• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A simplified physically-based breach model for a high concrete-faced rock fill dam:A case study

    2018-05-11 11:48:40QimingZhongShengshuiChenZhoDeng
    Water Science and Engineering 2018年1期

    Qi-ming Zhong*,Sheng-shui ChenZho Deng

    aDepartment of Geotechnical Engineering,Nanjing Hydraulic Research Institute,Nanjing 210024,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    1.Introduction

    The concrete-faced rock fill dam(CFRD)is a type of dam widely used throughout the world for different purposes,with sizes ranging from small irrigation projects to large reservoirs on major rivers.The CFRD design is considered to have a high degree of fundamental safety,especially against strong earthquake shaking,and to be appropriate for high dams(Li and Yang,2012;Cen et al.,2016;Chen et al.,2016).It also has substantial advantages over the clay-core rock fill dam design(Sherard and Cooke,1987),e.g.,lower cost and easily available materials.This has led to the selection of the CFRD design for very large reservoirs,for which low-level release facilities are neither feasible nor necessary(Sherard and Cooke,1987;Modares and Quiroz,2016;Gurbuz and Peker,2016).At present,with the development and utilization of water resources,an array of high CFRDs with heights greater than 200 m are being built or planned in China(Chen,2015;Zhou et al.,2015a;Du et al.,2015).These high dams and large reservoirs will bring tremendous financial benefits,but hidden safety issues should be given more attention(Zhou et al.,2015b;Jia et al.,2016;Yang et al.,2016;Niu et al.,2016).Although the CFRD has many advantages,there have also been some failure cases due to overtopping or seepage erosion(Wahl,1998;Xu and Zhang,2009;Xu,2010).For several decades now,a series of physically-based breach models for earth dams have been put forward(ASCE/EWRI Task Committee on Dam/Levee Breaching,2011;Chen,2012;Xie et al.,2013;Zhong et al.,2016).Unfortunately,there have been few records made of CFRD breach modeling,except for some parametric models.

    Investigation of CFRD failure cases around the world has revealed that only the Gouhou CFRD breach case in China has detailed records.Based on the survey data and model tests,the Gouhou CFRD breach may have begun with a piping failure.The subsequent breaching process can be delineated as follows:At first,a large amount of water leaked at the junction of a concrete slab and the bottom of a wave wall(Fig.1).Then,the drained water scoured the downstream slope and caused sloughing.Under the effects of piping,scouring,and sloughing,the wave wall collapsed,and then overtopping dominated(Liu et al.,1998).Owing to the support of the concrete slab,the water head of overtopping flow increased slowly at the initial stage.With the erosion of dam materials,the breach crest diminished,and the length of the concrete slab suspended in air increased.The concrete slab broke off when it could no longer support the self-weight and water loads,and the discharge increased rapidly after the breaking of the concrete slab(Li,1995;Chen et al.,2012).Then,the breach continued to deepen and widen until the remaining dam was stabilized under various loads.

    In this study,based on the survey data and model tests of the Gouhou CFRD breach case,a simplified physically-based breach model for the Gouhou CFRD was developed.Considering the dam height,the initial scour position on the downstream slope was simulated using a hydraulic method.The broad-crested weir equation was used to simulate the breach flow discharge.The backward erosion was considered the key mechanism of breaching of compacted rock fill materials,which was reflected with a time-averaged headcut migration rate from an empirical formula of the energy method.The moment equilibrium method was adopted to simulate the ultimate length of the concrete slab.

    2.Numerical model for Gouhou CFRD breach

    2.1.Water balance equation

    The water balance equation for the reservoir can be described as

    whereVis the volume of water in the reservoir,tis time,Asis the surface area of the reservoir,zsis the water surface elevation,Qinis the in flow discharge,Qbis the breach flow,Qspillis the flow through spillways,andQsluiceis the flow through sluice gates.

    2.2.Breach flow

    The overt opping flow at the breach can be calculated using the broad-crested weir equation:

    Fig.1.Initial leakage position of Gouhou CFRD.

    whereBbis the breach bottom width;h=zs-zb,wherezbis the elevation of the breach bottom;mis the slope of the breach;c1=1.7;c2=1.3;andksmis the submergence correction for tail water effects on weir out flow.

    2.3.Initial scour position

    Visser(1998)pointed out that,on account of the steepness of the downstream slope of the dam, flow accelerates from pointFat the top of the downstream slope to pointPon the downstream slope,where the normal flow velocity is reached if the slope is long enough(Fig.2).Beyond pointP,breach flow remains uniform with its velocity and water depth being normal values,and it is defined as the initial scour position.The distancelnbetweenFandPcan be approximated with the following expression:

    where β is the inclination angle of the downstream slope,dnis the normal water depth,andFrnis the Froude number at pointP.Frnis calculated as follows:

    whereUnis the cross-sectional averaged normal flow velocity,Btnis the breach width at the dam crest under the normal flow conditions,Bnis the breach width at the downstream slope,andgis the gravitational acceleration.

    Fig.2.Lowering of dam crest and steepening of downstream slope.

    Unanddnbeyond pointPare calculated,respectively,as

    whereRnis the hydraulic radius of breach under the normal flow conditions,andCis the Chezy coefficient.

    2.4.Breach development

    At the initial stage of dam breaching,the breach flow velocity at the dam crest is relatively small compared with that of the downstream slope.Due to the larger erosion rate at pointPthan at the upper part of the downstream slope,the slope becomes steeper as the breach develops,and,accordingly,the slope angle increases from an initial value β att=t0to a critical value φ att=t1,which is assumed to be the internal friction angle of rock fill materials(Fig.2).

    A shear stress equation is used to describe the erosion rate of soil(USDA-NRCS,1997):

    whereEis the erosion rate,kdis the erodibility coefficient,τbis the bed shear stress,and τcis the critical shear stress determined using the Shields diagram.

    The coefficientkdis usually calculated with the empirical formula proposed by Temple and Hanson(1994):

    where ρwis the density of water,ρdis the dry density of soil,andcis the clay ratio.

    The bed shear stress is determined by the Manning equation:

    whereAis the flow area,andRis the hydraulic radius.The Manning's roughness coefficientnis related to sediment median sized50(m)as follows:

    whereMnis an empirical coefficient,andMn=12 for the field cases in this study(Wu,2013).

    Eq.(7)can be used to describe the erosion at the dam crest dzb/dt.With regard to the erosion on the downstream slope,the equation for the increment dβ can be expressed as

    whereE1is the erosion rate at the initial scour position on the downstream slope,andE0is the erosion rate at the top of the downstream slope.

    When the downstream slope angle reaches the internal friction angle φ,it is assumed that the slope angle maintains a constant value.Then,a formula of the time-averaged migration rate is utilized to reflect the backward erosion(Temple,1992):

    where dx/dtis the backward erosion rate,CTis the backward erosion coefficient,qis the discharge per unit width,andHeis the overfall height.

    When a breach occurs along the dam axis(Fig.3),the relationship between horizontal expansion and vertical undercutting is determined by

    whereBtis the breach top width;ΔBtand ΔBbare the horizontal expansion values of breach at the breach top and breach bottom for each time step,respectively;nlocis the indicator of breach location,withnloc=1 for a breach located on a side of the dam,andnloc=2 for a breach located at the middle of dam length(Wu,2013);and Δzbis the vertical undercutting value for each time step.In this study,because the dam was made of rock fill materials,the breach slope angle was assumed to be the same as the internal friction angle.

    2.5.Failure of concrete slab

    Owing to the supporting function,the concrete slabs retain water.The initial breach deepens and widens under the erosion by the over flow water.With the erosion of downstream rock fill materials,the breach crest decreases gradually,and the length of suspended concrete slabs increases.The concrete slabs break off when they cannot sustain the self-weight and water loads.

    Fig.3.Breach development along dam axis.

    In this study,the moment equilibrium method was utilized to analyze the stability of each concrete slab.In order to simplify the analysis,the concrete slab was assumed to be a cantilever slab when the supporting sand gravel vanished.The self weight-induced bending moment can be calculated as follows:

    where ρmis the density of the concrete slab,m1is the upstream slope,δ is the thickness of the concrete slab,wis the width of the concrete slab,andLdis the length of the damaged concrete slab.

    The water load-induced bending moment is

    wherezfis the crest elevation of the concrete slab.

    The total bending moment of the concrete slab is

    The ultimate bending moment of the concrete slab can be calculated according to theDesign Code for Hydraulic Concrete Structures(SL191-2008):

    wherefyis the design value of rebar's tensile strength;Acis the cross-sectional area of rebar in the tensile region;h0is the distance from the barycenter of the tensile rebar to the edge of the compressive zone;andfcis the design value of concrete axial compressive strength.Thus,Ldcan be determined by

    3.Case study

    3.1.Calculated parameters

    The Gouhou CFRD breach case,with detailed measurement data,was chosen as the representative case study.The Gouhou CFRD has a maximum height of 71.0 m and a total storage of3.3 million m3.Because the failure time of the Gouhou CFRD was only 2.33 h,it was assumed that there was no in flow during dam breaching.The crest length(L)and width(B)of the dam were 265.0 m and 7.0 m,respectively.The upstream slope(m1)and downstream slope(m2)were 0.625 and 0.667,respectively.The concrete slab crest elevation was 3277.00 m.The initial water level elevation was set at 3277.30 m.The data used in the present study were selected from Xu and Zhang(2009),as well as several laboratory experiments and field investigations(Li,1995;Liu et al.,1998;Li and Sheng,2000).The initial breach depth and width were both 5.0 m.The median size(d50)of the materials was determined to be 15.0 mm,an average value obtained from the typical grain composition curves of the Gouhou CFRD(Li and Sheng,2000);the Manning's roughness coefficient(n)was calculated as 0.041 using Eq.(10);the cohesion and internal friction angle of soil were determined to be 60 kPa and 40°,respectively,from the results of large-scale tri-axial tests(Li and Sheng,2000);the clay ratio was assumed to be 0;and the erodibility coefficient(kd)was estimated to be 5.66 cm3/(N?s)using Eq.(8).Based on the experimental data and those from Robinson(1996),Bennett et al.(2000),and Mei et al.(2016),the backward erosion coefficient(CT)was assumed to be 0.015 m-1/6?s-2/3.Other parameters related to reservoir characteristics and soil properties of the Gouhou CFRD are listed in Table 1.

    Table 1Parameters of Gouhou CFRD.

    Fig.4 shows the layout of the concrete slabs of the Gouhou CFRD,and the damaged slabs are denoted with numbers.According to the field investigation,the slab failure occurred at the center of the dam.

    3.2.Calculated results

    In this study,the simulation of Gouhou CFRD breaching started at the occurrence of wave wall collapse.The overt opping flow then eroded the downstream slope.The calculated results of peak breach flow(Qp), final breach top width(Btf), final breach bottom width(Bbf),time of the peak breach flow(tp),and failure time(tf),as well as the measured data from Xu and Zhang(2009),are shown in Table 2,wheretfis the time period from the beginning of dam breaching to the moment when 99%of the final breach width is reached.Figs.5 and 6 show the calculated breach flow hy drograph and the breach width development.

    Fig.4.Layout of concrete slabs of Gouhou CFRD.

    Table 2Results of Gouhou CFRD breach case.

    The calculated results show that,with the erosion of dam materials,the concrete slabs broke off,and the length of the first damaged concrete slab was 7.4 m at 0.50 h after dam breaching;then,the breach flow discharge increased immediately,and the peak breach flow,which was 5.0%larger than the measured data,occurred at 0.65 h after dam breaching.Likewise,the final breach top and bottom widths of the calculated results were 4.1%and 10.7%larger than the measured data,respectively;for the failure time,the calculated result was 14.6%longer than the measured one.Overall,the proposed model gives reasonable results,with relative errors less than 15.0%.

    3.3.Sensitivity analysis

    Sensitivity analysis of model parameters was conducted in this study.The erodibility coefficient and the backward erosion coefficient are the key parameters,and they are highly empirical with significant uncertainties.Owing to the wide grading of the CFRD materials,the grain size should be taken into account.Thus,the influences of the three parameters on the calculated breach characteristics were assessed for the proposed model.In the parameter sensitivity analysis,kdandCTwere multiplied by 0.5 and 2.0,respectively,andd50was chosen from the top and bottom boundary lines,which were 3 mm and 500 mm,respectively.In addition,the effects of the geometry of the dam(e.g.,the crest length and the upstream and downstream slopes)and the internal friction angle were also taken into account.Considering the final top breach width in Table 2,the crest length of the dam was assumed to be 100.0 m and 530.0 m,respectively.Using actual CFRDs as references,the upstream and downstream slopes were set as 0.556 and 0.714 for sensitivity analysis,respectively.For the internal friction angle,the values were assumed to be 30°and 50°,respectively.The calculatedQp,Btf,Bbf,andtpregarding the varied parameters are shown in Table 3.The changes of these quantities in percentage as compared with the calculated data in Table 2 are also given.

    Fig.5.Breach flow hydrograph.

    Fig.6.Breach width development.

    Table 3 shows that the peak breach flow is most sensitive to the erodibility coefficient and least sensitive to the internal friction angle,the final breach top and bottom widths are both most sensitive to the soil erodibility coefficient and least sensitive to the upstream and downstream slopes,and the time of peak breach flow is most sensitive to the backward erosion coefficient and least sensitive to the crest length of the dam.

    3.4.Comparison with parametric breach models

    Owing to the lack of relevant physically-based models,the proposed breach model was compared with three parametric breach models with regard to the calculation of the peak breach flow, final average breach width,and failure time of dam breaching:the USBR(1988),Froehlich(1995a,1995b),and Xu and Zhang(2009)models.The USBR(1988)model is as follows:

    whereHwis the depth of water above the breach invert at the failure time,andBaveis the final average breach width.

    The Froehlich(1995a,1995b)model considers the overtopping and piping using a coefficientK0.The formulas are as follows:

    whereVwis the volume of water above the breach invert,Hbis the breach depth,andK0is 1.4 for overtopping and 1.0 for piping.

    The Xu and Zhang(2009)model considers more factors,such as the dam type,erodibility,failure mode,and so on.The formulas are as follows:

    Table 3Sensitivity analysis results for different parameters.

    whereHdis the dam height,Hris a reference dam height set as 15 m,andtris a reference failure time set as 1 h.The coefficientB3=b3+b4+b5,whereb3=-0.041,0.026,and 0.226 for dams with core walls,concrete-faced dams,and homogeneous/zoned- fill dams,respectively;b4=0.389 for piping;andb5=0.291,0.140,and 0.391 for high,medium,and low dam erodibility,respectively.The coefficientB4=b3+b4+b5,whereb3=-0.503,-0.591,and-0.649 for dams with core walls, concrete-faced dams, and homogeneous/zoned- fill dams,respectively;b4=-1.039 for piping;andb5=-0.007,-0.375,and-1.362 for high,medium,and low dam erodibility,respectively.The coefficientB5=b3+b4+b5,whereb3=-0.327,-0.674,and-0.189 ford ams with core walls,concrete-faced dams,and homogeneous/zoned- fill dams,respectively;b4=-0.611 for piping;andb5=-1.205,-0.564,and 0.579 for high,medium,and low dam erodibility,respectively.

    The formulas from USBR(1982,1988),Froehlich(1995a,1995b),and Xu and Zhang(2009)represent three generations of parametric breach models obtained by regressions of single to multiple variables.The Gouhou CFRD was considered to have low erodibility and categorized to be piping failure in the models above because the dam breach initiated with theseepage erosion.Hd,Hb,Hw,andVwwere determined to be 71.0 m,48.0 m,44.0 m,and 3.18×106m3,respectively,according to the conditions of the dam breach case.

    Table 4Results of parametric breach models and proposed physically-based breach model for Gouhou CFRD breach case.

    Table 4 gives the results of the three parametric breach models and the proposed physically-based breach model,as well as their comparison with the measured data.Of the three models,the Xu and Zhang(2009)formulas perform best,followed by the Froehlich(1995a,1995b)formulas and the USBR(1982,1988)formulas.This is understandable because the Xu and Zhang(2009)formulas consider more factors and are based on larger databases.

    Table 4 also shows that the proposed physically-based breach model performs significantly better than the three parametric breach models.In addition,a simplified physically based breach model can give more detailed results,such as the breach hydrograph and breach development process shown in Figs.5 and 6,than a parametric model.

    4.Conclusions

    A simplified physically-based breach model for high CFRDs was developed,and the Gouhou CFRD breach case,with detailed measured data,was chosen to test the proposed model.The calculated results show that the proposed model gives reasonable values for the peak breach flow, final breach width,and failure time,with relative errors less than 15%.Sensitivity studies show that the peak breach flow is most sensitive to soil erodibility and least sensitive to the internal friction angle,the final breach top and bottom widths are both most sensitive to soil erodibility and least sensitive to the upstream and downstream slopes,and the failure time is most sensitive to the backward erosion coefficient and least sensitive to the dam crest length.In addition,the proposed breach model was compared with three typical parametric breach models.The comparison shows that the proposed physically based breach model performs better and provides more detailed results than the parametric models.The proposed model adopts an alternative method to describe the characteristics of widely graded soil materials,and further studies and tests are needed to validate and improve the proposed breach model.

    References

    ASCE/EWRITask Committeeon Dam/Levee Breach,2011.Earthen embankment breaching.J.Hydraul.Eng.137(12),1549-1564.https://doi.org/10.1061/(ASCE)HY.1943-7900.0000498.

    Bennett,S.J.,Alonso,C.V.,Prasad,S.N.,R¨omkens,M.J.M.,2000.Experiments on headcut growth and migration in concentrated flows typical of upland areas.Water Resour.Res.36(7),1911-1922.https://doi.org/10.1029/2000WR900067.

    Cen,W.J.,Zhang,Z.Q.,Zhou,T.,Yang,H.K.,Lu,P.C.,2016.Maximum seismic capacity of a high concrete-face rock fill dam on alluvium deposit.Adv.Sci.Technol.Water Resour.36(2),1-5.https://doi.org/10.3880/j.issn.1006-7647.2016.02.001(in Chinese).

    Chen,S.S.,2012.Breach Mechanism and Simulation of Breach Process for Earth-rock Dams.China Water&Power Press,Beijing(in Chinese).

    Chen,S.S.,Cao,W.,Huo,J.P.,Zhong,Q.M.,2012.Numerical simulation for overtopping-induced break process of concrete-faced sandy gravel dams.Chin.J.Geotech.Eng.34(7),1169-1175(in Chinese).

    Chen,S.S.,2015.Safety Problems of Earth and Rock fill Dams Subjected to Earthquakes.Science Press,Beijing(in Chinese).

    Chen,S.S.,Fu,Z.Z.,Wei,K.M.,Han,H.Q.,2016.Seismic responses of high concrete face rock fill dams:A case study.Water Sci.Eng.9(3),195-204.https://doi.org/10.1016/j.wse.2016.09.002.

    Du,X.H.,Li,B.,Chen,Z.Y.,Wang,Y.J.,Sun,P.,2015.Evaluations on the safety design standards for dams with extra height or cascade impacts,Part II:Slope stability of embankment dams.Chin.J.Hydraul.Eng.46(6),640-649.https://doi.org/10.13243/j.cnki.slxb.20150251(in Chinese).

    Froehlich,D.C.,1995a.Peak out flow from breached embankment dam.J.Water Resour.Plann.Manag.121(1),90-97.https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(90).

    Froehlich,D.C.,1995b.Embankment dam breach parameters revisited.In:Proceedings of the First International Conference on Water Resources Engineering.ASCE,New York,pp.887-891.

    Gurbuz,A.,Peker,I.,2016.Monitored performance of a concrete-faced sandgravel dam.J.Perform.Constr.Facil.30(5),04016011.https://doi.org/10.1061/(ASCE)CF.1943-5509.0000870.

    Jia,J.S.,Xu,Y.,Hao,J.T.,Zhang,L.M.,2016.Localizing and quantifying leakage through CFRDs.J.Geotech.Geoenviron.Eng.142(9),06016007.https://doi.org/10.1061/(ASCE)CF.1943-5509.000087010.1061/(ASCE)GT.1943-5606.0001501.

    Li,J.C.,1995.A research for break of Gouhou face dam.J.Nanjiang Hydraul.Res.Inst.4,425-434(in Chinese).

    Li,L.,Sheng,J.B.,2000.Engineering behavior of gravel materials of Gouhou Dam.J.Nanjiang Hydraul.Res.Inst.3,27-32(in Chinese).

    Li,N.H.,Yang,Z.Y.,2012.Technical advances in concrete face rock fill dams in China.Chin.J.Geotech.Eng.34(8),1361-1368(in Chinese).

    Liu,J.,Ding,L.Q.,Miao,L.J.,Yang,K.H.,1998.Model test for dam breach of Gouhou concrete face sandy gravel dam.Chin.J.Hydraul.Eng.11,69-75(in Chinese).

    Mei,S.A.,Huo,J.P.,Zhong,Q.M.,2016.Determination of headcut migration parameters for homogeneous earth dam due to overtopping failure.Hydro-Sci.Eng.2,24-31.https://doi.org/10.16198/j.cnki.1009-640X.2016.02.004(in Chinese).

    Modares,M.,Quiroz,J.E.,2016.Structural analysis framework for concretefaced rock fill dams.Int.J.GeoMech.16(1),04015024.https://doi.org/10.1061/(ASCE)GM.1943-5622.0000478.

    Niu,X.Q.,Tan,J.X.,Tian,J.Z.,2016.Analysis on CFRD defect's characteristics and its reinforcement.Yangtze River 47(13),1-5.https://doi.org/10.16232/j.cnki.1001-4179.2016.13.001(in Chinese).

    Robinson,K.M.,1996.Gully Erosion and Headcut Advance.Ph.D.Dissertation.Oklahoma State University,Still water.

    Sherard,J.L.,Cooke,J.B.,1987.Concrete-face rock fill dam,I:Assessment.J.Geotech.Eng.113(10),1096-1112.https://doi.org/10.1061/(ASCE)0733-9410(1984)110:10(1381).

    Temple,D.M.,1992.Estimating flood damage to vegetated deep soil spillways.Appl.Eng.Agric.8(2),237-242.https://doi.org/10.13031/2013.26059.

    Temple,D.M.,Hanson,G.J.,1994.Headcut development in vegetated earth spillways.Appl.Eng.Agric.10(5),677-682.https://doi.org/10.13031/2013.25898.

    U.S.Bureau of Reclamation(USBR),1982.Guidelines for De fining Inundated Areas Downstream from Bureau of Reclamation Dams,Reclamation Planning Instruction No.82-11.U.S.Bureau of Reclamation,U.S.Department of the Interior,Denver.

    U.S.Bureau of Reclamation(USBR),1988.Downstream Hazard Classification Guidelines,ACER Technical Memorandum No.11.U.S.Bureau of Reclamation,U.S.Department of the Interior,Denver.

    U.S.Department of Agriculture,Natural Resources Conservation Service(USDANRCS),1997.Earth Spillway Erosion Model,Chapter 51,Part 628 Dams,National Engineering Handbook.U.S.Department of Agriculture,Natural Resources Conservation Service of the United States,Washington,D.C.

    Visser,P.J.,1998.Breach Growth in Sand-dikes.Ph.D.Dissertation.Delft University of Technology,Delft.

    Wahl,T.L.,1998.Prediction of embankment dam breach parameters:A literature reviewand needs assessment. In:DamSafety ReportNo.DSO-98-9004.U.S.Bureau of Reclamation. U.S. Department of the Interior, Denver.

    Wu,W.,2013.Simplified physically based model of earthen embankment breaching.J.Hydraul.Eng.139(8),837-851.https://doi.org/10.1061/(ASCE)HY.1943-7900.0000741.

    Xie,Y.L.,Zhu,Y.H.,Guo,X.L.,2013.Advances and problems in earth-dam failure research.J.Yangtze River Sci.Res.Inst.30(4),29-33.https://doi.org/10.3969/j.issn.1001-5485.2013.04.007(in Chinese).

    Xu,Y.,Zhang,L.M.,2009.Breaching parameters for earth and rock fill dams.J.Geotech.Geoenviron.Eng.135(12),1957-1969.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162.

    Xu,Y.,2010.Analysis of Dam Failures and Diagnosis of Distresses for Dam Rehabilitation.Ph.D.Dissertation.The Hong Kong University of Science and Technology,Hong Kong.

    Yang,Q.G.,Tan,J.X.,Zhou,X.M.,Gao,D.X.,2016.Discussion on several issues of concrete face rock- fill dam.Yangtze River 47(2),62-66.https://doi.org/10.16232/j.cnki.1001-4179.2016.14.013(in Chinese).

    Zhong,Q.M.,Wu,W.M.,Chen,S.S.,Wang,M.,2016.Comparison of simplified physically based dam breach models.Nat.Hazards 84(2),1385-1418.https://doi.org/10.1007/s11069-016-2492-9.

    Zhou,J.P.,Wang,H.,Chen,Z.Y.,Zhou,X.B.,Li,B.,2015a.Evaluations on the safety design standards for dams with extra height or cascade impacts,Part I:Fundamentals and criteria.Chin.J.Hydraul.Eng.46(5),505-514.https://doi.org/10.13243/j.cnki.slxb.20150249(in Chinese).

    Zhou,X.B.,Chen,Z.Y.,Huang,Y.F.,Wang,L.,Li,X.N.,2015b.Evaluations on safety design standards for dams with extra height or cascade impacts,Part III:Risk analysis of embankment break in cascade.Chin.J.Hydraul.Eng.46(7),765-772.https://doi.org/10.13243/j.cnki.slxb.20150252(in Chinese).

    午夜福利在线观看免费完整高清在 | 午夜免费成人在线视频| 麻豆成人av在线观看| 亚洲无线观看免费| 岛国在线观看网站| 99国产精品一区二区三区| 香蕉久久夜色| 欧美乱码精品一区二区三区| 国产精品一区二区三区四区免费观看 | 欧美黑人巨大hd| 夜夜爽天天搞| 免费在线观看成人毛片| 91九色精品人成在线观看| 我的老师免费观看完整版| 美女黄网站色视频| 亚洲国产色片| 日日夜夜操网爽| 亚洲 欧美 日韩 在线 免费| 1024香蕉在线观看| 最近在线观看免费完整版| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 免费看a级黄色片| 综合色av麻豆| e午夜精品久久久久久久| 丁香六月欧美| 久久久久亚洲av毛片大全| 亚洲中文av在线| 最近在线观看免费完整版| 日本一本二区三区精品| 午夜福利高清视频| 精品久久久久久久毛片微露脸| 女警被强在线播放| 人人妻人人看人人澡| 我的老师免费观看完整版| 亚洲18禁久久av| 亚洲成av人片免费观看| 一级毛片高清免费大全| 亚洲美女黄片视频| 国产成人精品无人区| 国产成人欧美在线观看| 国产精品一区二区精品视频观看| 国产精品一及| 这个男人来自地球电影免费观看| 精品国产乱子伦一区二区三区| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 18禁观看日本| 国产精品av久久久久免费| 久久这里只有精品19| 午夜日韩欧美国产| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 国产真实乱freesex| 看免费av毛片| 一二三四在线观看免费中文在| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| 亚洲熟妇中文字幕五十中出| 欧美一区二区国产精品久久精品| 男女之事视频高清在线观看| 色播亚洲综合网| 免费看十八禁软件| 狂野欧美白嫩少妇大欣赏| 首页视频小说图片口味搜索| 国产高清三级在线| 99久久99久久久精品蜜桃| 国语自产精品视频在线第100页| 小说图片视频综合网站| 成人国产一区最新在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区三区在线臀色熟女| а√天堂www在线а√下载| 午夜福利在线在线| 亚洲成人中文字幕在线播放| 精品国产美女av久久久久小说| 亚洲av美国av| 日本免费a在线| 麻豆国产97在线/欧美| 欧美性猛交╳xxx乱大交人| 亚洲七黄色美女视频| 又大又爽又粗| 麻豆成人午夜福利视频| 欧美一级毛片孕妇| 免费观看精品视频网站| www.精华液| 99国产极品粉嫩在线观看| 麻豆国产97在线/欧美| 在线观看免费午夜福利视频| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美黑人巨大hd| 久久午夜综合久久蜜桃| www.自偷自拍.com| 欧美zozozo另类| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 1024香蕉在线观看| x7x7x7水蜜桃| 成年版毛片免费区| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 18美女黄网站色大片免费观看| 国产 一区 欧美 日韩| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 久久中文看片网| 嫁个100分男人电影在线观看| 亚洲人成网站高清观看| 婷婷精品国产亚洲av在线| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 在线观看66精品国产| 国产免费av片在线观看野外av| 国产精品久久久久久人妻精品电影| 97超级碰碰碰精品色视频在线观看| xxx96com| 美女被艹到高潮喷水动态| 国产精品亚洲美女久久久| 国产极品精品免费视频能看的| 97人妻精品一区二区三区麻豆| 97超视频在线观看视频| 免费大片18禁| 一边摸一边抽搐一进一小说| tocl精华| 国产精品 欧美亚洲| 99久久99久久久精品蜜桃| 成年版毛片免费区| 此物有八面人人有两片| 岛国视频午夜一区免费看| 母亲3免费完整高清在线观看| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 欧美日韩国产亚洲二区| 免费看美女性在线毛片视频| 久99久视频精品免费| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 午夜精品在线福利| 亚洲自偷自拍图片 自拍| 最新中文字幕久久久久 | 日韩欧美在线二视频| 精品国产超薄肉色丝袜足j| 成年女人永久免费观看视频| 色综合欧美亚洲国产小说| 婷婷亚洲欧美| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 69av精品久久久久久| 夜夜夜夜夜久久久久| 国产av麻豆久久久久久久| 999久久久精品免费观看国产| 在线永久观看黄色视频| 国产精品国产高清国产av| 国产精品亚洲av一区麻豆| 国产激情偷乱视频一区二区| 夜夜看夜夜爽夜夜摸| 午夜影院日韩av| 午夜福利免费观看在线| 热99re8久久精品国产| 天堂网av新在线| 午夜两性在线视频| 日本与韩国留学比较| 在线观看一区二区三区| 舔av片在线| 熟女人妻精品中文字幕| 国产综合懂色| 少妇熟女aⅴ在线视频| 我的老师免费观看完整版| 巨乳人妻的诱惑在线观看| 久久久国产精品麻豆| 日韩高清综合在线| aaaaa片日本免费| 国产久久久一区二区三区| 亚洲午夜理论影院| 日韩欧美 国产精品| 99re在线观看精品视频| 亚洲无线在线观看| 1024手机看黄色片| 国产高清videossex| 岛国在线观看网站| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 制服人妻中文乱码| 此物有八面人人有两片| 亚洲成av人片免费观看| 精品福利观看| 日韩欧美免费精品| 国产精品野战在线观看| 18禁国产床啪视频网站| 欧美3d第一页| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 18禁国产床啪视频网站| 又爽又黄无遮挡网站| 亚洲中文字幕日韩| 色播亚洲综合网| 丁香六月欧美| 精品乱码久久久久久99久播| 国产精品久久电影中文字幕| 我的老师免费观看完整版| 日本a在线网址| 午夜精品一区二区三区免费看| 色在线成人网| 亚洲成人久久爱视频| 亚洲av五月六月丁香网| 久久久久久大精品| 亚洲欧洲精品一区二区精品久久久| 日韩人妻高清精品专区| 久久久久国内视频| 特级一级黄色大片| 九色成人免费人妻av| 99久国产av精品| 国产一级毛片七仙女欲春2| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 亚洲一区二区三区色噜噜| 国产伦人伦偷精品视频| 99国产精品99久久久久| 精品乱码久久久久久99久播| 日本三级黄在线观看| 91字幕亚洲| 男女视频在线观看网站免费| 免费一级毛片在线播放高清视频| 一区福利在线观看| 又爽又黄无遮挡网站| 三级国产精品欧美在线观看 | 成人特级黄色片久久久久久久| 国产精品自产拍在线观看55亚洲| 日韩大尺度精品在线看网址| 亚洲国产看品久久| 又爽又黄无遮挡网站| 亚洲成人久久性| а√天堂www在线а√下载| 日本三级黄在线观看| 一个人看的www免费观看视频| 美女午夜性视频免费| 我要搜黄色片| 99久久无色码亚洲精品果冻| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区 | 美女免费视频网站| 偷拍熟女少妇极品色| 色视频www国产| 欧美日韩国产亚洲二区| 国产三级中文精品| 国产私拍福利视频在线观看| 岛国在线免费视频观看| 日本撒尿小便嘘嘘汇集6| 麻豆一二三区av精品| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久午夜电影| 国产麻豆成人av免费视频| x7x7x7水蜜桃| av福利片在线观看| 国产精品一及| aaaaa片日本免费| 国产极品精品免费视频能看的| 欧美zozozo另类| 久久精品国产综合久久久| 99热只有精品国产| 欧美国产日韩亚洲一区| 最新中文字幕久久久久 | 两个人的视频大全免费| 毛片女人毛片| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 国产毛片a区久久久久| 听说在线观看完整版免费高清| 日韩大尺度精品在线看网址| 丰满人妻一区二区三区视频av | xxx96com| 国产91精品成人一区二区三区| 精品日产1卡2卡| 好男人电影高清在线观看| 性色avwww在线观看| 无限看片的www在线观看| 亚洲国产欧美人成| 可以在线观看毛片的网站| 欧美午夜高清在线| 欧美中文综合在线视频| 亚洲成人精品中文字幕电影| xxxwww97欧美| 日韩精品青青久久久久久| 欧美成狂野欧美在线观看| 亚洲av五月六月丁香网| 亚洲精品美女久久av网站| 禁无遮挡网站| 日本a在线网址| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影| 免费高清视频大片| 国产欧美日韩一区二区精品| 小蜜桃在线观看免费完整版高清| 色在线成人网| 久久天躁狠狠躁夜夜2o2o| 国产精品 欧美亚洲| 999久久久国产精品视频| 搡老妇女老女人老熟妇| 又爽又黄无遮挡网站| 欧美高清成人免费视频www| 97超级碰碰碰精品色视频在线观看| 亚洲av成人精品一区久久| 小说图片视频综合网站| 精品国产三级普通话版| 性色avwww在线观看| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 久久久久性生活片| 岛国在线观看网站| 18禁国产床啪视频网站| 麻豆成人午夜福利视频| 一级毛片高清免费大全| 免费看a级黄色片| 久久久久久久精品吃奶| 国产aⅴ精品一区二区三区波| 欧美日韩精品网址| 97超视频在线观看视频| 国产成人aa在线观看| 在线观看舔阴道视频| 美女免费视频网站| 亚洲五月婷婷丁香| 亚洲无线观看免费| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 日韩精品青青久久久久久| 成人性生交大片免费视频hd| 99久久久亚洲精品蜜臀av| 母亲3免费完整高清在线观看| 成人精品一区二区免费| 日韩欧美 国产精品| 一级毛片精品| 国产爱豆传媒在线观看| 性色av乱码一区二区三区2| 真实男女啪啪啪动态图| 色在线成人网| tocl精华| 一本综合久久免费| 一a级毛片在线观看| 熟女人妻精品中文字幕| 欧美日本视频| 亚洲真实伦在线观看| 91久久精品国产一区二区成人 | 九色成人免费人妻av| 午夜激情福利司机影院| 久久精品亚洲精品国产色婷小说| 少妇人妻一区二区三区视频| 一个人免费在线观看电影 | 久久亚洲精品不卡| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 国产亚洲精品久久久com| 高潮久久久久久久久久久不卡| 午夜影院日韩av| 男人的好看免费观看在线视频| 又黄又粗又硬又大视频| 国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 变态另类丝袜制服| 欧美高清成人免费视频www| a级毛片a级免费在线| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 色综合婷婷激情| 国产精品自产拍在线观看55亚洲| 欧美绝顶高潮抽搐喷水| 两个人视频免费观看高清| 免费在线观看视频国产中文字幕亚洲| 久久久久久久精品吃奶| av天堂中文字幕网| 亚洲成av人片免费观看| 国产乱人视频| 国产日本99.免费观看| 国产野战对白在线观看| 久久草成人影院| 啦啦啦免费观看视频1| 精品日产1卡2卡| 精品久久久久久,| 黄色片一级片一级黄色片| 熟妇人妻久久中文字幕3abv| 亚洲av片天天在线观看| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 日韩欧美在线乱码| 亚洲美女视频黄频| 99久久国产精品久久久| 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| 麻豆一二三区av精品| 99热只有精品国产| 精品久久久久久成人av| 男女午夜视频在线观看| 毛片女人毛片| 精品福利观看| 免费看美女性在线毛片视频| 国产探花在线观看一区二区| 在线永久观看黄色视频| 99久久综合精品五月天人人| 伊人久久大香线蕉亚洲五| 日韩高清综合在线| 亚洲国产精品合色在线| 99国产综合亚洲精品| 成人一区二区视频在线观看| 国产精品,欧美在线| 色尼玛亚洲综合影院| 欧美日本亚洲视频在线播放| 日韩免费av在线播放| 亚洲人与动物交配视频| 91av网一区二区| 日韩欧美在线二视频| 国产精品,欧美在线| 免费在线观看日本一区| 成在线人永久免费视频| 曰老女人黄片| 国产亚洲精品久久久com| 一区二区三区高清视频在线| aaaaa片日本免费| 搡老岳熟女国产| 久久伊人香网站| 1024香蕉在线观看| 亚洲av中文字字幕乱码综合| 免费大片18禁| 久久国产精品影院| 在线观看免费午夜福利视频| 欧美av亚洲av综合av国产av| 99久久成人亚洲精品观看| 黄片小视频在线播放| 美女被艹到高潮喷水动态| 听说在线观看完整版免费高清| 少妇熟女aⅴ在线视频| 18美女黄网站色大片免费观看| 不卡一级毛片| 两人在一起打扑克的视频| 美女免费视频网站| 久久国产精品人妻蜜桃| 亚洲av日韩精品久久久久久密| 久久精品亚洲精品国产色婷小说| 精品免费久久久久久久清纯| 亚洲国产精品合色在线| 国产精华一区二区三区| 久久久久亚洲av毛片大全| 99久国产av精品| 一进一出好大好爽视频| 看片在线看免费视频| 最近视频中文字幕2019在线8| 欧美日韩瑟瑟在线播放| 国产精华一区二区三区| 午夜免费成人在线视频| 午夜成年电影在线免费观看| 国产欧美日韩精品亚洲av| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影| 亚洲国产高清在线一区二区三| 国产成人aa在线观看| 美女大奶头视频| 日本在线视频免费播放| 十八禁网站免费在线| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影| 成人特级黄色片久久久久久久| bbb黄色大片| 少妇人妻一区二区三区视频| 久久午夜综合久久蜜桃| 精品久久久久久久毛片微露脸| 久久久久国产精品人妻aⅴ院| 男人的好看免费观看在线视频| www.自偷自拍.com| www.精华液| 一二三四社区在线视频社区8| 欧美日本视频| 免费看十八禁软件| 男人舔奶头视频| 校园春色视频在线观看| 99精品欧美一区二区三区四区| 99久久99久久久精品蜜桃| 免费搜索国产男女视频| 日韩欧美 国产精品| www国产在线视频色| 18禁国产床啪视频网站| 久久精品国产综合久久久| 亚洲国产欧美一区二区综合| 国产爱豆传媒在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 日韩欧美在线乱码| 午夜福利在线观看吧| 亚洲专区中文字幕在线| 国产激情久久老熟女| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 久久九九热精品免费| 男人舔奶头视频| 亚洲精品乱码久久久v下载方式 | 色播亚洲综合网| 免费在线观看影片大全网站| 老司机午夜福利在线观看视频| 国产91精品成人一区二区三区| 看黄色毛片网站| 欧美zozozo另类| 1000部很黄的大片| 精品午夜福利视频在线观看一区| 岛国视频午夜一区免费看| 国产熟女xx| 性色avwww在线观看| 99国产极品粉嫩在线观看| 国产精品 欧美亚洲| 久久久久久久午夜电影| 日本一二三区视频观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 久久欧美精品欧美久久欧美| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 日韩精品中文字幕看吧| 欧美日韩一级在线毛片| 国产一区在线观看成人免费| 久久久精品大字幕| 国产高清有码在线观看视频| 国产一级毛片七仙女欲春2| 久久久国产成人精品二区| 1024香蕉在线观看| 亚洲一区二区三区不卡视频| 青草久久国产| 精华霜和精华液先用哪个| 免费观看精品视频网站| 99国产精品一区二区蜜桃av| 亚洲专区中文字幕在线| 成人18禁在线播放| 舔av片在线| 中文亚洲av片在线观看爽| 国产97色在线日韩免费| 中文字幕人妻丝袜一区二区| 亚洲最大成人中文| 在线观看免费午夜福利视频| 国产伦精品一区二区三区视频9 | h日本视频在线播放| 国产麻豆成人av免费视频| 国产伦精品一区二区三区视频9 | av福利片在线观看| 国产日本99.免费观看| 国产精品,欧美在线| 国产成+人综合+亚洲专区| 国产精华一区二区三区| 巨乳人妻的诱惑在线观看| 国产精品电影一区二区三区| 欧美黑人巨大hd| 国产精品久久久久久亚洲av鲁大| 午夜久久久久精精品| 91av网站免费观看| 黄色 视频免费看| 亚洲av电影不卡..在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲专区国产一区二区| 桃色一区二区三区在线观看| 天堂动漫精品| 白带黄色成豆腐渣| 亚洲欧美激情综合另类| 美女高潮喷水抽搐中文字幕| 国内精品一区二区在线观看| 欧美乱妇无乱码| 国产不卡一卡二| 看黄色毛片网站| 男人的好看免费观看在线视频| 丁香欧美五月| 高潮久久久久久久久久久不卡| 亚洲黑人精品在线| 成人国产一区最新在线观看| 欧美大码av| 亚洲精品中文字幕一二三四区| 999久久久国产精品视频| av黄色大香蕉| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| 伦理电影免费视频| 国产黄色小视频在线观看| ponron亚洲| 午夜久久久久精精品| 一夜夜www| 男人舔女人的私密视频| 国产aⅴ精品一区二区三区波| 日本a在线网址| 97碰自拍视频| 亚洲av成人精品一区久久| 亚洲国产精品成人综合色| 99国产极品粉嫩在线观看| 夜夜躁狠狠躁天天躁| 一个人观看的视频www高清免费观看 | 国产亚洲欧美在线一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲一区高清亚洲精品| 国产一区二区在线av高清观看| 黑人巨大精品欧美一区二区mp4| 成年女人毛片免费观看观看9| 久久香蕉国产精品| 亚洲熟女毛片儿| 久久草成人影院| 欧美性猛交黑人性爽| 国产极品精品免费视频能看的| www.精华液| 在线观看美女被高潮喷水网站 | 日韩欧美在线乱码| 久久久色成人|