• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用

    2018-05-14 13:47黃亦虹許慶祥
    關(guān)鍵詞:橢球面交線半軸

    黃亦虹 許慶祥

    On the ellipsoid and plane intersection equation

    Huang Yihong1, Xu Qingxiang2*

    (1.College of Sciences,Shanghai Institute of Technology,Shanghai 201418,China;

    2.Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)

    Abstract:

    Let E:x2a2+y2b2+z2c2=1 be an ellipsoid and P:p x+q y+r z=d be a plane.Based on the Householder transformation,it is shown that the intersection E∩P is nonempty if and only if λ≥d,where λ=(ap)2+(bq)2+(cr)2.When λ>d,this paper provides a new proof that the intersection curveof E and P is always an ellipse,and in this case a new parametric equation ofis derived.Based on the obtained parametric equation ofand Stokes formula,we derive a formula for the area of the region bounded by ,and compute its semi-major axis and semi-minor axis.As an application,we get necessary and sufficient conditions forto be a circle.

    Key words:

    ellipsoid; plane; parametric equation; Householder transformation; Stokes formula

    CLC number: O 13; O 172Document code: AArticle ID: 1000-5137(2018)01-0024-07

    摘要:

    設(shè)E:x2a2+y2b2+z2c2=1為一個橢球面,P:px+qy+rz=d為一個平面.利用Householder變換,證明了E和P 相交當且僅當 λ≥d,其中λ=(ap)2+(bq)2+(cr)2.當 λ>d時用新的方法證明了橢球面E和平面P的交線 一定是橢圓,并且給出了該橢圓的參數(shù)方程.利用交線的參數(shù)方程,給出了由所圍成的內(nèi)部區(qū)域的面積公式,進而給出了橢圓的長半軸和短半軸的計算公式.作為應(yīng)用,又給出了交線 成為一個圓的充要條件.

    關(guān)鍵詞:

    橢球面; 平面; 參數(shù)方程; Householder變換; Stokes公式

    Received date: 2017-01-11

    Foundation item: The National Natural Science Foundation of China (11671261)

    Biography: Huang Yihong(1965-),female,lecture,reseach area:Advanced mathematics.E-mail:hyh@sit.edu.cn

    *Corresponding author: Xu Qingxiang(1967-),male,professor,research area:Functional Analysis.E-mail:qxxu@shnu.edu.cn

    引用格式: 黃亦虹,許慶祥.平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2018,47(1):24-30.

    Citation format: Huang Y H,Xu Q X.On the ellipsoid and plane intersection equation [J].Journal of Shanghai Normal University(Natural Sciences),2018,47(1):24-30.

    1Introduction

    Throughout this paper,R,R+ and Rm×n are the sets of the real numbers,the positive numbers and the m×n real matrices,respectively.The notation Rn×1 is simplified to Rn.For any A∈Rm×n,its transpose is denoted by AT.Let In be the identity matrix of order n.

    Much attention is paid to the very popular topic of the intersection curve of an ellipsoid and a plane[1-3].Yet,little has been done in the literatures on the application of the Householder transformation and the Stokes formula to this topic,which is the concern of this paper.

    Let E be an ellipsoid and P be a plane defined respectively by

    E:x2a2+y2b2+z2c2=1,P:px+qy+rz=d,(1)

    where a,b,c∈R+ and p,q,r,d∈R such that p2+q2+r2≠0.

    It is known that the intersection curveof E and P is always an ellipse,and much effort has been made in the study of the semi-axes of .Yet,due to the complexity of computation,it is somehow difficult to derive explicit formulas for the semi-axes of .

    The key point of this paper is the usage of the Householder transformation to derive a new parametric equation of ,together with the application of the Stokes formula to find the area S of the region bounded by ;see Theorem 2.4 and Corollary 2.5.Another point of this paper is the characterization of the parallel tangent lines of ,which is combined with the obtained formula for S to deal with the semi-axes of .As a result,explicit formulas for the semi-major axis and the semi-minor axis ofare derived;see Theorem 2.6.As an application,necessary and sufficient conditions are derived under whichis a circle.

    2The main results

    Let v∈Rn be nonzero.The Householder matrix Hv associated to v is defined by

    Hv=In-2vTv· vvT∈Rn×n.(2)

    It is known[4] that HvT=Hv and HvTHv=In,i.e.,Hv is an orthogonal matrix.Due to the following property, the Householder matrix is of special usefulness.

    Lemma 2.1

    Let x,y∈Rn be such that x≠y and xTx=yTy.Then

    Hv(x)=y,where v=x-y.(3)

    Theorem 2.2

    Let E and P be given by (1).Then =E∩P≠ if and only if λ≥d,where λ is defined by

    λ=(ap)2+(bq)2+(cr)2.(4)

    Proof

    Let λ be defined by (4).Firstly,we consider the case that p2+q2>0. Let w1=(ap,bq,cr)T and w2=(0,0,λ)T.Then clearly,w1≠w2 and w1Tw1=w2Tw2,so by Lemma 2.1 we have

    Hvw1=w2,where v=w1-w2.(5)

    Let

    x

    y

    z=

    a

    b

    c

    Hv

    1a

    1b

    1c

    x1

    y1

    z1

    .(6)

    Then by (1),(5) and (6),we have

    1=xa,yb,zcxa,yb,zcT=x1a,y1b,z1cHvTHvx1a,y1b,z1cT

    =x1a,y1b,z1cx1a,y1b,z1cT=x12a2+y12b2+z12c2,(7)

    d=(p,q,r)(x,y,z)T=(ap,bq,cr)Hvx1a,y1b,z1cT

    =w1THvx1a,y1b,z1cT=w2Tx1a,y1b,z1cT=z1λc.

    (8)

    It follows from (7) and (8) that

    x12a2+y12b2=1-d2λ2.(9)

    This means E∩P is nonempty if and only if λ≥d,where λ is defined by (4).

    Secondly,we consider the case that p=q=0.In this case,we have r≠0.It follows directly from (1) that

    x2a2+y2b2=1-d2λ2,

    thus the conclusion also holds.

    The following result is well-known,yet its proof presented below is somehow new.

    Theorem 2.3

    Let E,P and λ be given by (1) and (4) respectively such that λ>d. Then the intersection curve =E∩P is always an ellipse.

    Proof

    It needs only to consider the case that p2+q2>0.Let w3=(p,q,r)T,w4=(0,0,p2+q2+r2)T,v1=w3-w4 and Hv1 be the Householder matrix defined by (2) which satisfies Hv1w3=w4.Let

    (x,y,z)T=Hv1(x1,y1,z1)T.(10)

    Then

    d=w3T(x,y,x)T=w3T Hv1(x1,y1,z1)T=w4T(x1,y1,z1)T=p2+q2+r2z1.

    Therefore,

    z1=dp2+q2+r2=defk.(11)

    It follows from (1),(10) and (11) that

    1=(x,y,z)

    1a2

    1b2

    1c2

    x

    y

    z

    =(x1,y1,k)A

    x1

    y1

    k

    ,(12)

    where A=Hv1T1a2

    1b2

    1c2 Hv1 is positive definite.Let A be partitioned as A= A1〖|〗A2 〖-〗

    A2T〖|〗a3 ,where A1∈R2×2 is positive definite since A is.Then from (12) we get

    (x1,y1)A1x1

    y1 +λ1 x1+λ2 y1+λ3=0 for some λi∈R,i=1,2,3,

    which represents an ellipse in x1y1- plane since A1 is positive definite.This observation together with (11) yields the fact that in the x1y1z1- coordinate system,the equation of the intersection curverepresents an ellipse.The conclusion then follows from (10) since Hv1 is an orthogonal matrix.

    Theorem 2.4

    Let E,P and λ be given by (1) and (4) such that λ>d.Then a parametric equation of the intersection curve =E∩P can be given for t∈[0,2π] as follows:

    x(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)cos(t)+abpqsint]+a2pdλ2,

    y(t)=bλ2-d2λ2(cr-λ)[abpqcost+(λ(cr-λ)+(bq)2)sint]+b2qdλ2,

    z(t)=cλ2-d2λ2[apcost+bqsint]+c2rdλ2.

    (13)

    Proof

    We only consider the case that p2+q2>0.By (2) and (5) we obtain

    Hv=

    1+(ap)2λ(cr-λ)abpqλ(cr-λ)apλ

    abpqλ(cr-λ)1+(bq)2λ(cr-λ)bqλ

    apλbqλcrλ

    .(14)

    Furthermore,by (8) and (9) we get

    x1=a1-d2λ2cost,

    y1=b1-d2λ2sint,t∈[0,2π],

    z1=cdλ.

    (15)

    Eq.(13) then follows from (6),(14) and (15).

    An application of Theorem 2.4 is as follows.

    Corollary 2.5

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Then the area S of the region S bounded bycan be formulated by

    S=abcp2+q2+r2(λ2-d2)πλ3,(16)

    where λ is defined by (4).

    Proof

    Let (cosα,cosβ,cosγ) denote the unit normal vector of the plane P,where

    cosα=pp2+q2+r2,cosβ=qp2+q2+r2,cosγ=rp2+q2+r2.(17)

    We may use the Stokes formula to get

    S=± ∫ zcosβdx+xcosγdy+ycosαdz,(18)

    where ± is chosen to ensure that the right side of (18) is non-negative.Note that

    ∫2π0sintdt=∫2π0costdt=∫2π0sintcostdt=0,(19)

    ∫2π0sin2tdt=∫2π0cos2tdt=π.(20)

    Therefore,by (13),(4),(19) and (20) we obtain

    ∫ zdx=-abcq(λ2-d2)πλ3,(21)

    ∫ xdy=-abcr(λ2-d2)πλ3,(22)

    ∫ ydz=-abcp(λ2-d2)πλ3.(23)

    Formula (16) then follows from (17)-(18) and (21)-(23).

    Consider the calculation of I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane x+y+z=0.In view of the symmetry,a solution can be carried out simply as

    I=13 ∫ (x2+y2+z2) ds=13 ∫ R2 ds=13 R2· 2π R=2π3R3.

    Obviously,the method employed above only works for the symmetric case.As shown by Example 2.1 below,the parametric equation (13) is a useful tool to deal with the non-symmetric case.

    Example 2.1

    Evaluate I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane px+qy+rz=d.

    Solution

    We follow the notations as in the proof of Theorem 2.2.Since a=b=c=R,Eq.(6) turns out to be

    (x,y,z)T=Hv (x1,y1,z1)T,

    which is combined with (15) to get

    ds=(x′(t),y′(t),z′(t))(x′(t),y′(t),z′(t))Tdt

    =(x′1(t),y′1(t),z′1(t))HvT Hv(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t),y′1(t),z′1(t))g(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t))2+(y′1(t))2dt=R1-d2λ2dt.

    In view of the first equation of (13) and (19)-(20),we have

    I=∫ x2 ds=μR1-d2λ2,where λ=Rp2+q2+r2,(24)

    and μ is given by

    μ=R2(λ2-d2)πλ4(Rr-λ)2[(λ(Rr-λ)+(Rp)2)2+(R2pq)2]+2π(R2pd)2λ4.(25)

    Note that

    (λ(Rr-λ)+(Rp)2)2+(R2pq)2

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2· R2(p2+q2)

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2(λ2-R2r2)

    =(Rr-λ)[λ2(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)[R2(p2+q2+r2)(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)2R2(q2+r2),(26)

    so we may combine (24)-(26) to conclude that

    I=∫ x2 ds=π R5[(λ2-d2)(q2+r2)+2p2d2]λ2-d2λ5,

    where λ is given by (24).

    Now,we turn to study the semi-axes of the ellipsegiven by (13).Let P(t)=(x(t),y(t),z(t)) be a point in .Then we have

    x′(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)(-sint)+abpqcost],

    y′(t)=bλ2-d2λ2(cr-λ)[abpq(-sint)+(λ(cr-λ)+(bq)2)cost],

    z′(t)=cλ2-d2λ2[ap(-sint)+bqcost],

    where λ is given by (4).Suppose that P(t1) and P(t2) are two different points insuch that the tangent lines at these two points are parallel,then there exists a constant μ such that x′(t2)=μx′(t1),y′(t2)=μy′(t1) and z′(t2)=μ z′(t1);or more precisely,

    (λ(cr-λ)+(ap)2)(-sint2)+abpqcost2

    =μ[(λ(cr-λ)+(ap)2)(-sint1)+abpqcost1],(27)

    abpq(-sint2)+(λ(cr-λ)+(bq)2)cost2

    =μ[abpq(-sint1)+(λ(cr-λ)+(bq)2)cost1],(28)

    ap(-sint2)+bqcost2=μ[ap(-sint1)+bqcost1].(29)

    It follows from (27) and (29),(28) and (29) that sint2=μsint1 and cost2=μcost1.Therefore,

    1=sin2t2+cos2t2=μ2 (sin2t1+cos2t1)=μ2,

    hence μ=-1 since P(t1)≠P(t2),and thus P(t2)=P(t1+π).The observation above indicates that

    42max=max{f(t)|t∈[0,2π]},42min=min{f(t)|t∈[0,2π]},(30)

    where max,min denote the semi-major axis and the semi-minor axis of ,respectively,and

    f(t)=[x(t+π)-x(t)]2+[y(t+π)-y(t)]2+[z(t+π)-z(t)]2

    = 4(λ2-d2)λ4 g(t),(31)

    where g(t) is given by

    g(t)=a2(cr-λ)2[(λ(cr-λ)+(ap)2)cos(t)+abpqsin(t)]2

    +b2(cr-λ)2[abpqcos(t)+(λ(cr-λ)+(bq)2)sin(t)]2

    +c2[apcos(t)+bqsin(t)]2=A+Bcos(2t)+Csin(2t).(32)

    as cos2t=1+cos(2t)2,sin2t=1-cos(2t)2 and sintcost=sin(2t)2,where

    A=a22(cr-λ)2[(λ(cr-λ)+(ap)2)2+(abpq)2]

    +b22(cr-λ)2[(abpq)2+(λ(cr-λ)+(bq)2)2]+c22[(ap)2+(bq)2].(33)

    By (4) we have

    [(λ(cr-λ)+(ap)2)2+(abpq)2]=λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[(ap)2+(bq)2]

    =λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[λ2-(cr)2]=(cr-λ)2[λ2-(ap)2].(34)

    Similarly,we have

    [(abpq)2+(λ(cr-λ)+(bq)2)2]=(cr-λ)2[λ2-(bq)2].(35)

    We may combine (4) with (33)-(35) to conclude that

    A=12[(ap)2(b2+c2)+(bq)2(c2+a2)+(cr)2(a2+b2)].(36)

    Theorem 2.6

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1), and max and min be the semi-major axis and the semi-minor axis of .Then

    max=λ2-d2λ2A+A2-λ2 (abc)2(p2+q2+r2),

    min=λ2-d2λ2A-A2-λ2 (abc)2(p2+q2+r2),

    where λ and A are defined by (4) and (36).

    Proof

    It follows from (30)-(32) that

    max=λ2-d2λ2A+B2+C2,(37)

    min=λ2-d2λ2A-B2+C2,(38)

    which means that the area S of the region S bounded byis equal to

    π maxmin=πλ2-d2λ4A2-(B2+C2).

    The above equation together with (16) yields

    B2+C2=A2-λ2 (abc)2(p2+q2+r2).

    The conclusion then follows by substituting the above expression for B2+C2 into (37) and (38).

    A direct application of the preceding theorem is as follows.

    Corollary 2.7

    Suppose that a>b>c>0.Letbe the intersection curve of the ellipsoid E and the plane P given by (1),and n→=(cosα,cosβ,cosγ) be the unit normal vector of P with cosα,cosβ and cosγ given by (17).Thenis a circle if and only if either n→‖n1 or n→‖n2,where

    n1=1b2-1a2,0,1c2-1b2,n2=1b2-1a2,0,-1c2-1b2.

    Proof

    Let λ and A be defined by (4) and (36).By direct computation,we have

    θ=def4A2-4λ2 (abc)2(p2+q2+r2)=[(cr)2(a2-b2)-(ap)2(b2-c2)]2+(bq)4(a2-c2)2

    +2(abpq)2(a2-c2)(b2-c2)+2(bcqr)2(a2-c2)(a2-b2).

    Since a>b>c,by Theorem 2.6 we know thatis a circle if and only if θ=0.Equivalently,is a circle if and only if

    q=0 and cra2-b2=± apb2-c2n→‖ n1 or n→‖ n2.

    The result stated below follows immediately from the proof of Corollary 2.7.

    Corollary 2.8

    Suppose that a,b,c∈R+ such that a=b≠c.Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Thenis a circle if and only if p=q=0.

    References:

    [1]Abramson N,Boman J,Bonnevier B.Plane intersections of rotational elliposids [J].American Mathematical Monthly,2005,113:336-339.

    [2]Ferguson C C.Intersections of ellipsoids and planes of arbitrary orientation and position [J].Mathematical Geology,1979,11:329-336.

    [3]Klein P P.On the ellipsoid and plane intersection equation [J].Applied Mathematics,2012,11:1634-1640.

    [4]Leon S J.Linear Algebra with Applications (Eighth Edition) [M].Beijing:Pearson Education Asia Limited and China Machine Press,2011.

    猜你喜歡
    橢球面交線半軸
    幾種新型異形橢球面方程、幾何特征及其應(yīng)用前景
    法蘭盤半軸鉆鉸錐孔專用夾具設(shè)計
    球面與簡單多面體表面交線問題探究
    大地高代替正常高在低等級公路工程測量中的應(yīng)用
    平面體截交線邊數(shù)和頂點數(shù)的計算模型研究
    汽車半軸用鋼電沉積Ni-SiC復(fù)合鍍層的耐磨性
    某重型車橋半軸斷裂失效分析
    柱錐面交線研究
    橢球面上的等角剖分、共形映射與建筑造型
    汽車半軸的工藝及失效形式探討
    国产一区有黄有色的免费视频| 一夜夜www| 1024视频免费在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲一区二区三区不卡视频| 国产男靠女视频免费网站| 一二三四社区在线视频社区8| 交换朋友夫妻互换小说| 亚洲avbb在线观看| 欧美精品啪啪一区二区三区| 免费少妇av软件| videosex国产| 一进一出抽搐动态| 国产成人精品久久二区二区免费| 国产精品久久久久久精品古装| 热99久久久久精品小说推荐| 99riav亚洲国产免费| 一级片'在线观看视频| 9191精品国产免费久久| 99国产极品粉嫩在线观看| 国产欧美亚洲国产| 国产极品粉嫩免费观看在线| 99久久99久久久精品蜜桃| 悠悠久久av| 午夜福利一区二区在线看| 大型av网站在线播放| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看| 丝瓜视频免费看黄片| 日韩三级视频一区二区三区| 中文字幕人妻熟女乱码| 啦啦啦视频在线资源免费观看| 精品国产亚洲在线| 99在线人妻在线中文字幕 | 9191精品国产免费久久| 少妇粗大呻吟视频| 在线天堂中文资源库| tocl精华| 少妇猛男粗大的猛烈进出视频| 不卡一级毛片| 日韩三级视频一区二区三区| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 亚洲少妇的诱惑av| 欧美日韩乱码在线| 99久久综合精品五月天人人| 色婷婷久久久亚洲欧美| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 午夜激情av网站| 在线观看一区二区三区激情| 国产精品av久久久久免费| 午夜老司机福利片| 女人爽到高潮嗷嗷叫在线视频| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| 一区二区三区国产精品乱码| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| 亚洲五月婷婷丁香| 精品第一国产精品| 日日夜夜操网爽| 国产99白浆流出| 18禁观看日本| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 人人澡人人妻人| 久久久精品区二区三区| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 欧美大码av| 建设人人有责人人尽责人人享有的| 91麻豆精品激情在线观看国产 | 亚洲情色 制服丝袜| 日本vs欧美在线观看视频| 亚洲国产欧美网| 人人妻,人人澡人人爽秒播| 亚洲人成77777在线视频| 精品久久久久久电影网| 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 波多野结衣一区麻豆| 美女扒开内裤让男人捅视频| 动漫黄色视频在线观看| 亚洲成av片中文字幕在线观看| 如日韩欧美国产精品一区二区三区| xxx96com| 自线自在国产av| 90打野战视频偷拍视频| 国产精品久久电影中文字幕 | 狠狠婷婷综合久久久久久88av| 久久久久久亚洲精品国产蜜桃av| 久热爱精品视频在线9| 精品国产美女av久久久久小说| 免费看十八禁软件| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| 亚洲第一欧美日韩一区二区三区| 亚洲精品成人av观看孕妇| 亚洲成人国产一区在线观看| 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| 精品一品国产午夜福利视频| 免费看十八禁软件| 精品高清国产在线一区| 免费看a级黄色片| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区 | 少妇裸体淫交视频免费看高清 | 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 99国产精品免费福利视频| 日韩欧美在线二视频 | 国产成人av教育| 亚洲av片天天在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 国产在线精品亚洲第一网站| 国产亚洲精品第一综合不卡| 亚洲精品自拍成人| 国产99久久九九免费精品| ponron亚洲| 久久久国产精品麻豆| 国产97色在线日韩免费| 侵犯人妻中文字幕一二三四区| 久久中文看片网| 国产熟女午夜一区二区三区| 又黄又粗又硬又大视频| 黄片小视频在线播放| 久久久国产成人免费| 亚洲国产欧美网| 丁香欧美五月| 中文欧美无线码| 在线观看免费高清a一片| 涩涩av久久男人的天堂| 亚洲精品自拍成人| 真人做人爱边吃奶动态| avwww免费| a在线观看视频网站| 久久青草综合色| 好男人电影高清在线观看| 久久人妻熟女aⅴ| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 99在线人妻在线中文字幕 | av视频免费观看在线观看| 青草久久国产| 超碰成人久久| 亚洲av成人av| 精品午夜福利视频在线观看一区| 老司机靠b影院| 天天添夜夜摸| 亚洲欧洲精品一区二区精品久久久| 少妇粗大呻吟视频| 99国产精品一区二区蜜桃av | 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 老汉色∧v一级毛片| 大陆偷拍与自拍| 成人三级做爰电影| 国产亚洲一区二区精品| 老司机影院毛片| 一级片'在线观看视频| 天堂俺去俺来也www色官网| 五月开心婷婷网| 国产成人欧美在线观看 | 69精品国产乱码久久久| av不卡在线播放| 在线永久观看黄色视频| 很黄的视频免费| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 夫妻午夜视频| 亚洲伊人色综图| 精品福利永久在线观看| 免费一级毛片在线播放高清视频 | 亚洲全国av大片| 天堂中文最新版在线下载| 成人三级做爰电影| 国产成人欧美| 亚洲av欧美aⅴ国产| 亚洲色图综合在线观看| 亚洲片人在线观看| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 日日摸夜夜添夜夜添小说| 在线视频色国产色| 久99久视频精品免费| 热99国产精品久久久久久7| 宅男免费午夜| 亚洲一区高清亚洲精品| 久久影院123| 身体一侧抽搐| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 精品一区二区三卡| 午夜老司机福利片| 水蜜桃什么品种好| 日韩视频一区二区在线观看| 人人澡人人妻人| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 欧美精品啪啪一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产精品 欧美亚洲| 亚洲全国av大片| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 999精品在线视频| 国产精品.久久久| 777米奇影视久久| 精品一区二区三区视频在线观看免费 | 亚洲精品在线观看二区| 久久久久国内视频| 亚洲专区字幕在线| 国产精品九九99| 色综合欧美亚洲国产小说| 天堂俺去俺来也www色官网| 久久中文字幕一级| 丁香六月欧美| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 9色porny在线观看| 国产午夜精品久久久久久| 久久香蕉激情| 高清av免费在线| 又黄又粗又硬又大视频| 亚洲熟女毛片儿| 男女床上黄色一级片免费看| 欧美精品一区二区免费开放| www.熟女人妻精品国产| 下体分泌物呈黄色| 在线免费观看的www视频| 91国产中文字幕| 久久青草综合色| 午夜视频精品福利| 久久久国产精品麻豆| 午夜老司机福利片| 在线观看免费高清a一片| 少妇粗大呻吟视频| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 午夜久久久在线观看| 欧美精品啪啪一区二区三区| 国产成人系列免费观看| 人人妻人人澡人人爽人人夜夜| 99精品久久久久人妻精品| 国产激情欧美一区二区| 国产高清视频在线播放一区| 一本一本久久a久久精品综合妖精| 交换朋友夫妻互换小说| 欧美另类亚洲清纯唯美| 国产乱人伦免费视频| 另类亚洲欧美激情| 后天国语完整版免费观看| 激情在线观看视频在线高清 | 脱女人内裤的视频| 99热只有精品国产| 老司机福利观看| 午夜精品国产一区二区电影| 一区二区三区精品91| 午夜日韩欧美国产| 极品少妇高潮喷水抽搐| 麻豆国产av国片精品| 男男h啪啪无遮挡| 999久久久国产精品视频| a级毛片在线看网站| 亚洲一区二区三区不卡视频| 久久久国产精品麻豆| 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 亚洲免费av在线视频| 黄色 视频免费看| 亚洲一区二区三区欧美精品| 老司机在亚洲福利影院| 一夜夜www| 在线国产一区二区在线| 啦啦啦 在线观看视频| 久久ye,这里只有精品| 欧美在线黄色| 成年女人毛片免费观看观看9 | 丝袜人妻中文字幕| 无限看片的www在线观看| 亚洲精品国产精品久久久不卡| 国产精品永久免费网站| 国产不卡一卡二| 国产区一区二久久| av中文乱码字幕在线| 欧美日韩视频精品一区| 日本黄色视频三级网站网址 | 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 国产精品一区二区精品视频观看| 久久99一区二区三区| 亚洲一区二区三区不卡视频| 91成年电影在线观看| 黄色怎么调成土黄色| 国产精品国产av在线观看| 欧美一级毛片孕妇| 一级a爱片免费观看的视频| bbb黄色大片| 在线观看www视频免费| 亚洲五月天丁香| 国产精品乱码一区二三区的特点 | 99re6热这里在线精品视频| 黑人猛操日本美女一级片| 在线视频色国产色| 女人被狂操c到高潮| 18禁观看日本| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| 精品第一国产精品| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 老熟女久久久| 国产亚洲av高清不卡| 大型av网站在线播放| av电影中文网址| 五月开心婷婷网| 人妻丰满熟妇av一区二区三区 | 精品久久蜜臀av无| 日韩成人在线观看一区二区三区| 女人精品久久久久毛片| 波多野结衣av一区二区av| 精品久久久久久电影网| av天堂在线播放| 视频区图区小说| 天堂俺去俺来也www色官网| 中亚洲国语对白在线视频| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 搡老熟女国产l中国老女人| 日韩三级视频一区二区三区| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 黄色毛片三级朝国网站| 午夜福利免费观看在线| 亚洲国产欧美网| 五月开心婷婷网| 国产激情欧美一区二区| 十八禁网站免费在线| 9色porny在线观看| 亚洲成av片中文字幕在线观看| 久久国产精品人妻蜜桃| av天堂在线播放| 一二三四在线观看免费中文在| 日本a在线网址| 午夜91福利影院| 午夜福利免费观看在线| 久久精品国产综合久久久| 少妇裸体淫交视频免费看高清 | 成年人午夜在线观看视频| 欧美日韩亚洲综合一区二区三区_| 免费一级毛片在线播放高清视频 | 国产一卡二卡三卡精品| 久久国产精品人妻蜜桃| 99re6热这里在线精品视频| 9色porny在线观看| 亚洲精品美女久久av网站| 久久热在线av| 天堂动漫精品| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 在线观看免费高清a一片| 岛国毛片在线播放| 亚洲中文日韩欧美视频| 露出奶头的视频| 男男h啪啪无遮挡| 欧美日韩中文字幕国产精品一区二区三区 | 色94色欧美一区二区| 国精品久久久久久国模美| 欧美日本中文国产一区发布| 亚洲精品av麻豆狂野| 国产一区二区激情短视频| 啦啦啦在线免费观看视频4| 久久久久精品人妻al黑| 91老司机精品| 久久香蕉国产精品| 国精品久久久久久国模美| 亚洲精品国产精品久久久不卡| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区| 热re99久久国产66热| 一个人免费在线观看的高清视频| 欧美人与性动交α欧美软件| 99国产精品一区二区蜜桃av | 别揉我奶头~嗯~啊~动态视频| 国产成人欧美| 国产麻豆69| 丝瓜视频免费看黄片| 日本撒尿小便嘘嘘汇集6| 乱人伦中国视频| 日本wwww免费看| 国产野战对白在线观看| 人妻久久中文字幕网| 久久亚洲精品不卡| 最近最新中文字幕大全电影3 | 熟女少妇亚洲综合色aaa.| 在线观看免费视频网站a站| 丰满人妻熟妇乱又伦精品不卡| 热99久久久久精品小说推荐| 黑人欧美特级aaaaaa片| 亚洲av成人av| netflix在线观看网站| 国产有黄有色有爽视频| 岛国在线观看网站| 这个男人来自地球电影免费观看| 天堂俺去俺来也www色官网| 制服诱惑二区| 999久久久国产精品视频| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产男女内射视频| 国产蜜桃级精品一区二区三区 | 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| 久久久久久久久久久久大奶| 亚洲精品在线美女| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 在线av久久热| 亚洲片人在线观看| 国产日韩一区二区三区精品不卡| 成年人免费黄色播放视频| 国产成人精品久久二区二区免费| 久久中文字幕一级| 国产乱人伦免费视频| 十八禁人妻一区二区| 身体一侧抽搐| 国产精品秋霞免费鲁丝片| 日本五十路高清| 中出人妻视频一区二区| 少妇被粗大的猛进出69影院| 丰满迷人的少妇在线观看| 久久久久精品人妻al黑| 咕卡用的链子| 国产成人精品久久二区二区91| 国产精品1区2区在线观看. | 亚洲欧美一区二区三区久久| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| tocl精华| videos熟女内射| 老司机福利观看| 久久天堂一区二区三区四区| 日日摸夜夜添夜夜添小说| 99国产综合亚洲精品| 欧美激情久久久久久爽电影 | 国产成人精品久久二区二区91| 超碰97精品在线观看| 叶爱在线成人免费视频播放| 91麻豆av在线| 国产精品免费一区二区三区在线 | 少妇被粗大的猛进出69影院| 精品国内亚洲2022精品成人 | 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 91九色精品人成在线观看| 亚洲欧美一区二区三区黑人| 亚洲欧美激情在线| 国产欧美日韩综合在线一区二区| videos熟女内射| 欧美中文综合在线视频| 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 欧美日韩乱码在线| 黑人巨大精品欧美一区二区mp4| 波多野结衣一区麻豆| 99国产极品粉嫩在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 一进一出好大好爽视频| 窝窝影院91人妻| 国产精品av久久久久免费| 精品福利观看| tocl精华| 波多野结衣av一区二区av| 成人18禁在线播放| 亚洲精品国产精品久久久不卡| 又黄又粗又硬又大视频| 十八禁人妻一区二区| 亚洲 国产 在线| 777米奇影视久久| a级片在线免费高清观看视频| 国产1区2区3区精品| 日韩欧美免费精品| 亚洲欧美日韩另类电影网站| 日本一区二区免费在线视频| 日韩 欧美 亚洲 中文字幕| 欧美精品av麻豆av| 亚洲av电影在线进入| 亚洲欧洲精品一区二区精品久久久| 亚洲久久久国产精品| 久久精品国产综合久久久| 亚洲五月天丁香| 国产高清视频在线播放一区| 久久久久国产一级毛片高清牌| 亚洲三区欧美一区| bbb黄色大片| 国产不卡一卡二| 怎么达到女性高潮| 中文字幕另类日韩欧美亚洲嫩草| 亚洲三区欧美一区| 国产区一区二久久| 精品乱码久久久久久99久播| 精品久久久精品久久久| 最近最新免费中文字幕在线| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 国产精品二区激情视频| 欧美乱色亚洲激情| 久久精品亚洲av国产电影网| 新久久久久国产一级毛片| www.熟女人妻精品国产| 亚洲av电影在线进入| 国产精品一区二区精品视频观看| 免费在线观看黄色视频的| 免费少妇av软件| 亚洲在线自拍视频| 国产亚洲精品久久久久5区| 变态另类成人亚洲欧美熟女 | 大香蕉久久成人网| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 亚洲人成77777在线视频| 国产乱人伦免费视频| 久99久视频精品免费| 亚洲国产看品久久| 脱女人内裤的视频| 大型av网站在线播放| 飞空精品影院首页| 欧美另类亚洲清纯唯美| 欧美激情极品国产一区二区三区| 亚洲一区中文字幕在线| 国产极品粉嫩免费观看在线| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 久久久久久久久久久久大奶| 男人舔女人的私密视频| 多毛熟女@视频| 91成年电影在线观看| 一级a爱视频在线免费观看| bbb黄色大片| 国产av一区二区精品久久| 男男h啪啪无遮挡| 最近最新免费中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 久久ye,这里只有精品| 天天添夜夜摸| 黄网站色视频无遮挡免费观看| 最新在线观看一区二区三区| 欧美午夜高清在线| 精品久久久精品久久久| 午夜精品在线福利| 国产真人三级小视频在线观看| 我的亚洲天堂| 69av精品久久久久久| 一进一出抽搐gif免费好疼 | 一级黄色大片毛片| 操美女的视频在线观看| 欧美黑人欧美精品刺激| 欧美精品啪啪一区二区三区| 欧美日韩一级在线毛片| avwww免费| 男男h啪啪无遮挡| 久久精品成人免费网站| 精品亚洲成国产av| 两个人看的免费小视频| 少妇裸体淫交视频免费看高清 | 久久久国产欧美日韩av| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 日韩免费av在线播放| 国产精品永久免费网站| 国产有黄有色有爽视频| 美女视频免费永久观看网站| 人妻久久中文字幕网| 久久精品人人爽人人爽视色| 国产视频一区二区在线看| 在线av久久热| 亚洲精品粉嫩美女一区| 久热爱精品视频在线9| 欧美丝袜亚洲另类 | 亚洲伊人色综图| 国产人伦9x9x在线观看| 狠狠婷婷综合久久久久久88av| 午夜视频精品福利| 国内久久婷婷六月综合欲色啪| 一个人免费在线观看的高清视频| 国产亚洲一区二区精品| 成熟少妇高潮喷水视频| 色94色欧美一区二区| 动漫黄色视频在线观看| 一级片'在线观看视频| 欧美日本中文国产一区发布| 亚洲精品一卡2卡三卡4卡5卡| 操美女的视频在线观看| 99re6热这里在线精品视频| 手机成人av网站| 性少妇av在线| 99re6热这里在线精品视频| 国产乱人伦免费视频| 99久久精品国产亚洲精品| 日本精品一区二区三区蜜桃| 午夜激情av网站| 国产97色在线日韩免费| 亚洲熟妇熟女久久| 国产视频一区二区在线看|