• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用

    2018-05-14 13:47黃亦虹許慶祥
    關(guān)鍵詞:橢球面交線半軸

    黃亦虹 許慶祥

    On the ellipsoid and plane intersection equation

    Huang Yihong1, Xu Qingxiang2*

    (1.College of Sciences,Shanghai Institute of Technology,Shanghai 201418,China;

    2.Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)

    Abstract:

    Let E:x2a2+y2b2+z2c2=1 be an ellipsoid and P:p x+q y+r z=d be a plane.Based on the Householder transformation,it is shown that the intersection E∩P is nonempty if and only if λ≥d,where λ=(ap)2+(bq)2+(cr)2.When λ>d,this paper provides a new proof that the intersection curveof E and P is always an ellipse,and in this case a new parametric equation ofis derived.Based on the obtained parametric equation ofand Stokes formula,we derive a formula for the area of the region bounded by ,and compute its semi-major axis and semi-minor axis.As an application,we get necessary and sufficient conditions forto be a circle.

    Key words:

    ellipsoid; plane; parametric equation; Householder transformation; Stokes formula

    CLC number: O 13; O 172Document code: AArticle ID: 1000-5137(2018)01-0024-07

    摘要:

    設(shè)E:x2a2+y2b2+z2c2=1為一個橢球面,P:px+qy+rz=d為一個平面.利用Householder變換,證明了E和P 相交當且僅當 λ≥d,其中λ=(ap)2+(bq)2+(cr)2.當 λ>d時用新的方法證明了橢球面E和平面P的交線 一定是橢圓,并且給出了該橢圓的參數(shù)方程.利用交線的參數(shù)方程,給出了由所圍成的內(nèi)部區(qū)域的面積公式,進而給出了橢圓的長半軸和短半軸的計算公式.作為應(yīng)用,又給出了交線 成為一個圓的充要條件.

    關(guān)鍵詞:

    橢球面; 平面; 參數(shù)方程; Householder變換; Stokes公式

    Received date: 2017-01-11

    Foundation item: The National Natural Science Foundation of China (11671261)

    Biography: Huang Yihong(1965-),female,lecture,reseach area:Advanced mathematics.E-mail:hyh@sit.edu.cn

    *Corresponding author: Xu Qingxiang(1967-),male,professor,research area:Functional Analysis.E-mail:qxxu@shnu.edu.cn

    引用格式: 黃亦虹,許慶祥.平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2018,47(1):24-30.

    Citation format: Huang Y H,Xu Q X.On the ellipsoid and plane intersection equation [J].Journal of Shanghai Normal University(Natural Sciences),2018,47(1):24-30.

    1Introduction

    Throughout this paper,R,R+ and Rm×n are the sets of the real numbers,the positive numbers and the m×n real matrices,respectively.The notation Rn×1 is simplified to Rn.For any A∈Rm×n,its transpose is denoted by AT.Let In be the identity matrix of order n.

    Much attention is paid to the very popular topic of the intersection curve of an ellipsoid and a plane[1-3].Yet,little has been done in the literatures on the application of the Householder transformation and the Stokes formula to this topic,which is the concern of this paper.

    Let E be an ellipsoid and P be a plane defined respectively by

    E:x2a2+y2b2+z2c2=1,P:px+qy+rz=d,(1)

    where a,b,c∈R+ and p,q,r,d∈R such that p2+q2+r2≠0.

    It is known that the intersection curveof E and P is always an ellipse,and much effort has been made in the study of the semi-axes of .Yet,due to the complexity of computation,it is somehow difficult to derive explicit formulas for the semi-axes of .

    The key point of this paper is the usage of the Householder transformation to derive a new parametric equation of ,together with the application of the Stokes formula to find the area S of the region bounded by ;see Theorem 2.4 and Corollary 2.5.Another point of this paper is the characterization of the parallel tangent lines of ,which is combined with the obtained formula for S to deal with the semi-axes of .As a result,explicit formulas for the semi-major axis and the semi-minor axis ofare derived;see Theorem 2.6.As an application,necessary and sufficient conditions are derived under whichis a circle.

    2The main results

    Let v∈Rn be nonzero.The Householder matrix Hv associated to v is defined by

    Hv=In-2vTv· vvT∈Rn×n.(2)

    It is known[4] that HvT=Hv and HvTHv=In,i.e.,Hv is an orthogonal matrix.Due to the following property, the Householder matrix is of special usefulness.

    Lemma 2.1

    Let x,y∈Rn be such that x≠y and xTx=yTy.Then

    Hv(x)=y,where v=x-y.(3)

    Theorem 2.2

    Let E and P be given by (1).Then =E∩P≠ if and only if λ≥d,where λ is defined by

    λ=(ap)2+(bq)2+(cr)2.(4)

    Proof

    Let λ be defined by (4).Firstly,we consider the case that p2+q2>0. Let w1=(ap,bq,cr)T and w2=(0,0,λ)T.Then clearly,w1≠w2 and w1Tw1=w2Tw2,so by Lemma 2.1 we have

    Hvw1=w2,where v=w1-w2.(5)

    Let

    x

    y

    z=

    a

    b

    c

    Hv

    1a

    1b

    1c

    x1

    y1

    z1

    .(6)

    Then by (1),(5) and (6),we have

    1=xa,yb,zcxa,yb,zcT=x1a,y1b,z1cHvTHvx1a,y1b,z1cT

    =x1a,y1b,z1cx1a,y1b,z1cT=x12a2+y12b2+z12c2,(7)

    d=(p,q,r)(x,y,z)T=(ap,bq,cr)Hvx1a,y1b,z1cT

    =w1THvx1a,y1b,z1cT=w2Tx1a,y1b,z1cT=z1λc.

    (8)

    It follows from (7) and (8) that

    x12a2+y12b2=1-d2λ2.(9)

    This means E∩P is nonempty if and only if λ≥d,where λ is defined by (4).

    Secondly,we consider the case that p=q=0.In this case,we have r≠0.It follows directly from (1) that

    x2a2+y2b2=1-d2λ2,

    thus the conclusion also holds.

    The following result is well-known,yet its proof presented below is somehow new.

    Theorem 2.3

    Let E,P and λ be given by (1) and (4) respectively such that λ>d. Then the intersection curve =E∩P is always an ellipse.

    Proof

    It needs only to consider the case that p2+q2>0.Let w3=(p,q,r)T,w4=(0,0,p2+q2+r2)T,v1=w3-w4 and Hv1 be the Householder matrix defined by (2) which satisfies Hv1w3=w4.Let

    (x,y,z)T=Hv1(x1,y1,z1)T.(10)

    Then

    d=w3T(x,y,x)T=w3T Hv1(x1,y1,z1)T=w4T(x1,y1,z1)T=p2+q2+r2z1.

    Therefore,

    z1=dp2+q2+r2=defk.(11)

    It follows from (1),(10) and (11) that

    1=(x,y,z)

    1a2

    1b2

    1c2

    x

    y

    z

    =(x1,y1,k)A

    x1

    y1

    k

    ,(12)

    where A=Hv1T1a2

    1b2

    1c2 Hv1 is positive definite.Let A be partitioned as A= A1〖|〗A2 〖-〗

    A2T〖|〗a3 ,where A1∈R2×2 is positive definite since A is.Then from (12) we get

    (x1,y1)A1x1

    y1 +λ1 x1+λ2 y1+λ3=0 for some λi∈R,i=1,2,3,

    which represents an ellipse in x1y1- plane since A1 is positive definite.This observation together with (11) yields the fact that in the x1y1z1- coordinate system,the equation of the intersection curverepresents an ellipse.The conclusion then follows from (10) since Hv1 is an orthogonal matrix.

    Theorem 2.4

    Let E,P and λ be given by (1) and (4) such that λ>d.Then a parametric equation of the intersection curve =E∩P can be given for t∈[0,2π] as follows:

    x(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)cos(t)+abpqsint]+a2pdλ2,

    y(t)=bλ2-d2λ2(cr-λ)[abpqcost+(λ(cr-λ)+(bq)2)sint]+b2qdλ2,

    z(t)=cλ2-d2λ2[apcost+bqsint]+c2rdλ2.

    (13)

    Proof

    We only consider the case that p2+q2>0.By (2) and (5) we obtain

    Hv=

    1+(ap)2λ(cr-λ)abpqλ(cr-λ)apλ

    abpqλ(cr-λ)1+(bq)2λ(cr-λ)bqλ

    apλbqλcrλ

    .(14)

    Furthermore,by (8) and (9) we get

    x1=a1-d2λ2cost,

    y1=b1-d2λ2sint,t∈[0,2π],

    z1=cdλ.

    (15)

    Eq.(13) then follows from (6),(14) and (15).

    An application of Theorem 2.4 is as follows.

    Corollary 2.5

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Then the area S of the region S bounded bycan be formulated by

    S=abcp2+q2+r2(λ2-d2)πλ3,(16)

    where λ is defined by (4).

    Proof

    Let (cosα,cosβ,cosγ) denote the unit normal vector of the plane P,where

    cosα=pp2+q2+r2,cosβ=qp2+q2+r2,cosγ=rp2+q2+r2.(17)

    We may use the Stokes formula to get

    S=± ∫ zcosβdx+xcosγdy+ycosαdz,(18)

    where ± is chosen to ensure that the right side of (18) is non-negative.Note that

    ∫2π0sintdt=∫2π0costdt=∫2π0sintcostdt=0,(19)

    ∫2π0sin2tdt=∫2π0cos2tdt=π.(20)

    Therefore,by (13),(4),(19) and (20) we obtain

    ∫ zdx=-abcq(λ2-d2)πλ3,(21)

    ∫ xdy=-abcr(λ2-d2)πλ3,(22)

    ∫ ydz=-abcp(λ2-d2)πλ3.(23)

    Formula (16) then follows from (17)-(18) and (21)-(23).

    Consider the calculation of I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane x+y+z=0.In view of the symmetry,a solution can be carried out simply as

    I=13 ∫ (x2+y2+z2) ds=13 ∫ R2 ds=13 R2· 2π R=2π3R3.

    Obviously,the method employed above only works for the symmetric case.As shown by Example 2.1 below,the parametric equation (13) is a useful tool to deal with the non-symmetric case.

    Example 2.1

    Evaluate I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane px+qy+rz=d.

    Solution

    We follow the notations as in the proof of Theorem 2.2.Since a=b=c=R,Eq.(6) turns out to be

    (x,y,z)T=Hv (x1,y1,z1)T,

    which is combined with (15) to get

    ds=(x′(t),y′(t),z′(t))(x′(t),y′(t),z′(t))Tdt

    =(x′1(t),y′1(t),z′1(t))HvT Hv(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t),y′1(t),z′1(t))g(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t))2+(y′1(t))2dt=R1-d2λ2dt.

    In view of the first equation of (13) and (19)-(20),we have

    I=∫ x2 ds=μR1-d2λ2,where λ=Rp2+q2+r2,(24)

    and μ is given by

    μ=R2(λ2-d2)πλ4(Rr-λ)2[(λ(Rr-λ)+(Rp)2)2+(R2pq)2]+2π(R2pd)2λ4.(25)

    Note that

    (λ(Rr-λ)+(Rp)2)2+(R2pq)2

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2· R2(p2+q2)

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2(λ2-R2r2)

    =(Rr-λ)[λ2(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)[R2(p2+q2+r2)(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)2R2(q2+r2),(26)

    so we may combine (24)-(26) to conclude that

    I=∫ x2 ds=π R5[(λ2-d2)(q2+r2)+2p2d2]λ2-d2λ5,

    where λ is given by (24).

    Now,we turn to study the semi-axes of the ellipsegiven by (13).Let P(t)=(x(t),y(t),z(t)) be a point in .Then we have

    x′(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)(-sint)+abpqcost],

    y′(t)=bλ2-d2λ2(cr-λ)[abpq(-sint)+(λ(cr-λ)+(bq)2)cost],

    z′(t)=cλ2-d2λ2[ap(-sint)+bqcost],

    where λ is given by (4).Suppose that P(t1) and P(t2) are two different points insuch that the tangent lines at these two points are parallel,then there exists a constant μ such that x′(t2)=μx′(t1),y′(t2)=μy′(t1) and z′(t2)=μ z′(t1);or more precisely,

    (λ(cr-λ)+(ap)2)(-sint2)+abpqcost2

    =μ[(λ(cr-λ)+(ap)2)(-sint1)+abpqcost1],(27)

    abpq(-sint2)+(λ(cr-λ)+(bq)2)cost2

    =μ[abpq(-sint1)+(λ(cr-λ)+(bq)2)cost1],(28)

    ap(-sint2)+bqcost2=μ[ap(-sint1)+bqcost1].(29)

    It follows from (27) and (29),(28) and (29) that sint2=μsint1 and cost2=μcost1.Therefore,

    1=sin2t2+cos2t2=μ2 (sin2t1+cos2t1)=μ2,

    hence μ=-1 since P(t1)≠P(t2),and thus P(t2)=P(t1+π).The observation above indicates that

    42max=max{f(t)|t∈[0,2π]},42min=min{f(t)|t∈[0,2π]},(30)

    where max,min denote the semi-major axis and the semi-minor axis of ,respectively,and

    f(t)=[x(t+π)-x(t)]2+[y(t+π)-y(t)]2+[z(t+π)-z(t)]2

    = 4(λ2-d2)λ4 g(t),(31)

    where g(t) is given by

    g(t)=a2(cr-λ)2[(λ(cr-λ)+(ap)2)cos(t)+abpqsin(t)]2

    +b2(cr-λ)2[abpqcos(t)+(λ(cr-λ)+(bq)2)sin(t)]2

    +c2[apcos(t)+bqsin(t)]2=A+Bcos(2t)+Csin(2t).(32)

    as cos2t=1+cos(2t)2,sin2t=1-cos(2t)2 and sintcost=sin(2t)2,where

    A=a22(cr-λ)2[(λ(cr-λ)+(ap)2)2+(abpq)2]

    +b22(cr-λ)2[(abpq)2+(λ(cr-λ)+(bq)2)2]+c22[(ap)2+(bq)2].(33)

    By (4) we have

    [(λ(cr-λ)+(ap)2)2+(abpq)2]=λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[(ap)2+(bq)2]

    =λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[λ2-(cr)2]=(cr-λ)2[λ2-(ap)2].(34)

    Similarly,we have

    [(abpq)2+(λ(cr-λ)+(bq)2)2]=(cr-λ)2[λ2-(bq)2].(35)

    We may combine (4) with (33)-(35) to conclude that

    A=12[(ap)2(b2+c2)+(bq)2(c2+a2)+(cr)2(a2+b2)].(36)

    Theorem 2.6

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1), and max and min be the semi-major axis and the semi-minor axis of .Then

    max=λ2-d2λ2A+A2-λ2 (abc)2(p2+q2+r2),

    min=λ2-d2λ2A-A2-λ2 (abc)2(p2+q2+r2),

    where λ and A are defined by (4) and (36).

    Proof

    It follows from (30)-(32) that

    max=λ2-d2λ2A+B2+C2,(37)

    min=λ2-d2λ2A-B2+C2,(38)

    which means that the area S of the region S bounded byis equal to

    π maxmin=πλ2-d2λ4A2-(B2+C2).

    The above equation together with (16) yields

    B2+C2=A2-λ2 (abc)2(p2+q2+r2).

    The conclusion then follows by substituting the above expression for B2+C2 into (37) and (38).

    A direct application of the preceding theorem is as follows.

    Corollary 2.7

    Suppose that a>b>c>0.Letbe the intersection curve of the ellipsoid E and the plane P given by (1),and n→=(cosα,cosβ,cosγ) be the unit normal vector of P with cosα,cosβ and cosγ given by (17).Thenis a circle if and only if either n→‖n1 or n→‖n2,where

    n1=1b2-1a2,0,1c2-1b2,n2=1b2-1a2,0,-1c2-1b2.

    Proof

    Let λ and A be defined by (4) and (36).By direct computation,we have

    θ=def4A2-4λ2 (abc)2(p2+q2+r2)=[(cr)2(a2-b2)-(ap)2(b2-c2)]2+(bq)4(a2-c2)2

    +2(abpq)2(a2-c2)(b2-c2)+2(bcqr)2(a2-c2)(a2-b2).

    Since a>b>c,by Theorem 2.6 we know thatis a circle if and only if θ=0.Equivalently,is a circle if and only if

    q=0 and cra2-b2=± apb2-c2n→‖ n1 or n→‖ n2.

    The result stated below follows immediately from the proof of Corollary 2.7.

    Corollary 2.8

    Suppose that a,b,c∈R+ such that a=b≠c.Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Thenis a circle if and only if p=q=0.

    References:

    [1]Abramson N,Boman J,Bonnevier B.Plane intersections of rotational elliposids [J].American Mathematical Monthly,2005,113:336-339.

    [2]Ferguson C C.Intersections of ellipsoids and planes of arbitrary orientation and position [J].Mathematical Geology,1979,11:329-336.

    [3]Klein P P.On the ellipsoid and plane intersection equation [J].Applied Mathematics,2012,11:1634-1640.

    [4]Leon S J.Linear Algebra with Applications (Eighth Edition) [M].Beijing:Pearson Education Asia Limited and China Machine Press,2011.

    猜你喜歡
    橢球面交線半軸
    幾種新型異形橢球面方程、幾何特征及其應(yīng)用前景
    法蘭盤半軸鉆鉸錐孔專用夾具設(shè)計
    球面與簡單多面體表面交線問題探究
    大地高代替正常高在低等級公路工程測量中的應(yīng)用
    平面體截交線邊數(shù)和頂點數(shù)的計算模型研究
    汽車半軸用鋼電沉積Ni-SiC復(fù)合鍍層的耐磨性
    某重型車橋半軸斷裂失效分析
    柱錐面交線研究
    橢球面上的等角剖分、共形映射與建筑造型
    汽車半軸的工藝及失效形式探討
    成人免费观看视频高清| 极品教师在线视频| 91久久精品国产一区二区成人| 99久久精品热视频| 国产熟女欧美一区二区| 最近最新中文字幕大全电影3| 在线 av 中文字幕| 听说在线观看完整版免费高清| 日本wwww免费看| 国内精品美女久久久久久| 成人午夜精彩视频在线观看| 晚上一个人看的免费电影| av卡一久久| 亚洲自拍偷在线| 免费少妇av软件| 亚洲人与动物交配视频| 美女xxoo啪啪120秒动态图| 日韩精品有码人妻一区| av网站免费在线观看视频| 搞女人的毛片| 国产成人精品一,二区| 色视频www国产| 久久久久九九精品影院| 久久韩国三级中文字幕| 亚洲自偷自拍三级| 国产精品福利在线免费观看| 最近中文字幕2019免费版| 欧美日本视频| 又爽又黄a免费视频| 免费黄色在线免费观看| videossex国产| 欧美少妇被猛烈插入视频| 男女下面进入的视频免费午夜| 国产女主播在线喷水免费视频网站| 免费看光身美女| 亚洲av中文字字幕乱码综合| 免费黄网站久久成人精品| 丝袜脚勾引网站| 卡戴珊不雅视频在线播放| 久久久久久久午夜电影| 哪个播放器可以免费观看大片| 午夜福利在线观看免费完整高清在| 看免费成人av毛片| 成人综合一区亚洲| 女的被弄到高潮叫床怎么办| av女优亚洲男人天堂| 久久97久久精品| 久久久久久国产a免费观看| 成人国产麻豆网| 免费看a级黄色片| 国产午夜福利久久久久久| 十八禁网站网址无遮挡 | 免费播放大片免费观看视频在线观看| 国内少妇人妻偷人精品xxx网站| 黄色日韩在线| av在线亚洲专区| 日本一本二区三区精品| 亚洲av不卡在线观看| 亚洲国产精品成人久久小说| 69av精品久久久久久| 亚洲精品国产色婷婷电影| 最近最新中文字幕免费大全7| 在线观看一区二区三区| 男人舔奶头视频| 制服丝袜香蕉在线| 伦理电影大哥的女人| 国产精品人妻久久久久久| 99热这里只有是精品50| 亚洲精品国产av蜜桃| 久久精品久久久久久久性| 老司机影院成人| 午夜老司机福利剧场| 午夜免费鲁丝| 欧美另类一区| 中文精品一卡2卡3卡4更新| 中文欧美无线码| 午夜福利高清视频| 精品国产露脸久久av麻豆| 免费大片黄手机在线观看| 免费av观看视频| 午夜精品一区二区三区免费看| 别揉我奶头 嗯啊视频| 欧美3d第一页| 日韩一区二区三区影片| 亚洲欧美清纯卡通| 一个人观看的视频www高清免费观看| 狂野欧美激情性xxxx在线观看| 久久久国产一区二区| 日日撸夜夜添| 黄片wwwwww| 欧美亚洲 丝袜 人妻 在线| 成人毛片a级毛片在线播放| 99视频精品全部免费 在线| 99久久九九国产精品国产免费| 午夜视频国产福利| 免费人成在线观看视频色| 国产日韩欧美亚洲二区| 亚洲精品国产av蜜桃| 久热久热在线精品观看| 99热这里只有是精品在线观看| 男人爽女人下面视频在线观看| 丰满少妇做爰视频| 一二三四中文在线观看免费高清| 国产精品女同一区二区软件| 国产黄色免费在线视频| 1000部很黄的大片| 国产老妇女一区| 三级经典国产精品| 日韩国内少妇激情av| av在线亚洲专区| 亚洲精华国产精华液的使用体验| 欧美97在线视频| 免费少妇av软件| 黄色一级大片看看| 久久久a久久爽久久v久久| 免费看日本二区| 99热这里只有是精品在线观看| 欧美xxxx性猛交bbbb| 国产精品一区www在线观看| 国产精品嫩草影院av在线观看| 欧美成人一区二区免费高清观看| 好男人视频免费观看在线| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三卡| 欧美97在线视频| 亚洲三级黄色毛片| 大又大粗又爽又黄少妇毛片口| 99热这里只有是精品50| 99热这里只有是精品50| 观看免费一级毛片| 乱码一卡2卡4卡精品| 又爽又黄a免费视频| av在线app专区| 观看免费一级毛片| 日本一本二区三区精品| av在线老鸭窝| 久久久a久久爽久久v久久| 国产高清三级在线| 成人美女网站在线观看视频| 国产一区有黄有色的免费视频| 国产乱人偷精品视频| 高清在线视频一区二区三区| 又爽又黄a免费视频| 老女人水多毛片| 在线观看一区二区三区激情| 亚洲在线观看片| 国产欧美日韩精品一区二区| 久久久精品免费免费高清| 精品久久久久久久人妻蜜臀av| 精品久久久久久久人妻蜜臀av| 另类亚洲欧美激情| 欧美人与善性xxx| 日韩成人伦理影院| 伦精品一区二区三区| 亚洲在久久综合| 黄色配什么色好看| 国产成人精品福利久久| 看十八女毛片水多多多| h日本视频在线播放| 人体艺术视频欧美日本| 肉色欧美久久久久久久蜜桃 | 卡戴珊不雅视频在线播放| 国产成人免费无遮挡视频| 天天躁日日操中文字幕| 午夜老司机福利剧场| 亚洲婷婷狠狠爱综合网| 日韩亚洲欧美综合| 水蜜桃什么品种好| 免费在线观看成人毛片| 国产精品伦人一区二区| 国产爽快片一区二区三区| 亚洲图色成人| videos熟女内射| 国产精品麻豆人妻色哟哟久久| 内射极品少妇av片p| 欧美激情国产日韩精品一区| 免费大片黄手机在线观看| 久久女婷五月综合色啪小说 | 日韩伦理黄色片| 菩萨蛮人人尽说江南好唐韦庄| 最近最新中文字幕免费大全7| 色哟哟·www| 色视频在线一区二区三区| 天天躁日日操中文字幕| 亚洲精品国产av成人精品| 精品一区二区三区视频在线| 麻豆乱淫一区二区| 狠狠精品人妻久久久久久综合| 涩涩av久久男人的天堂| 精品一区二区三卡| 人妻 亚洲 视频| 欧美+日韩+精品| 男女下面进入的视频免费午夜| 亚洲综合色惰| 高清av免费在线| 国产精品女同一区二区软件| 一二三四中文在线观看免费高清| 亚洲精品日本国产第一区| 麻豆乱淫一区二区| 亚洲精品国产av蜜桃| 又黄又爽又刺激的免费视频.| 欧美变态另类bdsm刘玥| 久久久久精品性色| 亚洲精品国产av成人精品| 少妇猛男粗大的猛烈进出视频 | 内射极品少妇av片p| 老司机影院毛片| 亚洲av欧美aⅴ国产| 国产一区二区三区av在线| 少妇人妻久久综合中文| 精品久久久久久久久av| 99九九线精品视频在线观看视频| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 免费黄频网站在线观看国产| 亚洲三级黄色毛片| 日韩一区二区视频免费看| 欧美人与善性xxx| 国产有黄有色有爽视频| 神马国产精品三级电影在线观看| av免费观看日本| 国产成年人精品一区二区| 国产精品爽爽va在线观看网站| 国产成人a∨麻豆精品| 在线免费十八禁| 嘟嘟电影网在线观看| 亚洲图色成人| 日韩一区二区视频免费看| 亚洲国产日韩一区二区| 制服丝袜香蕉在线| 91aial.com中文字幕在线观看| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | 在线观看三级黄色| 少妇裸体淫交视频免费看高清| 一级毛片我不卡| 在线免费观看不下载黄p国产| 99热这里只有精品一区| 欧美97在线视频| 看十八女毛片水多多多| av网站免费在线观看视频| eeuss影院久久| 亚洲自偷自拍三级| 日本av手机在线免费观看| 热99国产精品久久久久久7| 成人鲁丝片一二三区免费| av在线老鸭窝| 在线精品无人区一区二区三 | 亚洲av二区三区四区| 久久久亚洲精品成人影院| 免费播放大片免费观看视频在线观看| 一边亲一边摸免费视频| 国产成人免费无遮挡视频| 国产精品一区www在线观看| 狠狠精品人妻久久久久久综合| 欧美潮喷喷水| 美女脱内裤让男人舔精品视频| 国产亚洲5aaaaa淫片| 97超视频在线观看视频| 亚洲精品久久午夜乱码| 好男人在线观看高清免费视频| 女的被弄到高潮叫床怎么办| 国产日韩欧美在线精品| 国产精品99久久久久久久久| 国产免费福利视频在线观看| 26uuu在线亚洲综合色| 久久人人爽人人爽人人片va| 亚洲av电影在线观看一区二区三区 | 亚洲欧美日韩另类电影网站 | 色播亚洲综合网| 午夜激情福利司机影院| 亚洲美女搞黄在线观看| 80岁老熟妇乱子伦牲交| 亚洲成人av在线免费| 国产 一区精品| 日本猛色少妇xxxxx猛交久久| 国产成人a∨麻豆精品| 免费在线观看成人毛片| 老女人水多毛片| 国产一区二区三区综合在线观看 | 少妇熟女欧美另类| 国产色爽女视频免费观看| 日本熟妇午夜| 亚洲av中文av极速乱| 亚洲伊人久久精品综合| 免费大片18禁| av女优亚洲男人天堂| 亚洲av在线观看美女高潮| 国产伦在线观看视频一区| 1000部很黄的大片| 精品久久久久久电影网| av在线天堂中文字幕| 热99国产精品久久久久久7| 成年av动漫网址| 91狼人影院| 欧美精品人与动牲交sv欧美| 亚州av有码| 黄色怎么调成土黄色| 国产人妻一区二区三区在| 又爽又黄a免费视频| 日韩国内少妇激情av| 亚洲精品视频女| 亚洲精品乱久久久久久| av卡一久久| 国产v大片淫在线免费观看| 99久久精品一区二区三区| 国产午夜福利久久久久久| 搡女人真爽免费视频火全软件| av在线天堂中文字幕| 国产精品一区www在线观看| 日本一本二区三区精品| 久久精品熟女亚洲av麻豆精品| 在线a可以看的网站| 97人妻精品一区二区三区麻豆| 精品一区在线观看国产| 成年人午夜在线观看视频| 伊人久久国产一区二区| 亚洲精品一二三| av在线蜜桃| 丰满人妻一区二区三区视频av| 男男h啪啪无遮挡| 蜜桃亚洲精品一区二区三区| 国产精品国产av在线观看| 1000部很黄的大片| 在线观看国产h片| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 在线看a的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一二三四中文在线观看免费高清| 色视频www国产| 亚洲三级黄色毛片| 久久这里有精品视频免费| 午夜福利在线观看免费完整高清在| 黄片wwwwww| 一级a做视频免费观看| 国产精品女同一区二区软件| 国语对白做爰xxxⅹ性视频网站| 亚洲四区av| 丝袜喷水一区| 99精国产麻豆久久婷婷| 视频区图区小说| 久久精品久久精品一区二区三区| 久久精品国产亚洲网站| 99久久精品一区二区三区| 边亲边吃奶的免费视频| 777米奇影视久久| 久久国内精品自在自线图片| 国产日韩欧美亚洲二区| av福利片在线观看| 少妇人妻 视频| 午夜福利视频精品| 成人亚洲精品av一区二区| 国产成人freesex在线| 亚洲成人精品中文字幕电影| 一级二级三级毛片免费看| 免费在线观看成人毛片| 免费看不卡的av| 男女边摸边吃奶| 精品久久久久久久久av| 国产精品久久久久久精品电影小说 | 久久精品久久精品一区二区三区| 欧美3d第一页| 黄色配什么色好看| 黄片wwwwww| 少妇猛男粗大的猛烈进出视频 | 成人毛片60女人毛片免费| 大码成人一级视频| av卡一久久| 97在线人人人人妻| 熟女电影av网| 日韩三级伦理在线观看| 在现免费观看毛片| 国产淫语在线视频| 交换朋友夫妻互换小说| 麻豆国产97在线/欧美| 热99国产精品久久久久久7| 免费少妇av软件| 1000部很黄的大片| 亚洲欧洲日产国产| 乱系列少妇在线播放| 少妇的逼水好多| 日本与韩国留学比较| 色视频在线一区二区三区| 香蕉精品网在线| 久久久久久久久久久免费av| 少妇丰满av| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 成人免费观看视频高清| 亚洲怡红院男人天堂| 插阴视频在线观看视频| 国产一区有黄有色的免费视频| 日本免费在线观看一区| 啦啦啦在线观看免费高清www| 在线免费十八禁| 国产成人a区在线观看| 欧美xxⅹ黑人| 有码 亚洲区| 久久精品国产亚洲网站| 特级一级黄色大片| 精品国产乱码久久久久久小说| 欧美成人a在线观看| 国产高清三级在线| 国产女主播在线喷水免费视频网站| 亚洲国产欧美人成| 久久人人爽人人片av| 内射极品少妇av片p| 久久久久精品久久久久真实原创| 国模一区二区三区四区视频| 观看免费一级毛片| 国产爱豆传媒在线观看| 中国国产av一级| 中文字幕制服av| 99视频精品全部免费 在线| 亚洲av福利一区| 少妇 在线观看| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 日韩免费高清中文字幕av| 免费人成在线观看视频色| 免费高清在线观看视频在线观看| 免费观看性生交大片5| 国产在线一区二区三区精| av.在线天堂| 成人特级av手机在线观看| 中文字幕亚洲精品专区| 欧美区成人在线视频| 一边亲一边摸免费视频| 99热这里只有是精品在线观看| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 简卡轻食公司| 亚洲在久久综合| 亚洲国产精品专区欧美| 麻豆成人午夜福利视频| 中国美白少妇内射xxxbb| 久久久久精品久久久久真实原创| 婷婷色综合www| 国产成人午夜福利电影在线观看| 黄色视频在线播放观看不卡| 亚洲国产精品999| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 国产伦精品一区二区三区四那| 精品人妻视频免费看| 丰满少妇做爰视频| 午夜视频国产福利| 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 亚洲欧美成人精品一区二区| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 97在线人人人人妻| 91午夜精品亚洲一区二区三区| 久久精品久久精品一区二区三区| 国产 一区 欧美 日韩| 神马国产精品三级电影在线观看| 日日摸夜夜添夜夜爱| 中文字幕久久专区| 亚洲熟女精品中文字幕| 禁无遮挡网站| av在线亚洲专区| 色吧在线观看| 三级国产精品片| 国产男女超爽视频在线观看| 夫妻午夜视频| 欧美高清性xxxxhd video| av网站免费在线观看视频| 久久97久久精品| 人妻 亚洲 视频| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 国产欧美亚洲国产| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 人妻夜夜爽99麻豆av| 免费观看性生交大片5| 亚洲三级黄色毛片| 久久精品国产自在天天线| 亚洲国产精品成人久久小说| 黄色配什么色好看| 有码 亚洲区| 亚洲av在线观看美女高潮| 男人舔奶头视频| 97热精品久久久久久| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 热re99久久精品国产66热6| 日本-黄色视频高清免费观看| 午夜免费鲁丝| 青春草视频在线免费观看| 97人妻精品一区二区三区麻豆| 亚洲精品日本国产第一区| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 91精品国产九色| 成人毛片a级毛片在线播放| 午夜福利视频精品| 国产又色又爽无遮挡免| 成人国产av品久久久| 久久99蜜桃精品久久| av卡一久久| 日韩成人伦理影院| av又黄又爽大尺度在线免费看| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 国产在视频线精品| 国产精品.久久久| 国产高清国产精品国产三级 | 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 国国产精品蜜臀av免费| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 男人爽女人下面视频在线观看| 国产精品一区二区在线观看99| 亚洲av电影在线观看一区二区三区 | 日本熟妇午夜| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 亚洲av国产av综合av卡| 成人无遮挡网站| 久久久欧美国产精品| 99热网站在线观看| 国产中年淑女户外野战色| 波野结衣二区三区在线| 精品久久久久久电影网| 国产在视频线精品| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久影院| 国产精品久久久久久久久免| 午夜福利网站1000一区二区三区| 丝袜美腿在线中文| 看黄色毛片网站| 99久久中文字幕三级久久日本| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 亚洲精品久久午夜乱码| 99久久精品一区二区三区| av国产免费在线观看| 国产美女午夜福利| 九九在线视频观看精品| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 亚洲怡红院男人天堂| 欧美丝袜亚洲另类| av.在线天堂| 国产成人免费无遮挡视频| 18+在线观看网站| 国产精品一及| 香蕉精品网在线| 日韩av不卡免费在线播放| 王馨瑶露胸无遮挡在线观看| 亚洲精品一二三| 国产成人精品婷婷| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 亚洲va在线va天堂va国产| 国产成人一区二区在线| 一级a做视频免费观看| 国产亚洲av片在线观看秒播厂| 哪个播放器可以免费观看大片| 男人爽女人下面视频在线观看| 91久久精品电影网| 国语对白做爰xxxⅹ性视频网站| 日本熟妇午夜| 欧美少妇被猛烈插入视频| 亚洲人成网站高清观看| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站 | 69av精品久久久久久| 国产精品不卡视频一区二区| 国产成人精品婷婷| 亚洲天堂国产精品一区在线| 精品久久久久久久久亚洲| a级毛色黄片| 两个人的视频大全免费| 日本一二三区视频观看| 日本黄大片高清| 99久久精品国产国产毛片| 国产男女超爽视频在线观看| 欧美日韩视频高清一区二区三区二| 男人添女人高潮全过程视频| 免费电影在线观看免费观看| 中文字幕免费在线视频6| 国产真实伦视频高清在线观看| 国产 精品1| 午夜福利在线观看免费完整高清在| 久久韩国三级中文字幕| 尾随美女入室| 亚洲内射少妇av| 在线观看一区二区三区激情| 日韩伦理黄色片| 欧美丝袜亚洲另类| 亚洲精品视频女| 国内精品宾馆在线| 亚洲成人av在线免费| 亚洲精品影视一区二区三区av| 黄色日韩在线| 国产在视频线精品| 亚洲欧美精品自产自拍| 成年人午夜在线观看视频| 国产爱豆传媒在线观看| 午夜激情福利司机影院| av在线观看视频网站免费| 女人被狂操c到高潮| 街头女战士在线观看网站| 嘟嘟电影网在线观看| 久久精品国产自在天天线|