美女被高潮喷水网站| 亚洲人成网站高清观看| 99热网站在线观看| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 日本色播在线视频| 亚洲欧美精品综合久久99| 大型黄色视频在线免费观看| 精品无人区乱码1区二区| 欧美区成人在线视频| 少妇猛男粗大的猛烈进出视频 | 伦理电影大哥的女人| 九色成人免费人妻av| 亚洲av免费高清在线观看| 永久网站在线| 欧美zozozo另类| 亚洲色图av天堂| 我要看日韩黄色一级片| 亚洲人成网站在线观看播放| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 日韩欧美精品v在线| 成年女人毛片免费观看观看9| 两个人的视频大全免费| 中国美女看黄片| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 老司机福利观看| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看的亚洲视频| 女同久久另类99精品国产91| 国产亚洲av嫩草精品影院| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 日本在线视频免费播放| av.在线天堂| 久久精品国产清高在天天线| 春色校园在线视频观看| 成人精品一区二区免费| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 搡老岳熟女国产| 99热全是精品| 白带黄色成豆腐渣| 97热精品久久久久久| 亚洲色图av天堂| 欧美性猛交黑人性爽| 中国美白少妇内射xxxbb| 亚洲内射少妇av| 国产精品美女特级片免费视频播放器| av天堂在线播放| 国产精品一区www在线观看| 12—13女人毛片做爰片一| 国产精品久久视频播放| 国产成人freesex在线 | 一个人看的www免费观看视频| 九九热线精品视视频播放| 搡老熟女国产l中国老女人| 国产精品日韩av在线免费观看| 国产又黄又爽又无遮挡在线| 高清午夜精品一区二区三区 | 国产精品嫩草影院av在线观看| 日本熟妇午夜| 欧美一区二区亚洲| 天堂影院成人在线观看| 亚洲欧美成人综合另类久久久 | 日韩成人av中文字幕在线观看 | 久久久久久久久大av| 性欧美人与动物交配| 精品一区二区三区视频在线观看免费| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 一区二区三区四区激情视频 | 麻豆一二三区av精品| 国产欧美日韩精品亚洲av| 天堂影院成人在线观看| 亚洲熟妇熟女久久| 成人美女网站在线观看视频| 热99在线观看视频| 观看免费一级毛片| 一进一出好大好爽视频| 国产单亲对白刺激| 日韩欧美精品v在线| 欧美色欧美亚洲另类二区| 久久国产乱子免费精品| 成年免费大片在线观看| 啦啦啦观看免费观看视频高清| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 国产蜜桃级精品一区二区三区| 精品日产1卡2卡| 婷婷六月久久综合丁香| 女的被弄到高潮叫床怎么办| 97人妻精品一区二区三区麻豆| 欧美成人精品欧美一级黄| 神马国产精品三级电影在线观看| 国产中年淑女户外野战色| 国产午夜精品久久久久久一区二区三区 | 亚洲成人久久爱视频| 永久网站在线| 美女cb高潮喷水在线观看| 亚洲国产欧美人成| 黄色欧美视频在线观看| 日韩三级伦理在线观看| 丝袜喷水一区| av中文乱码字幕在线| 少妇熟女欧美另类| 此物有八面人人有两片| 熟女人妻精品中文字幕| 国产乱人视频| 成熟少妇高潮喷水视频| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| av中文乱码字幕在线| 人妻少妇偷人精品九色| 日本黄大片高清| 六月丁香七月| 伦理电影大哥的女人| 日本一二三区视频观看| 日本成人三级电影网站| 可以在线观看的亚洲视频| 中文字幕av成人在线电影| 国产真实乱freesex| 久久国产乱子免费精品| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 亚洲欧美清纯卡通| 日本黄色视频三级网站网址| 亚洲七黄色美女视频| 精品熟女少妇av免费看| 禁无遮挡网站| av在线观看视频网站免费| 久久久久性生活片| 我的老师免费观看完整版| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 亚洲av第一区精品v没综合| 国产免费男女视频| 精品免费久久久久久久清纯| 中文亚洲av片在线观看爽| 国模一区二区三区四区视频| 波多野结衣高清无吗| 在线免费观看不下载黄p国产| 大香蕉久久网| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 三级经典国产精品| 精品久久久久久久久av| av专区在线播放| 精品人妻视频免费看| 天堂影院成人在线观看| 99热只有精品国产| 欧美人与善性xxx| 日本免费a在线| 国内精品一区二区在线观看| 亚洲av免费高清在线观看| 一区二区三区高清视频在线| 国产黄色视频一区二区在线观看 | 国产成人一区二区在线| 18禁裸乳无遮挡免费网站照片| 中文亚洲av片在线观看爽| 高清毛片免费观看视频网站| 自拍偷自拍亚洲精品老妇| 麻豆av噜噜一区二区三区| 嫩草影视91久久| 欧美成人精品欧美一级黄| 男女下面进入的视频免费午夜| 中文字幕免费在线视频6| 波多野结衣高清作品| 欧美最黄视频在线播放免费| 有码 亚洲区| 亚洲av五月六月丁香网| 中国美女看黄片| 亚洲精品在线观看二区| 麻豆av噜噜一区二区三区| 国产精品不卡视频一区二区| 淫秽高清视频在线观看| 91狼人影院| 久久九九热精品免费| 精品人妻偷拍中文字幕| 秋霞在线观看毛片| 99久久中文字幕三级久久日本| 久久人妻av系列| 99久久精品热视频| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人一区二区免费高清观看| 97碰自拍视频| 色av中文字幕| 少妇被粗大猛烈的视频| 成人精品一区二区免费| 日韩成人av中文字幕在线观看 | 国产精品久久久久久av不卡| 日韩人妻高清精品专区| 亚洲欧美中文字幕日韩二区| 男人舔奶头视频| 一本精品99久久精品77| 十八禁网站免费在线| 日韩精品中文字幕看吧| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线| 久久精品国产99精品国产亚洲性色| 日本 av在线| 日韩在线高清观看一区二区三区| 午夜亚洲福利在线播放| 免费av不卡在线播放| 色播亚洲综合网| 欧美日韩国产亚洲二区| 国产 一区精品| videossex国产| .国产精品久久| 亚洲最大成人手机在线| 国产视频一区二区在线看| 久久精品国产99精品国产亚洲性色| 在线观看一区二区三区| 18+在线观看网站| 午夜亚洲福利在线播放| 欧美一区二区精品小视频在线| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件| 1000部很黄的大片| 日本黄色片子视频| 天堂动漫精品| 麻豆一二三区av精品| 久久久久九九精品影院| 91午夜精品亚洲一区二区三区| 国产aⅴ精品一区二区三区波| 国产黄a三级三级三级人| 日韩成人伦理影院| 久久国内精品自在自线图片| 亚洲激情五月婷婷啪啪| 真实男女啪啪啪动态图| 一级毛片电影观看 | 亚洲精品国产av成人精品 | 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久久久毛片| 久久久国产成人免费| 丰满的人妻完整版| 99热精品在线国产| 国模一区二区三区四区视频| 成人av一区二区三区在线看| 级片在线观看| 丰满乱子伦码专区| 一级黄色大片毛片| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 可以在线观看毛片的网站|