程世超 魏慧君 孫世清 王松 王瑞陽(yáng) 崔博帥 尉念倫
摘 要:針對(duì)軸承鋼失效形式主要為疲勞破壞的問(wèn)題,對(duì)中碳鉻鎢滲氮軸承鋼進(jìn)行旋轉(zhuǎn)彎曲疲勞(RBF)試驗(yàn)及分析。分析軸承鋼經(jīng)調(diào)質(zhì)處理(880 ℃+540 ℃)后的組織,再經(jīng)RBF試驗(yàn)后疲勞斷口和滲氮處理的作用,還分析了非金屬夾雜物對(duì)軸承鋼RBF的影響,構(gòu)建了非金屬夾雜物深度和尺寸對(duì)中碳鉻鎢滲氮軸承鋼RBF極限強(qiáng)度影響的模型。實(shí)驗(yàn)結(jié)果表明:試驗(yàn)鋼調(diào)質(zhì)處理后,組織為回火索氏體,主要析出M6C型和M23C6型碳化物,力學(xué)性能優(yōu)良,RBF極限強(qiáng)度達(dá)到729 MPa;疲勞源分為表面缺陷和內(nèi)部非金屬夾雜物,表面缺陷主要包括非金屬夾雜物脫落形成的凹坑以及機(jī)加工留下的刀痕,非金屬夾雜物主要為鎂鋁酸鹽;軸承鋼在NH3滲氮?dú)夥罩?60 ℃恒溫保持25 h,滲氮層厚度達(dá)360 μm以上,滲氮工藝合適。研究結(jié)果對(duì)中碳鉻鎢滲氮軸承鋼的發(fā)展及其疲勞性能的提高有一定的參考價(jià)值。
關(guān)鍵詞:黑色金屬及其合金;滲氮軸承鋼;旋轉(zhuǎn)彎曲疲勞;表面缺陷;非金屬夾雜物
中圖分類號(hào):TG156.8+2 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-1542(2018)04-0365-07doi:10.7535/hbkd.2018yx04011
Abstract:Aiming at the problem that the failure mode of bearing steels is mainly fatigue failure, RBF (rotating bending fatigue) test of medium carbon Cr and W nitriding bearing steel and analysis are conducted for the medium carbon Cr and W nitriding bearing steel. The microstructure of the bearing steel after hardening and tempering (880 °C+540 °C), the fatigue fracture after the RBF test and the effect of nitriding are analyzed. The ultimate strength influencing model of non-metallic inclusions and size on medium carbon Cr and W nitriding bearing steel RBF is established. The results of experiments show that the microstructure of the test steel after hardening and tempering is tempered sorbite, the main precipitations are M6C and M23C6 carbides, the mechanical properties are excellent and its fatigue limit is 729 MPa. Fatigue source are divided into surface defect cracking and the internal non-metallic inclusions cracking. Surface defects include the pits after the falling of non-metallic inclusions and the machining marks. Non-metallic inclusions are mainly magnesium aluminates. The bearing steel is kept at a constant temperature of 560 °C for 25 hours in NH3 nitrogen atmosphere, and the nitriding layer thickness is more than 360 μm, showing the nitriding process is suitable. The research has some reference value for the development of the medium carbon Cr and W nitriding bearing steel and the improvement of fatigue performance.
Keywords:black metal and its alloys seepage; nitrided bearing steel; rotating bending fatigue; surface defects; non-metallic inclusions
軸承鋼被譽(yù)為鋼中之王,質(zhì)量要求高,是衡量國(guó)家工業(yè)化水平的標(biāo)志之一[1-3]。疲勞斷裂前形變小、不易察覺(jué),是軸承的主要失效形式[4]。軸承鋼擁有高強(qiáng)度、高硬度、優(yōu)良的韌性、耐磨性和一定的耐熱性,滲氮后性能進(jìn)一步提高,在航空航天等重要傳動(dòng)方面有廣泛的應(yīng)用[5-6]。滲氮處理氮化層包含多種氮化物,表面形成壓力層,硬度可達(dá) 900(HV)以上,氮化層具有優(yōu)異的耐磨性、耐蝕性、抗咬合、抗擦傷能力及疲勞強(qiáng)度[7-9]。中碳軸承鋼的特點(diǎn)是具有較好的強(qiáng)韌性能,屈強(qiáng)比高,在經(jīng)過(guò)滲氮處理后,軸承表面具有一定的抗咬合、抗擦傷能力,且熱處理過(guò)程變形小,使軸承精度更高[10]。中低碳鋼的疲勞裂紋始于駐留滑移帶、晶界或其他缺陷部位[11]。非金屬夾雜物[12-13]和材料表面的加工缺陷對(duì)材料疲勞裂紋也具有非常重要的影響。MURAKAMI和ENDO等利用夾雜物等效投影面積模型給出了夾雜物尺寸對(duì)RBF(rotating bending fatigue)極限強(qiáng)度的影響,得出疲勞極限公式[14-18]。本文重點(diǎn)研究夾雜物深度對(duì)中碳鉻鎢滲氮軸承鋼RBF強(qiáng)度的影響,并構(gòu)建夾雜物深度與尺寸對(duì)中碳鉻鎢滲氮軸承鋼RBF性能影響的模型。
1 實(shí)驗(yàn)材料及方法
實(shí)驗(yàn)材料為真空感應(yīng)冶煉的中碳鉻鎢軸承鋼,化學(xué)成分如表1所示。
將Φ60 mm的棒料按GB/T4337—2008 《金屬旋轉(zhuǎn)彎曲疲勞試驗(yàn)方法》加工成Φ14.5 mm的圓棒狀RBF試樣毛坯,試樣工作區(qū)直徑:(5.97±0.03)mm。
調(diào)質(zhì)處理工藝:880 ℃×50 min+油淬(OQ)+540 ℃×125 min+空冷(AC)。
RBF Test:PQ1-6型RBF Test機(jī),四點(diǎn)加載,應(yīng)力比R=-1,終止實(shí)驗(yàn)周次N=107。
金相腐蝕劑為4%硝酸酒精溶液,蔡司顯微鏡拍攝宏觀斷口形貌,日立S-4300冷場(chǎng)發(fā)射SEM觀察納米級(jí)微光組織和斷口,TEM分析析出相和板條形貌。
滲氮工藝:離子滲氮爐,NH3為滲氮?jiǎng)?60 ℃恒溫保持25 h,研究滲氮層結(jié)構(gòu)及厚度。
2 實(shí)驗(yàn)結(jié)果和分析
2.1 試驗(yàn)鋼的組織和性能
如圖1所示,試驗(yàn)鋼調(diào)質(zhì)后組織為回火索氏體,基體保持板條狀,板條寬度0.3 μm,間距0.1 μm。試驗(yàn)鋼析出碳化物類型主要有M6C和M23C6,其中長(zhǎng)棒狀碳化物為M23C6,如圖1 d)所示,橢球狀碳化物為M6C,它們的尺寸在幾十至幾百納米之間。
試驗(yàn)鋼熱處理后的強(qiáng)韌性能如表2所示,采用上述調(diào)質(zhì)工藝可以獲得力學(xué)性能均衡的組織。采用離子注入手段[19]可以提高軸承鋼的表面硬度,從而提高其使用壽命。
中碳鉻鎢滲氮軸承鋼氮化層分為化合物層和氮化層,如圖2所示。化合物層主要由 Fe3N和Fe4N構(gòu)成,厚度最薄達(dá)9.2 μm,最厚達(dá)16 μm。滲層硬度達(dá)1 060 HV,有效滲層平均達(dá)371.5 μm,滲氮性能優(yōu)異。此外,滲氮后進(jìn)行冷處理[20]可進(jìn)一步提高材料的強(qiáng)硬性。
2.2 試驗(yàn)鋼的S-N疲勞曲線
S-N曲線如圖3 a)所示,疲勞升降如圖3 b)所示。試驗(yàn)鋼在應(yīng)力≥740 MPa時(shí)均發(fā)生斷裂,在720 MPa時(shí)有2個(gè)斷裂, 700 MPa時(shí)全部完成107周次。所以,測(cè)試應(yīng)力為720~740 MPa,取729 MPa,試樣的旋轉(zhuǎn)周次為105~107。
2.3 疲勞斷口形貌
如圖4 a)所示,無(wú)滲氮層試樣RBF斷口分3部分:A區(qū)(疲勞源區(qū))、B區(qū)(裂紋擴(kuò)展區(qū))和C區(qū)(瞬斷區(qū))。如圖4 b)所示,有滲氮層試樣RBF表面起裂斷口分5部分:滲氮層、A區(qū)、磨痕、B區(qū)和C區(qū)。內(nèi)部非金屬夾雜起裂源位于滲氮層下方。
夾雜物中心到試樣表面的距離(深度)為D,規(guī)定:夾雜物在表面的為表面起裂;D≤25 μm時(shí)為近表面起裂;25 μm 圖6—圖8為3種起裂方式的疲勞斷口FF(fatigue fracture)微觀組織形貌,裂紋擴(kuò)展臺(tái)階密集程度反映擴(kuò)展速度,越稀疏越快。表面起裂的疲勞源區(qū)最粗糙,臺(tái)階稀疏,擴(kuò)展快;近表面起裂的疲勞源區(qū)臺(tái)階相對(duì)稠密,擴(kuò)展相對(duì)緩慢;次表面起裂試樣的疲勞源區(qū)最光滑,擴(kuò)展最慢。擴(kuò)展區(qū)斷口形貌為準(zhǔn)理解。瞬斷區(qū)都是韌窩形貌,但表面起裂的瞬斷區(qū)韌窩有拉長(zhǎng)現(xiàn)象。 2.4 表面缺陷對(duì)旋轉(zhuǎn)彎曲疲勞強(qiáng)度的影響 RBF Test中,試樣受正弦規(guī)律變化的應(yīng)力,表面的應(yīng)力幅最大。據(jù)SEM觀察,表面存在夾雜物脫落形成的凹坑和破碎的非金屬夾雜物,如圖9所示。 表面起裂試樣的旋轉(zhuǎn)周次和施加應(yīng)力、表面缺陷的形狀有關(guān),若表面缺陷為底端尖銳的凹坑,應(yīng)力更加集中,破壞更大。應(yīng)用磁性磨料光整加工[22]等技術(shù)能有效提高工件表面的光潔平整度,提高零件的實(shí)用壽命。 3 結(jié) 語(yǔ) 1)中碳鉻鎢滲氮軸承鋼調(diào)質(zhì)處理(880 ℃+540 ℃)后基體為回火索氏體,并析出長(zhǎng)棒狀M23C6型碳化物和橢球狀M6C型碳化物。 2)中碳鉻鎢滲氮軸承鋼在NH3滲氮?dú)夥罩?60 ℃恒溫保持25 h,氮化層厚度達(dá)360 μm以上,滲層硬度達(dá)1 060(HV)。滲氮層分為化合物層和擴(kuò)散層,化合物層主要由 Fe3N和Fe4N構(gòu)成,滲氮性能優(yōu)異。 3)中碳鉻鎢滲氮軸承鋼的旋轉(zhuǎn)彎曲疲勞破壞裂紋源有表面缺陷和內(nèi)部夾雜物(鎂鋁酸鹽)。表面缺陷分為表層夾雜物(Al2O3,MgO,CaOH和SiO2)脫落形成的凹坑和機(jī)加工遺留的凹痕。 4)中碳鉻鎢滲氮軸承鋼的旋轉(zhuǎn)彎曲疲勞強(qiáng)度預(yù)測(cè)模型為σw′(R)=1.71D0.08(H+120)/(πd/2)1/6。5)減小鋼中的非金屬夾雜物,能有效提高鋼的旋轉(zhuǎn)彎曲疲勞強(qiáng)度,但無(wú)限的追求鋼的潔凈度會(huì)導(dǎo)致生產(chǎn)成本大幅度提高??刂茒A雜物在一定深度下(>20 μm),可有效降低夾雜物導(dǎo)致的疲勞破壞。 6)有關(guān)中碳鉻鎢滲氮軸承鋼滲氮后的組織和力學(xué)性能研究不足,下一步工作的重點(diǎn)是對(duì)此進(jìn)行深入的探索,并與無(wú)滲氮處理進(jìn)行對(duì)比分析。 參考文獻(xiàn)/References: [1] 陳光軍,畢立歌,薛迪,等.精密切削淬硬軸承鋼GCr15的表面粗糙度預(yù)測(cè)與加工參數(shù)優(yōu)化[J].河北科技大學(xué)學(xué)報(bào),2012,33(2):119-121. CHEN Guangjun, BI Lige, XUE Di, et al. Surface roughness prediction and parameters optimization of precision turning hardened bearing steel GCr15[J].Journal of Hebei University of Science and Technology,2012,33(2):119-121. [2] JIAN Guan, WANG Liqin, ZHANG Zhiqiang, et al. Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel[J]. Tribology International,2017,119:2017.10.016.
[3] WANG Fangfang, ZHOU Chungen, ZHENG Lijing, et al. Corrosion resistance of carbon ion-implanted M50NiL aerospace bearing steel[J]. Progress in Natural Science: Materials International, 2017,27(5):615-621.
[4] 徐鶴琴. 滾動(dòng)軸承內(nèi)部載荷序列分析與壽命計(jì)算[D]. 杭州:浙江大學(xué),2017.
XU Heqin.Internal Load Sequence and Life Analysis of Rolling Bearing[D].Hangzhou:Zhejiang University,2017.
[5] 宗男夫,張慧,張興中.國(guó)內(nèi)外高品質(zhì)軸承鋼潔凈化與均質(zhì)化控制技術(shù)的進(jìn)展[J].軸承,2017(1):48-53.
ZONG Nanfu, ZHANG Hui,ZHANG Xingzhong.Advances in control technologies for cleanliness and homogeneity of high-quality bearing steel at home and abroad[J].Bearing,2017(1):48-53.
[6] 張志慧. 高氮軸承鋼組織演變與疲勞行為的研究[D]. 石家莊:河北科技大學(xué),2017.
ZHANG Zhihui. The Study on Microstructure Evolution and Fatigue Behavior of High Nitrogen Bearing Steel[D].Shijiazhuang:Hebei University of Science and Technology, 2017.
[7] ADACHI S, UEDA N. Formation of expanded austenite on a cold-sprayed AISI 316L coating by low-temperature plasma nitriding[J]. Journal of Thermal Spray Technology, 2015, 24(8):1399-1407.
[8] ADACHI S, UEDA N. Surface hardness improvement of plasma-sprayed AISI 316L stainless steel coating by low-temperature plasma carburizing[J]. Advanced Powder Technology, 2013, 24(5):818-823.
[9] ISSARTEL C, BUSCAIL H, CAUDRON E, et al. The nitridation, a way to improve high temperature oxidation behaviour of AISI 304[J]. Materials Science Forum, 2008,595/596/597/598:987-994.
[10]楊曉蔚. 對(duì)軸承鋼的一般認(rèn)識(shí)和深入認(rèn)識(shí)[J]. 軸承, 2012(9):54-58.
[11]何春雙,羅志強(qiáng),郭軍,等.Cr4Mo4V高溫軸承鋼滾動(dòng)接觸表面特征與疲勞損傷機(jī)制[J].金屬熱處理,2018,43(2):1-7.
HE Chunshuang, LUO Zhiqiang,GUO Jun,et al.Rolling contact fatigue and surface characteristics of high temperature bearing steel Cr4Mo4V[J].Heat Treatment of Metals,2018,43(2):1-7.
[12]XU Haifeng, YU Feng, WANG Chang, et al.Comparison of microstructure and property of high chromium bearing steel with and without nitrogen addition[J].Journal of Iron and Steel Research,International, 2017,24(2):206-213.
[13]張志慧,楊卯生,孫世清,等.高氮不銹軸承鋼碳化物演變規(guī)律及球化機(jī)制[J].材料熱處理學(xué)報(bào),2017,38(9):104-113.
ZHANG Zhihui, YANG Maosheng, SUN Shiqing, et al. Carbides evolution and spheroidization mechanism of high nitrogen stainless bearing steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(9):104-113.
[14]NAKAGAWA A, SAKAI T, HARLOW G, et al. A probabilistic model on crack initiation modes of metallic materials in very high cycle fatigue[C]//21st European Conference on Fracture.Catania:[s.n.], 2016: 1199-1206.
[15]MURAKAMI Y, KODAMA S, KONUMA S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. Ⅰ: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. International Journal of Fatigue,1989, 11(5): 291-298.
[16]MURAKAMI Y, USUKI H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. Ⅱ: Fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. International Journal of Fatigue, 1989, 11(5): 299-307.
[17]RADHAKRISHNAN V M, MUTOH Y. On fatigue crack growth in stage I[J]. Egf1, 2013, 10(1):1-11.
[18]MURAKAMI Y, ENDO M. Effects of hardness and crack geometry on ΔK_ of small cracks[J]. Journal of the Society of Materials Science, Japan, 1986, 35: 911-917.
[19]李文忠,劉振宇,張少波.離子注入對(duì)Cr4Mo4V軸承鋼摩擦學(xué)性能的影響[J].河北科技大學(xué)學(xué)報(bào),2010,31(2):97-99.
LI Wenzhong, LIU Zhenyu, ZHANG Shaobo. Effect of ion-implantation on tribological properties of Cr4Mo4V[J]. Journal of Hebei University of Science and Technology, 2010, 31(2): 97-99.
[20]孫世清,梁文瑞,張楠.9Cr5MoV鋼的磁性分析與深冷處理[J].河北科技大學(xué)學(xué)報(bào),2013,34(1):75-78.
SUN Shiqing, LIANG Wenrui, ZHANG Nan. Magnetic analysis and deep cryogenic treatment of 9Cr5MoV steel[J]. Journal of Hebei University of Science and Technology, 2013,34(1):75-78.
[21]侯杰,董建新,姚志浩.夾雜物對(duì)超高強(qiáng)度鋼應(yīng)力應(yīng)變場(chǎng)的影響[J].工程科學(xué)學(xué)報(bào),2017,39(7):1027-1035.
HOU Jie, DONG Jianxin, YAO Zhihao.Influence of inclusion on stress and strain fields in ultra-high strength steel[[J].Chinese Journal of Engineering,2017,39(7):1027-1035.
[22]馬付建,陶德松,宮臣,等. 難加工合金材料復(fù)雜曲面磁性磨料光整加工技術(shù)[J].河北科技大學(xué)學(xué)報(bào),2016,37(5):449-456.
MA Fujian, TAO Desong, GONG Chen, et al. Technology of magnetic abrasive finishing in machining of difficult-to-machine alloy complex surface[J]. Journal of Hebei University of Science and Technology, 2016,37(5): 449-456.