• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust edge-preserving surface mesh polycube deformation

    2018-05-11 06:31:00HuiZhaoNaLeiXuanLiPengZengKeXuandXianfengGu
    Computational Visual Media 2018年1期

    Hui ZhaoNa Lei()Xuan LiPeng ZengKe Xuand Xianfeng Gu

    The Author(s)2017.This article is published with open access at Springerlink.com

    1 Introduction

    Polycubes are special geometric shapes,whose face normals are aligned with the one of the six axis directions of a prescribed orthonormal coordinate frame.A polycube may be used to capture overall and global shape features of a mesh,and remove its local details.

    The idea of a polycube was first proposed in Ref.[1]to extend cube mapping to general shapes.These special shapes generalize geometry images[2], and allow geometry and texture to be stored efficiently.Due to their highly regular structure and special global parametric domain,polycubes are useful in many graphics applications, such as surface texturing [1],volume texturing [3], parameterization [4,5],reconstruction [6],hexahedral remeshing [7–10],shape morphing[11],spline construction[6,12],volumetric mapping [13, 14], and T-mesh construction[15].

    Constructing polycube shapes from meshes is a challenging problem. In early works,polycube meshes were constructed manually[1,5],which needs a lot of tedious,labor-intensive user interaction requiring great care.After the polycube has been constructed,another extra algorithm was needed to determine the cross-surface map between the polycube and the mesh[12].Determining this map is also a challenging problem in itself[6].If we change the polycube,we need to rebuild the map.

    In this paper,we propose a novel,automatic polycube deformation algorithm which can be applied to a surface mesh.Our method separates the polycube construction process into three explicit components: segmentation,polycube topology determination,and polycube geometry construction.Our major contribution is to the polycube geometry step.We propose a deformation method based on face normal rotation.The technique we implement can process all kinds of meshes,of varying genus,orientated or non-orientated,and with or without boundaries.Compared to previous methods,our algorithms is more efficient,robust,fast,accurate and can deform a mesh with complicated geometry and arbitrary topology into a corresponding polycube. Pre-processing and post-processing are not required,and there are no topological degeneracies in our experimental results. As the polycubes are resulted by deforming the original meshes,we automatically determine a direct cross surface parameterization between the meshes and their corresponding polycube shapes.

    2 Related work

    Recently,some automatic polycube construction algorithms have been proposed in Refs.[7,16–18].The authors use a segmentation method to patch the input mesh,then use box-primitives to approximate it coarsely in Ref.[18],but this method fails for complicated models.The method in Ref.[18]applies distance-based,divide-and-conquer algorithms to build the polycube,while the one in Ref.[16]generates over-refined polycubes and is sensitive to off-axis features.The algorithms in Refs.[16,18]are based on surface meshes and can not build the cross-surface map automatically.While the algorithms in Refs.[7,17]are volume-mesh-based,they look for the specific polycube which minimizes the distortion of the volumetric map.

    A polycube is an axis aligned shape which mimics the original shape,but with the geometric characterization that each of its face normals is aligned with one of the axes of a given orthonormal coordinate frame.Therefore,the value of the?1-norm of every unit face normal of the polycube shape is equal to 1[17].Based on this observation,Ref.[17]defines an?1-norm energy which is weighted by triangle area,then proposes a variational method to deform an input triangle mesh into a polycube shape by minimization of this energy.The?1-norm term of the mesh’s face normals,and the weight term of triangle areas are both non-linear in mesh position. The authors change the unconstrained system into a constrained minimization problem to make it well-behaved,numerically tractable,and efficient.Finally,a complicated numerical method is resorted to solve the minimization problem in Ref.[17].To decrease distortion,a volumetric mesh is created from the surface mesh,then an as-rigidas-possible volumetric distortion energy[19]is used to regularize the system.There are many minima of the deformation energy,so a regularization approach is also used to single out the desired polycube[17].

    Because the polycube results differ according to axis orientation,the authors also introduce an energy term to find the optimal global orientation for the polycube.This energy is integrated into their whole system. However,the optimal polycube over all orientations is an ill-defined concept. We do not think there should be an optimal polycube.

    The polycubes resulting from the above approach often have spurious topological degeneracies.A postprocessing cleanup step is used to fi x the problem in Ref.[17].

    Their method also requires that the input mesh is closed,while our method can process meshes with open boundaries.

    Themethod in Ref.[7]aimstoalign the surface normals of an input mesh with one of six axes(±X,±Y,±Z)gradually,in a step called rotation-driven deformation. However the result is not a perfect polycube and a second positiondriven deformation is required to exactly align each polycube face with the corresponding axis,and to enforce planarity.Our method is similar to theirs,but our algorithms use different methods to compute rotations.As a result,our results converge to planar faces and we do not need post-processing steps.

    The algorithm in Ref.[20]requires an existing polycube,which they then optimize to meet a desired quality. The method in Ref.[9]attacks the polycube segmentation problem using a graph cut-based approach to achieve a polycube base complex which satisfies certain quality requirements.The algorithms balance parameterization distortion against the number of singularities of the polycube.We use the same segmentation step as theirs[9,21],but suggest a different polycube geometry deformation method from theirs.

    Another polycube method similar to ours is given in Ref.[21]. Their algorithm is also a normal driven method.Given a polycube with complicated topology,a simplification method is proposed in Ref.[22].

    Poisson-system-based deformation[23]is a well known technique. After rotations of all triangle faces have been determined,the triangles can be rotated into the new orientation,and then a Poisson system is used to blend the triangle soup together and reconstruct a consistent mesh into its new shape.The rotations can be computed according to application needs. In Ref.[24],the rotation is achieved by interpolation from two meshes in correspondence. In Ref.[25],rotations of the triangles are interpolated.

    3 Algorithms

    3.1 Preliminaries

    Apolycubeis a shape formed by joining several rectangular faces together in such a way that the surface normals of the polycube are axis-aligned.A polycube has also been called an orthogonal polyhedron[9,26].We observe that there are three steps in deforming a mesh into a corresponding polycube shape:segmentation,polycube topology determination,and polycube geometry construction.These three steps can be made independent of each other.The first step divides a mesh into several different charts. The second step determines the polycube topology of the mesh,and the third step fi xes the polycube geometry.Figure 1 shows two models which are segmented into parts in the second column.Using the parts,each model’s polycube topology is found as shown in the third column,and finally our algorithm obtains an exact polycube geometry as shown in the last column. Many previous algorithms combine these two or three steps into one.Our algorithm separates them explicitly.In this paper,we focus on the polycube geometry construction step. Given a model with a valid polycube topology,found,e.g.,using the method in Ref.[21],our algorithm produces a final shape with perfect polycube geometry.

    Fig.1 Segmentation,polycube topology determination,and geometry construction.

    In the first step,the whole mesh is separated into several charts with monotone chart boundaries[9].Finding necessary conditions on the segmentation to guarantee a valid polycube is still an open problem[26]. However there are three sufficient conditions[26]:

    a)each single patch of the polycube has at least four other neighboring charts;

    b)two neighboring polycube patches must not have opposite labels;

    c)the valence of every polycube vertex must be three.

    In thispaper,we usethe same validated polycube topology data as Ref.[21]for purposes of experimental comparison.

    In the segmentation step,we must guarantee that there are only three parts which meet at each point to satisfy the third topological requirement.The PolyCut method in Ref.[9]can be applied to perform this step.

    3.2 Polycube topology

    The second step determines the polycube topology.After segmentation of the mesh,this step labels or associates each triangle with one of six axis directions(+X,?X,+Y,?Y,+Z,?Z),as in Fig.1,where the six different colors represent these directions.

    A valid polycube topology assigns a target normal to every triangle face,and divides the whole mesh into patches in which all triangles have the same target normal.Our algorithm rotates all triangles to their corresponding target normal directions.There are no explicit constraints between patches.Every patch is independently rotated.However there are implicit global topological constraints between them due to the polycube topology.

    If the same model is assigned several different polycube topologies,this will lead to different polycube shapes.In Figs.2 and 3,we demonstrate this conclusion. The first and the third columns of Fig.2 show the same “bimba” model,but with different polycube topologies,and the second and the last columns are their corresponding polycube shapes.

    3.3 Polycube geometry

    3.3.1Approach

    Fig.2 A model with two different polycube topologies.

    Fig.3 Another model with two different polycube topologies.

    The second step aligns and reorients the triangles in each chart with one axis direction. Every chart should be mapped into a planar rectangle and all chart boundaries should be straight lines.

    When creating a polycube from a mesh,we wish the parameterization distortion to be low.At the same time,the numbers of singularities,i.e.,chartcorners,and ofcharts,should be kept low. The polycube construction algorithm should provide an optimaltrade-off between parametrization distortion,and numbers of charts and singularities.

    Our polycube geometry method is based on a Poisson system which reconstructs the deformed polycube mesh to satisfy the currently assigned face normals of the triangles. As the Poisson system can only approximate the input normal requirements,we use an iterative Poisson system.After several iterations,our system converges and outputs a corresponding polycube shape whose patch boundaries are necessarily straight;the triangles in each chart fall on a plane automatically without the need for any extra planarity constraints.

    Changing a model into its corresponding polycube shape is fundamentally a surface deformation process. Previous deformation algorithms[27–30]focus on preserving the local features of the original model as well as possible.We suggest that the target of the deformation should be to preserve the metric instead of local features.

    In Ref.[30],the deformation energy is separated into two explicit kinds of energy,stretching energy and bending energy.The former tries to preserve the metric,while the latter preserves the mean curvatures. Motivated by their explanation,our algorithm adopts and modifies their stretching energy under the constraints of the target normal direction of every triangle of the polycube topology.In their original method,the rotations of faces are unknown variables which are changed at every iterative step,but in our approach,the rotations are known in advance and kept the same in each iteration.In theory,our deformation does preserve the metric,but in practice we observe small changes in edge lengths.

    3.3.2Details

    LetSbe an original surface andS′be a deformed version of it,embedded in 3-dimensions.Letxvbe a 3-vector which is the position associated with vertexvofS,whilex′vcorresponds to vertexvinS′.On every triangle of the mesh,we define a 3×3 rotation matrix variableR(t).The stretching energy[30]is defined as

    In the above,‖·‖2is the standard 3-vector norm,hevwrepresents the half edge from the vertexvtow.The angle of the triangle opposite to half edge hevwis denotedavw.FinallyR(tvw)represents the rotation matrix associated with the triangle face containing half edge hevw.

    It is proved in Ref.[30]thatE(x′)measures the quantity:

    whereσ1(p)andσ2(p)represent the the maximum and minimal stretching ratios of a tangent vector ofSat a pointpunder the differential mapping dx′fromStoR3,respectively.ThereforeE(x′)is a reasonable quantity to measure the stretching of a deforming surface.

    This stretching energy is quadratic inx′given a fixed rotation matrixRover each triangle.Taking the gradient of the stretching energy and setting it to zero,we can obtain the optimal values of the variablesx′by solving a single linear system:

    By de fi ning the 3-vector at vertexvas

    we can represent the above system in matrix format as

    whereLis then×nLaplacian matrix,andx′andbaren×3 matrices.

    3.3.3Rotation of each triangle

    In the above system,we need to know the rotation matrix for every triangle of the mesh. Although we do not know the exact vertex positions of the polycube in advance,the face normals of the polycube are determined and fixed by the polycube topology.Therefore we can calculate the rotation matrix for every triangle,from its unit normal on the original mesh and the target normal from its polycube topology,without knowing the target polycube shape(the rotation can be computed by Rodrigues’formula).

    3.3.4Iteration

    A Poisson system providesan approximation method:the system in Eq.(5)cannot result in an exact polycube,of the kind shown in Fig.4.We fi x the problem with an iterative method.In every stepi,we recompute the rotation matrixRi(t)for triangletfrom the face normal of the current model and the target normal given by the polycube topology.Using the newRi(t),we update theLiandbi.On each iteration the system to be solved is

    Figure 4 demonstrates the iterative process of polycube deformation.We observe that the polycube shapes get better and better after each iteration;planarity and straightness of the polycube edges are realized upon convergence of the iterations.In these experiments,the polycube shape in the fi fth step is almost the same as the one after the hundredth step.Therefore the speed of convergence of our polycube deformation method is very fast.In practice,the speed varies according to the model.

    The stretching energy defined in Eq.(1)can measure the stretching ratio if it is a function of both rotationRand unknown position vectorsx′.In our framework,we fi x the variableR,so our system is only a function of unknown position vectorsx′.Therefore our method does not minimize the stretching energy,but is a simple Poisson system.The explanation of“stretching energy” in Ref.[30]gives us a hint as to why our simple Poisson system does not change edge lengths much in practice.

    Fig.4 Iterations of polycube deformation for two models.

    4 Results and demonstrations

    4.1 Evaluation

    Wehavetested ourmethod in avariety of meshes with complicated topology,with and without boundaries.Our experiments demonstrate that our algorithms can work on all kinds of shapes.

    In Fig.5,we show several models and their polycube shapes.It shows that our algorithm can obtain perfect polycubes no matter how complex the model shapes.

    Fig.5 Six models and their polycube shapes.

    Polycubes are also affected by the genus of the models.The technique we propose can manipulate models with high genus directly,as shown in Figs.13 and 14,which demonstrates the robustness of our algorithm for varying mesh topologies.

    Our method is insensitive to the presence of boundaries.Figure 6 shows some meshes with boundaries and their polycubes.As there are only implicit constraints on polycube topology,the edges on the boundary are not deformed into the straight lines.

    Fig.6 Models with boundaries,and their polycube shapes.

    Fig.7 The “costa” non-orientable surface and its polycube.

    Our algorithm can also deform non-orientable meshes successfully.In Fig.7,the well-known“costa”surface mesh is deformed into a polycube.After determining the segmentation and polycube topology,the PolyCut method[9]also uses a deformation algorithm to obtain polycube geometry.Their deformation is based on vertex normal rotations,unlike ours,in which rotations are applied to face normals.As a result,their method and the algorithm in Ref.[21]can not process non-orientable surfaces,or meshes with boundaries.

    The algorithm we present is also robust to polycube topological defects.When the polycube topology is not valid,our method can still process the model and output a polycube-like shape with the same polycube topological defects.In Fig.8,two models with and without topological defects are shown in the first and third columns respectively.Corresponding polycube deformation results are displayed in the second and fourth columns.

    4.2 Comparison

    Fig.8 polycube topological defects. When the polycube topological defects.

    Many recent algorithms[17]cannot guarantee to obtain a perfect polycube shape without topological defects,an exception being the method proposed in Ref.[21]. In this part,we compare our method with the latter. We use the same models,the same segmentation charts,and the same polycube topologies as used in Ref.[21]. We ran these algorithms on a hundred of models,and exhibit several results in Figs.9 and 10.

    Our algorithm just solves several linear systems,so is faster than theirs.The polycube shapes from both algorithms are almost the same.However the area and shape of each polycube face are slightly different.

    We compute the edge and area errors for each model for our and their polycube results.The error ratios for one hundred models for the two methods are displayed in Figs.11 and 12.We can conclude that our algorithm preserves edges and areas much better than the method in Ref.[21].

    5 Conclusions and future work

    This paper has presented a robust,efficient polycube deformation algorithm. Our method is based on explicitly separating the whole process into three steps.Each step can be performed with a variety of methods.Our method outperforms previous ones in terms of speed,robustness,simplicity,diversity,and quality.Although this deformation technique leads to a direct cross-map between original mesh and its polycube,we can not guarantee that the map is bijective,or one-to-one.In future,we plan to add further constraints to the polycube geometry step to obtain a bijective map.

    Fig.9 Polycubes produced by the method in Ref.[21]and our method.

    Fig.10 Polycubes produced by the method in Ref.[21]and our method.

    Fig.11 Edge errors for our algorithm and the method in Ref.[21].

    Fig.12 Area errors for our algorithm and the method in Ref.[21].

    Fig.13 Models of high genus and their polycube shapes.

    Fig.14 Models of high genus and their polycube shapes.

    Quadrangulation and hexahedral meshing from a surface mesh are crucial problems in computer graphics,and our method shows promise for such applications.

    Fig.15 Gallery of our polycube deformations.

    Acknowledgements

    We wish to thank the anonymous reviewers for encouragement and thoughtful suggestions.We are grateful for Prof.Steven J.Gortler for motivation and insightful guidance which made this paper possible. We also thank Yue Li for help in our experiments.The mesh models are courtesy of the Aim@Shape Repository,the Stanford 3D Scanning Repository and Ref.[21].We used Mitsuba[31]for rendering images.Our algorithms were implemented usingtheMeshDGP [32]framework.Wealso thank the Libigl team [33]for reference.The project was partially supported by NSFC 61772105,61720106005,and 11271156,NSF DMS-1418255,and AFOSR FA9550-14-1-0193.

    References

    [1]Tarini,M.;Hormann,K.;Cignoni,P.;Montani,C.PolyCube-maps.ACM Transactions on GraphicsVol.23,No.3,853–860,2004.

    [2]Gu,X.;Gortler,S.J.;Hoppe,H.Geometry images.ACM Transactions on GraphicsVol.21,No.3,355–361,2002.

    [3]Chang,C.-C.;Lin,C.-Y.Texture tiling on 3D models using automatic polycube-maps and Wang tiles.Journal of Information Science and EngineeringVol.26,No.1,291–305,2010.

    [4]Garcia,I.;Xia,J.;He,Y.;Xin,S.-Q.;Patow,G.Interactive applications for sketch-based editable polycube map.IEEE Transactions on Visualization and Computer GraphicsVol.19,No.7,1158–1171,2013.

    [5]Yao,C.-Y.;Lee,T.-Y.Adaptive geometry image.IEEE Transactions on Visualization and Computer GraphicsVol.14,No.4,948–960,2008.

    [6]Wang,H.;Jin,M.;He,Y.;Gu,X.;Qin,H.User-controllable polycube map for manifold spline construction.In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling,397–404,2008.

    [7]Gregson,J.;Sheffer,A.;Zhang,E.All-hex mesh generation via volumetric polycube deformation.Computer Graphics ForumVol.30,No.5,1407–1416,2011.

    [8]Han,S.;Xia,J.;He,Y.Hexahedral shell mesh construction via volumetric polycube map.In:Proceedings of the 14th ACM Symposium on Solid and Physical Modeling,127–136,2010.

    [9]Livesu,M.; Vining,N.; Sheffer,A.; Gregson,J.;Scateni,R.PolyCut: Monotonegraph-cuts for PolyCube base-complex construction.ACM Transactions on GraphicsVol.32,No.6,Article No.171,2013.

    [10]Xia,J.;He,Y.;Yin,X.;Han,S.;Gu,X.Directproduct volumetric parameterization of handlebodies via harmonic fields.In:Proceedings of the Shape Modeling International Conference,3–12,2010.

    [11]Fan,Z.;Jin,X.;Feng,J.;Sun,H.Mesh morphing using polycube-based cross-parameterization.Computer Animation and Virtual WorldsVol.16,Nos.3–4,499–508,2005.

    [12]Wang,H.;He,Y.;Li,X.;Gu,X.;Qin,H.Polycube splines.Computer-Aided DesignVol.40,No.6,721–733,2008.

    [13]He,Y.;Yin,X.;Luo,F.;Gu,X.Harmonic volumetric parameterization using green’s functions on star shapes.In:Proceedings of the Symposium on Geometry Processing,2008.

    [14]Li,X.;Guo,X.;Wang,H.;He,Y.;Gu,X.;Qin,H.Harmonic volumetric mapping for solid modeling applications.In: Proceedings of the 2007 ACM symposium on Solid and Physical Modeling,109–120,2007.

    [15]Liu,L.;Zhang,Y.;Liu,Y.;Wang,W.Featurepreserving T-mesh construction using skeleton-based polycubes.Computer-Aided DesignVol.58,162–172,2015.

    [16]He,Y.;Wang,H.;Fu,C.-W.;Qin,H.A divideand-conquer approach for automatic polycube map construction.Computers&GraphicsVol.33,No.3,369–380,2009.

    [17]Huang,J.;Jiang,T.;Shi,Z.;Tong,Y.;Bao,H.;Desbrun,M.l1-based construction of polycube maps from complex shapes.ACM Transactions on GraphicsVol.33,No.3,Article No.25,2014.

    [18]Lin,J.; Jin,X.; Fan,Z.; Wang,C.C.L.Automatic polycube-maps.In:Advances in Geometric Modeling and Processing.GMP 2008.Lecture Notes in Computer Science,Vol.4975.Chen,F.;Jttler,B.Eds.Springer,Berlin,Heidelberg,3–16,2008.

    [19]Alexa,M.;Cohen-Or,D.;Levin,D.As-rigid-aspossible shape interpolation.In:Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,157–164,2000.

    [20]Wan,S.;Yin,Z.;Zhang,K.;Zhang,H.;Li,X.A topology-preserving optimization algorithm for polycube mapping.Computers&GraphicsVol.35,No.3,639–649,2011.

    [21]Fu,X.-M.;Bai,C.-Y.;Liu,Y.Efficient volumetric polycube-map construction.ComputerGraphics ForumVol.35,No.7,97–106,2016.

    [22]Cherchi,G.;Livesu,M.;Scateni,R.Polycube simplification for coarse layouts of surfaces and volumes.Computer Graphics ForumVol.35,No.5,11–20,2016.

    [23]Yu,Y.;Zhou,K.;Xu,D.;Shi,X.;Bao,H.;Guo,B.;Shum,H.-Y.Mesh editing with poisson-based gradient field manipulation.ACM Transactions on GraphicsVol.23,No.3,644–651,2004.

    [24]Xu,D.;Zhang,H.;Wang,Q.;Bao,H.Poisson shape interpolation.Graphical ModelsVol.68,No.3,268–281,2006.

    [25]Zayer,R.;Rssl,C.;Karni,Z.;Seidel,H.-P.Harmonic guidance for surface deformation.Computer Graphics ForumVol.24,No.3,601–609,2005.

    [26]Eppstein,D.;Mumford,E.Steinitz theorems for orthogonal polyhedra.In:Proceedings of the 26th Annual Symposium on Computational Geometry,429–438,2010.

    [27]Chao,I.;Pinkall,U.;Sanan,P.;Schrder,P.A simple geometric model for elastic deformations.ACM Transactions on GraphicsVol.29,No.4,Article No.38,2010.

    [28]Botsch,M.; Sorkine,O.On linearvariational surface deformation methods.IEEE Transactions on Visualization and Computer GraphicsVol.14,No.1,213–230,2008.

    [29]Sorkine,O.;Alexa,M.As-rigid-as-possible surface modeling.In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,109–116,2007.

    [30]Zhao,H.;Gortler,S.J.A report on shape deformation with a stretching and bending energy.arXiv preprintarXiv:1603.06821,2016.

    [31]Jakob,W.Mitsuba renderer.2010.Available at http://www.mitsuba-renderer.org.

    [32]Zhao, H. MeshDGP: A C Sharp mesh processing framework.2016.Availableathttp://meshdgp.github.io/.

    [33]Jacobson,A.;Panozzo,D.;Schller,C.libigl:A simple C++geometry processing library.2016.Available at http://libigl.github.io/libigl/.

    亚洲国产精品国产精品| 欧美另类一区| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区黑人 | 欧美日韩视频高清一区二区三区二| 十分钟在线观看高清视频www | 夫妻性生交免费视频一级片| 人人妻人人爽人人添夜夜欢视频 | 99久久综合免费| 少妇裸体淫交视频免费看高清| 国产亚洲最大av| 国产男女内射视频| 国产精品三级大全| 日韩中文字幕视频在线看片 | 麻豆乱淫一区二区| 少妇裸体淫交视频免费看高清| 国产高清国产精品国产三级 | av专区在线播放| 国产欧美日韩精品一区二区| 美女中出高潮动态图| 精品一品国产午夜福利视频| 日韩欧美一区视频在线观看 | 中文字幕久久专区| 人妻 亚洲 视频| 尾随美女入室| 在线精品无人区一区二区三 | 久久青草综合色| 久久 成人 亚洲| 欧美成人a在线观看| 青青草视频在线视频观看| 久久综合国产亚洲精品| 亚洲综合精品二区| av女优亚洲男人天堂| 日韩 亚洲 欧美在线| 国产乱来视频区| 特大巨黑吊av在线直播| 熟妇人妻不卡中文字幕| 极品少妇高潮喷水抽搐| 国产成人精品一,二区| 夜夜爽夜夜爽视频| 少妇的逼水好多| 国产av一区二区精品久久 | 国产精品国产三级专区第一集| 国产精品福利在线免费观看| 精华霜和精华液先用哪个| 久久国产亚洲av麻豆专区| 欧美zozozo另类| 久久午夜福利片| 亚洲四区av| 最近2019中文字幕mv第一页| 少妇人妻精品综合一区二区| 免费看av在线观看网站| 亚洲国产成人一精品久久久| 内地一区二区视频在线| 国产成人精品一,二区| 九九爱精品视频在线观看| av线在线观看网站| 内地一区二区视频在线| 少妇熟女欧美另类| 熟女人妻精品中文字幕| 男男h啪啪无遮挡| 亚洲,一卡二卡三卡| 亚洲内射少妇av| 日韩av免费高清视频| 国产精品一及| 免费不卡的大黄色大毛片视频在线观看| 高清av免费在线| 国产精品女同一区二区软件| 日日摸夜夜添夜夜爱| 精品久久久久久久末码| 亚洲欧美清纯卡通| 国产精品一区www在线观看| 国产精品伦人一区二区| 欧美极品一区二区三区四区| 国产日韩欧美亚洲二区| 一个人免费看片子| 精品一品国产午夜福利视频| 国产毛片在线视频| 网址你懂的国产日韩在线| 午夜福利在线观看免费完整高清在| 精品人妻偷拍中文字幕| 国产精品国产三级专区第一集| 亚洲成人中文字幕在线播放| 国产伦精品一区二区三区视频9| xxx大片免费视频| 舔av片在线| av卡一久久| 夜夜骑夜夜射夜夜干| 亚洲人与动物交配视频| 99热6这里只有精品| 狠狠精品人妻久久久久久综合| 99热这里只有是精品50| 尾随美女入室| 大陆偷拍与自拍| av在线蜜桃| 精品人妻视频免费看| 色婷婷av一区二区三区视频| 成人特级av手机在线观看| 久久99热这里只频精品6学生| 久久久久网色| 新久久久久国产一级毛片| 午夜视频国产福利| 一个人看视频在线观看www免费| 国产男女超爽视频在线观看| 两个人的视频大全免费| 婷婷色综合大香蕉| 国产欧美另类精品又又久久亚洲欧美| 美女xxoo啪啪120秒动态图| 亚洲aⅴ乱码一区二区在线播放| 春色校园在线视频观看| 少妇熟女欧美另类| 久久久久久久久久久丰满| 久久这里有精品视频免费| 高清视频免费观看一区二区| 黑丝袜美女国产一区| 亚洲一区二区三区欧美精品| 久久久久精品久久久久真实原创| 久久精品久久久久久噜噜老黄| 伊人久久精品亚洲午夜| av天堂中文字幕网| 蜜臀久久99精品久久宅男| 久久久久久伊人网av| 国产综合精华液| 麻豆成人午夜福利视频| 狠狠精品人妻久久久久久综合| 99久久精品一区二区三区| 伦理电影大哥的女人| 纵有疾风起免费观看全集完整版| 深夜a级毛片| 欧美国产精品一级二级三级 | 欧美另类一区| 熟女人妻精品中文字幕| 国产精品成人在线| 这个男人来自地球电影免费观看 | 亚洲成人av在线免费| 久久久久久久久久成人| 久久久欧美国产精品| 丝袜喷水一区| 肉色欧美久久久久久久蜜桃| 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 精品午夜福利在线看| 亚洲色图综合在线观看| 美女高潮的动态| 赤兔流量卡办理| 国产免费福利视频在线观看| 国产成人精品婷婷| 2021少妇久久久久久久久久久| av在线app专区| 性高湖久久久久久久久免费观看| 国产伦在线观看视频一区| 成人午夜精彩视频在线观看| a级毛色黄片| 美女主播在线视频| 亚洲av日韩在线播放| 性高湖久久久久久久久免费观看| 三级国产精品欧美在线观看| 成人毛片60女人毛片免费| .国产精品久久| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 老女人水多毛片| 成年av动漫网址| 麻豆精品久久久久久蜜桃| 国产 精品1| 性色av一级| 干丝袜人妻中文字幕| 99热这里只有精品一区| 美女高潮的动态| 18禁在线无遮挡免费观看视频| 人人妻人人添人人爽欧美一区卜 | 久久影院123| 国产黄频视频在线观看| 在线观看免费视频网站a站| 赤兔流量卡办理| 老司机影院成人| 亚洲精品日本国产第一区| 91在线精品国自产拍蜜月| 久久午夜福利片| 综合色丁香网| 日本一二三区视频观看| 免费黄色在线免费观看| 欧美国产精品一级二级三级 | 久久精品熟女亚洲av麻豆精品| 久久精品国产亚洲av天美| 如何舔出高潮| 久久久久久久大尺度免费视频| 午夜福利影视在线免费观看| 亚洲高清免费不卡视频| 欧美zozozo另类| 国产精品女同一区二区软件| 久久久精品94久久精品| 亚洲怡红院男人天堂| 自拍偷自拍亚洲精品老妇| 99热网站在线观看| 韩国高清视频一区二区三区| 欧美xxxx性猛交bbbb| 国产在线一区二区三区精| av福利片在线观看| 黑人猛操日本美女一级片| 少妇 在线观看| 精品一品国产午夜福利视频| 日韩av在线免费看完整版不卡| 日韩av免费高清视频| 热99国产精品久久久久久7| 成人综合一区亚洲| av天堂中文字幕网| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 2022亚洲国产成人精品| 国产成人免费无遮挡视频| 精品99又大又爽又粗少妇毛片| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 欧美成人a在线观看| 精品人妻一区二区三区麻豆| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 性色av一级| 亚洲国产日韩一区二区| www.色视频.com| 国产在视频线精品| 亚洲欧美日韩卡通动漫| 亚洲av成人精品一区久久| 国产高潮美女av| 91久久精品国产一区二区三区| 51国产日韩欧美| 在线精品无人区一区二区三 | 亚洲图色成人| 国产熟女欧美一区二区| 青青草视频在线视频观看| 高清不卡的av网站| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 天堂8中文在线网| 亚洲成人一二三区av| 国产一区二区三区综合在线观看 | 韩国高清视频一区二区三区| 亚洲成色77777| av免费在线看不卡| 亚洲精品乱码久久久久久按摩| 春色校园在线视频观看| 国产精品一区二区在线不卡| 国产综合精华液| 国产av国产精品国产| 六月丁香七月| 午夜激情福利司机影院| 欧美 日韩 精品 国产| 国产欧美日韩精品一区二区| 亚洲在久久综合| 国产成人精品久久久久久| 欧美亚洲 丝袜 人妻 在线| 亚洲一区二区三区欧美精品| 久久99热这里只有精品18| 在线观看三级黄色| 毛片一级片免费看久久久久| 一级黄片播放器| 中文在线观看免费www的网站| 成人高潮视频无遮挡免费网站| 国产亚洲5aaaaa淫片| 久久6这里有精品| 国产日韩欧美亚洲二区| 欧美精品一区二区免费开放| 婷婷色综合www| 久久久欧美国产精品| 亚洲国产av新网站| 人人妻人人添人人爽欧美一区卜 | 国产成人精品福利久久| 一级a做视频免费观看| 妹子高潮喷水视频| 天堂中文最新版在线下载| 国产综合精华液| 伊人久久国产一区二区| 亚洲精品,欧美精品| 午夜老司机福利剧场| 熟妇人妻不卡中文字幕| 国产一区二区三区av在线| 久久97久久精品| 亚洲精品国产av蜜桃| 国产精品久久久久久久电影| 嫩草影院入口| 亚洲欧美成人精品一区二区| 日本vs欧美在线观看视频 | 狂野欧美激情性bbbbbb| 亚洲精华国产精华液的使用体验| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 91精品国产九色| 亚洲av综合色区一区| 午夜免费观看性视频| 欧美最新免费一区二区三区| av播播在线观看一区| 色哟哟·www| 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 久久久久久久久久成人| 亚洲av欧美aⅴ国产| xxx大片免费视频| 日本欧美国产在线视频| 国产爽快片一区二区三区| 18+在线观看网站| 国产av精品麻豆| 欧美日韩视频精品一区| av又黄又爽大尺度在线免费看| 久久久久久久精品精品| 99九九线精品视频在线观看视频| 国产亚洲精品久久久com| 欧美成人精品欧美一级黄| 永久网站在线| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 好男人视频免费观看在线| 亚洲av中文字字幕乱码综合| 精品一区二区免费观看| 午夜激情福利司机影院| 久久人妻熟女aⅴ| 视频中文字幕在线观看| 免费少妇av软件| 一区在线观看完整版| 欧美成人一区二区免费高清观看| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片| 国产视频内射| 久久久久久九九精品二区国产| 最近的中文字幕免费完整| 蜜桃亚洲精品一区二区三区| 九九在线视频观看精品| 国产精品精品国产色婷婷| 少妇 在线观看| 国产精品久久久久久久电影| 亚洲,一卡二卡三卡| 久久婷婷青草| 寂寞人妻少妇视频99o| 亚州av有码| 青春草国产在线视频| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 日本欧美国产在线视频| 人体艺术视频欧美日本| 国精品久久久久久国模美| 97超碰精品成人国产| 精品久久久久久久久亚洲| 国产高清有码在线观看视频| 精品亚洲成国产av| 国产精品福利在线免费观看| 2021少妇久久久久久久久久久| 国产成人freesex在线| 日韩伦理黄色片| 国产精品熟女久久久久浪| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 免费看日本二区| av网站免费在线观看视频| 亚洲精品日本国产第一区| av福利片在线观看| 午夜福利影视在线免费观看| 国产黄片美女视频| 青青草视频在线视频观看| 一级毛片aaaaaa免费看小| 亚洲成人中文字幕在线播放| 国产淫片久久久久久久久| 国产精品一区二区在线观看99| 免费大片18禁| 97超碰精品成人国产| 亚洲内射少妇av| 国产 一区 欧美 日韩| 少妇丰满av| 热re99久久精品国产66热6| av在线蜜桃| 午夜老司机福利剧场| 国产乱人偷精品视频| 亚洲天堂av无毛| 国产视频内射| 久久精品人妻少妇| 五月天丁香电影| 国产精品一区二区在线观看99| 成人影院久久| 亚洲av成人精品一区久久| 日韩伦理黄色片| 人人妻人人添人人爽欧美一区卜 | 日本av免费视频播放| 最近2019中文字幕mv第一页| 最近中文字幕2019免费版| 国产成人精品婷婷| 在线观看一区二区三区激情| 深夜a级毛片| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 中文字幕精品免费在线观看视频 | 中文字幕免费在线视频6| 久久热精品热| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 精品久久久精品久久久| 夫妻性生交免费视频一级片| 嫩草影院入口| 亚洲av二区三区四区| 国产综合精华液| 亚洲人成网站在线观看播放| 久久久久久久久大av| 欧美成人精品欧美一级黄| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 国产精品一区二区性色av| 亚洲精品国产av成人精品| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 国产亚洲av片在线观看秒播厂| 婷婷色综合大香蕉| 妹子高潮喷水视频| 午夜日本视频在线| 亚洲人与动物交配视频| 久久精品人妻少妇| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久| av国产精品久久久久影院| 女性生殖器流出的白浆| 91久久精品国产一区二区三区| 欧美97在线视频| 日产精品乱码卡一卡2卡三| 久久影院123| 欧美xxxx性猛交bbbb| 91狼人影院| 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 老女人水多毛片| 黄色一级大片看看| 久久久成人免费电影| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 亚洲av综合色区一区| av网站免费在线观看视频| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 国产在线视频一区二区| 精华霜和精华液先用哪个| 高清av免费在线| a 毛片基地| 人妻 亚洲 视频| 日本黄大片高清| 久久97久久精品| 国产一级毛片在线| 亚洲,欧美,日韩| 国产精品成人在线| 少妇精品久久久久久久| 午夜免费观看性视频| 国产女主播在线喷水免费视频网站| 菩萨蛮人人尽说江南好唐韦庄| 日日撸夜夜添| 国产精品精品国产色婷婷| 精品一区二区免费观看| 日本黄大片高清| 免费久久久久久久精品成人欧美视频 | 夫妻午夜视频| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 另类亚洲欧美激情| av国产免费在线观看| 国产 精品1| 日韩视频在线欧美| 久久99精品国语久久久| 日韩亚洲欧美综合| 在线播放无遮挡| 亚洲一级一片aⅴ在线观看| 国产乱来视频区| 欧美激情极品国产一区二区三区 | 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 97精品久久久久久久久久精品| 久久女婷五月综合色啪小说| 在线观看国产h片| 欧美高清性xxxxhd video| 亚洲精品日韩在线中文字幕| 婷婷色综合www| 日日摸夜夜添夜夜添av毛片| 18禁裸乳无遮挡动漫免费视频| 九九爱精品视频在线观看| 亚洲精品乱码久久久久久按摩| 卡戴珊不雅视频在线播放| 久久av网站| 99热网站在线观看| av在线播放精品| 久久毛片免费看一区二区三区| 国产精品精品国产色婷婷| 亚洲最大成人中文| 好男人视频免费观看在线| av.在线天堂| 国产精品久久久久久精品电影小说 | 2018国产大陆天天弄谢| av专区在线播放| 亚洲欧洲日产国产| 欧美日本视频| 国产黄片视频在线免费观看| .国产精品久久| 毛片女人毛片| 纵有疾风起免费观看全集完整版| 久久久色成人| 免费人妻精品一区二区三区视频| 国产精品久久久久久久久免| 91午夜精品亚洲一区二区三区| 国产精品一区www在线观看| 午夜福利在线在线| av线在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产av在线观看| 欧美国产精品一级二级三级 | 你懂的网址亚洲精品在线观看| 高清午夜精品一区二区三区| av播播在线观看一区| 欧美日韩一区二区视频在线观看视频在线| 久久久欧美国产精品| av在线老鸭窝| 99国产精品免费福利视频| 亚洲最大成人中文| 中文天堂在线官网| 观看av在线不卡| av又黄又爽大尺度在线免费看| 免费不卡的大黄色大毛片视频在线观看| 有码 亚洲区| 草草在线视频免费看| 伦理电影免费视频| 十分钟在线观看高清视频www | 韩国高清视频一区二区三区| 2021少妇久久久久久久久久久| 干丝袜人妻中文字幕| 大又大粗又爽又黄少妇毛片口| 色网站视频免费| 精品酒店卫生间| 五月天丁香电影| 水蜜桃什么品种好| 一级av片app| 欧美变态另类bdsm刘玥| 99国产精品免费福利视频| 亚洲天堂av无毛| 综合色丁香网| 亚洲伊人久久精品综合| 纵有疾风起免费观看全集完整版| 久久久国产一区二区| 亚洲欧美清纯卡通| 最近2019中文字幕mv第一页| 国产深夜福利视频在线观看| 久久久久国产精品人妻一区二区| av不卡在线播放| 在线观看人妻少妇| 人妻夜夜爽99麻豆av| 精品国产乱码久久久久久小说| 亚洲成人中文字幕在线播放| 免费不卡的大黄色大毛片视频在线观看| 在线免费十八禁| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 日韩一本色道免费dvd| 两个人的视频大全免费| 中文欧美无线码| 夫妻午夜视频| 黑人猛操日本美女一级片| 欧美丝袜亚洲另类| 日韩电影二区| 亚洲人成网站高清观看| 久久99热6这里只有精品| 亚洲丝袜综合中文字幕| 美女视频免费永久观看网站| 国产精品一区www在线观看| 色综合色国产| 狂野欧美激情性xxxx在线观看| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 天堂8中文在线网| 久久99热这里只频精品6学生| 精品亚洲乱码少妇综合久久| 少妇人妻一区二区三区视频| 夜夜骑夜夜射夜夜干| 亚洲人成网站高清观看| 26uuu在线亚洲综合色| 少妇熟女欧美另类| 亚洲电影在线观看av| 精品少妇久久久久久888优播| 欧美高清性xxxxhd video| 尾随美女入室| 国产成人91sexporn| 如何舔出高潮| 看免费成人av毛片| 亚洲av男天堂| 熟女人妻精品中文字幕| 精品少妇黑人巨大在线播放| 成人国产av品久久久| 天堂8中文在线网| 国产精品99久久99久久久不卡 | 高清午夜精品一区二区三区| 久久ye,这里只有精品| 日本欧美国产在线视频| 精品酒店卫生间| 精品久久国产蜜桃| 精品久久久久久久末码| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 午夜福利视频精品| 日韩在线高清观看一区二区三区| 一级毛片电影观看| 欧美精品亚洲一区二区| 99国产精品免费福利视频| 深夜a级毛片| 亚洲欧美日韩无卡精品|