尹鑫衛(wèi), 李曉玲, 王 琦, 張永梅
?
壟溝集雨系統(tǒng)Laio土壤水分動態(tài)隨機模型參數(shù)敏感性分析及優(yōu)化*
尹鑫衛(wèi)1,2, 李曉玲3, 王 琦4**, 張永梅1,2
(1. 中國科學院新疆生態(tài)與地理研究所/阜康荒漠生態(tài)國家野外科學觀測研究站 烏魯木齊 830011; 2. 中國科學院大學 北京 100049; 3. 甘肅農(nóng)業(yè)大學水利水電工程學院 蘭州 730070; 4. 甘肅農(nóng)業(yè)大學草業(yè)學院 蘭州 730070)
水文模型參數(shù)的敏感性分析、優(yōu)化和驗證對提高模型計算精度和效率具有重要意義。為探討Laio土壤水分動態(tài)隨機模型(Laio模型)各參數(shù)在壟溝集雨系統(tǒng)的敏感性, 同時, 確定參數(shù)優(yōu)化和模型驗證的最佳方案, 本文結合多因素敏感性分析法以及改進單純形法(ISM)、粒子群優(yōu)化算法(PSO)和混合粒子群優(yōu)化算法(HPSO), 利用中國氣象局定西干旱氣象與生態(tài)環(huán)境試驗基地2012—2013年壟溝集雨燕麥生長季降雨、徑流和土壤水分等實測數(shù)據(jù), 對壟溝集雨系統(tǒng)Laio模型的13個參數(shù)進行敏感性分析、優(yōu)化和驗證。結果表明, 平均降水量和凋萎系數(shù)w對土壤水分概率密度函數(shù)(s)最敏感,(s)對參數(shù)的敏感性在低土壤含水率下更明顯, 對參數(shù)w的敏感性在高土壤含水率下更明顯; 3種算法(ISM、PSO和HPSO)的優(yōu)化參數(shù)值均能對壟溝集雨系統(tǒng)土壤水分概率密度函數(shù)進行較好模擬, 峰值(CPV)、峰值位置(PP)和95%置信區(qū)間(CI95%)實測值與模擬值的相對誤差均小于10%, CM指數(shù)均大于0.5; 同時, HPSO算法優(yōu)化參數(shù)的模擬效果和收斂速度均顯著優(yōu)于PSO算法和ISM算法, 能較顯著克服ISM算法和PSO算法存在的缺陷。HPSO算法可作為壟溝集雨系統(tǒng)土壤水分動態(tài)隨機模型參數(shù)優(yōu)化的待選方案。
壟溝集雨系統(tǒng); 土壤水分動態(tài); Laio土壤水分動態(tài)隨機模型; 敏感性分析; 模型參數(shù)優(yōu)化
水資源短缺是全球旱地農(nóng)業(yè)面臨的共同難題。如何充分利用天然降雨資源、確保糧食生產(chǎn)安全和維持農(nóng)田生態(tài)系統(tǒng)穩(wěn)定是實現(xiàn)旱農(nóng)區(qū)“農(nóng)業(yè)-生態(tài)-經(jīng)濟”耦合系統(tǒng)協(xié)調(diào)、持續(xù)發(fā)展的關鍵[1]。同時, 研發(fā)和推廣高效、低廉、環(huán)保的旱作栽培技術對提高旱農(nóng)區(qū)作物產(chǎn)量及水分利用效率具有重要的意義[2]。壟溝集雨系統(tǒng)利用田間起壟、溝壟相間、壟面產(chǎn)流、溝內(nèi)高效集雨, 并依靠增溫、抑蒸、保土等生理生態(tài)效應, 已成為水分缺乏的半干旱區(qū)農(nóng)田生態(tài)系統(tǒng)一項重要的集水節(jié)灌措施[3-4]。其在緩解旱農(nóng)區(qū)人口急劇增長、糧食日益緊缺與農(nóng)業(yè)生態(tài)惡化的矛盾中發(fā)揮著至關重要的作用。
土壤水分是半干旱農(nóng)田生態(tài)系統(tǒng)植物水分的主要來源, 是養(yǎng)分循環(huán)和流動的載體, 在土壤-植被-大氣系統(tǒng)物質(zhì)和能量轉(zhuǎn)化中起著核心和紐帶的重要作用[5]。認識半干旱農(nóng)田生態(tài)系統(tǒng)與土壤水分關系和相互作用機理, 對揭示農(nóng)田生態(tài)系統(tǒng)穩(wěn)定性及其水土關鍵要素的變化過程具有重要意義[6]。由于影響土壤水分動態(tài)的各因素(降水、蒸散發(fā)、土壤異質(zhì)性、地形等)具有隨機性, 特別是降雨事件發(fā)生及降雨量分布的隨機性, 決定了土壤水分動態(tài)模型只有以概率形式描述才更具有實際意義[7]。自Eagleson等[8]首次將隨機理念納入土壤水量平衡方程, Milly[9]、Rodriguez-Iturbe等[10]、Laio等[11]、Porporato等[12]、Pan等[13]先后對不同時空尺度的土壤水分動態(tài)建立了隨機數(shù)學模型, 并得到廣泛應用。Laio土壤水分動態(tài)隨機模型(Laio模型)在蒸散發(fā)項上引進了2個土壤水分臨界值(凋萎系數(shù)和吸濕系數(shù)), 能對干旱半干旱區(qū)農(nóng)田生態(tài)系統(tǒng)土壤水分動態(tài)進行更真實地描述, 可為旱農(nóng)區(qū)土壤水分的有效利用與管理提供理論指導。
由于半干旱區(qū)壟溝集雨系統(tǒng)土壤水分與多種物理、化學和生物過程以及降雨、徑流、蒸散發(fā)、土壤特性、微地形及覆蓋材料等密切相關, 長期處于動態(tài)變化狀態(tài), 且變化過程比較復雜[14-16], 所以利用Laio模型對該系統(tǒng)土壤水分動態(tài)進行模擬和研究是很有必要的。Laio模型共涉及土壤、植被和氣候等13個參數(shù), 部分參數(shù)很難通過觀測直接獲取, 且參數(shù)值存在極大不確定性[17-18]。故在模型應用前需考慮模型“本地化”和“區(qū)域化”問題, 即需對模型參數(shù)進行敏感性分析和優(yōu)化。目前針對Laio模型參數(shù)敏感性及獲取方法已有相關研究, 如姚淑霞等[7]在科爾沁沙地對Laio模型參數(shù)敏感性進行了分析, 并將參數(shù)按敏感性強弱分為了3類; Milly等[9]對Laio模型參數(shù)的獲取及敏感性分析發(fā)現(xiàn), 最大蒸散量(max)和水分脅迫點(*)最難獲取, 且敏感性也最強; 任慶福[17]利用PSO算法對太行山山前平原典型井灌農(nóng)區(qū)Laio模型參數(shù)進行了優(yōu)化, 發(fā)現(xiàn)經(jīng)率定的參數(shù)能更好地模擬作物生長期土壤水分的隨機變化特征。然而, 對不同含水率條件下壟溝集雨系統(tǒng)Laio模型參數(shù)的敏感性, 以及各種優(yōu)化算法對模型參數(shù)優(yōu)化的適應度和有效性尚缺乏系統(tǒng)研究。鑒此, 建立方便可行的壟溝集雨系統(tǒng)Laio模型參數(shù)優(yōu)化、敏感性分析和有效性驗證的方法體系對提高參數(shù)率定效率, 控制模型計算誤差和拓寬模型應用領域具有極其重要的意義。
本文利用中國氣象局定西干旱氣象與生態(tài)環(huán)境試驗基地2012—2013年壟溝集雨燕麥()生長季降雨、徑流和土壤水分等實測數(shù)據(jù)資料, 采用多因素敏感性分析法, 對半干旱區(qū)壟溝集雨系統(tǒng)Laio土壤水分動態(tài)隨機模型參數(shù)敏感性進行分析和分類。同時, 基于ISM、PSO和HPSO算法, 對壟溝集雨系統(tǒng)Laio模型的13個參數(shù)進行優(yōu)化和優(yōu)選, 并利用實測數(shù)據(jù)資料對3種算法優(yōu)化參數(shù)的有效性進行驗證和評價, 以期建立壟溝集雨系統(tǒng)Laio模型參數(shù)敏感性分析、優(yōu)化和驗證的有效方法體系, 為Laio模型參數(shù)校正和區(qū)域應用提供科學理論依據(jù)。
試驗于2012—2013年在中國氣象局蘭州干旱氣象研究所定西干旱氣象與生態(tài)環(huán)境試驗基地(35°33′N, 104°35′E, 海拔1 896.7 m)進行, 該基地屬黃土高原西部丘陵區(qū)和半干旱地區(qū), 具有典型的溫帶大陸性季風氣候[16]。1971—2014年平均降雨量388 mm, 冬季和夏季月平均降雨量分別為20~80 mm和150~270 mm。降雨在年內(nèi)分布極不均勻, 7—10月降雨量占年降雨量的86.9%, 蒸發(fā)強烈, 年均潛在蒸發(fā)量達1 500 mm。試驗地地勢平坦, 土壤為重壤土, 0~100 cm土壤平均容重為1.38 g·cm-3, 田間持水量為25.60%, 飽和含水量為43.87%, 永久凋萎系數(shù)為6.70%, 地下水埋深10.4 m, 土壤水與地下水的水力聯(lián)系微弱。當?shù)馗髦贫葹橐荒?熟, 主要種植作物有春小麥()、燕麥和馬鈴薯()等, 主要種植牧草有紫花苜蓿()和紅豆草()等。
試驗采用田間壟溝集雨覆蓋種植技術, 以燕麥為指示作物, 壟覆蓋作為集雨區(qū), 溝無覆蓋作為種植區(qū), 小區(qū)隨機排列, 共設9個處理(3種溝壟比×3種覆蓋材料), 重復3次。3種覆蓋材料分別為生物可降解膜、普通塑料膜和土壤結皮, 3種溝壟比分別為60 cm︰30 cm、60 cm︰45 cm和60 cm︰60 cm(溝寬︰壟寬)。生物可降解地膜和普通塑料膜厚度均為0.08 mm; 土壟為人工原土夯實, 經(jīng)風吹雨打形成自然土壤結皮。土壟、生物可降解地膜壟和普通地膜壟的代表符號分別為SR、BMR和CMR。根據(jù)當?shù)胤N植經(jīng)驗, 集雨壟的坡度為40°, 高為25 cm, 長為10 m, 每1小區(qū)有4條壟和3條溝。試驗設計見表1,種植示意圖見圖1。相關種植管理方法按前期研究者[19]所述進行。由于本試驗3種溝壟比對該系統(tǒng)土壤水分時空動態(tài)影響不顯著[16-19], 故本文土壤含水量均為同一覆蓋材料下, 3種試驗溝壟比之均值。
表1 壟溝集雨種植燕麥試驗設計
圖1 壟溝集雨種植燕麥示意圖
試驗期降雨量數(shù)據(jù)由試驗基地自記雨量計測定。土壤含水量采用烘干法(105 ℃, 10 h)于燕麥播種前(4月10日左右)、收獲后(8月20日左右)和降雨后(降雨量>5 mm)測定, 測定深度140 cm, 分層深度為20 cm, 共記錄7個土層的土壤含水量, 每1小區(qū)隨機在溝內(nèi)選取3個樣點, 同一層次土壤含水量取3個樣點平均值。集雨壟徑流量由降雨量數(shù)據(jù)基于美國水土保持局研制的SCS-CN模型反推確定[20]。土壤容重采用環(huán)刀法測定, 測定深度140 cm, 分層深度為20 cm, 每層3個重復, 取均值。根系層深度通過實地調(diào)查燕麥根系生物量分布范圍測定[7]。同期氣象數(shù)據(jù)由鄰近的試驗基地氣象觀測站獲得。
土壤水分隨機模型的理論基礎是物質(zhì)平衡原理: 單位時間內(nèi)土壤含水量的變化等于土壤水分輸入項和水分損失項的差?;谇捌谘芯空遊21]對土壤水分隨機模型的研究, Laio等[11]通過引進兩個臨界土壤含水量(土壤吸濕系數(shù)和土壤凋萎系數(shù)), 在空間一點上建立了時間尺度為1 d的土壤水分平衡方程, 具體模型(Laio模型)可表述為:
將降雨隨機過程同土壤水分損失項(土壤水蒸散發(fā)與深層滲漏之和)相結合是土壤水分隨機模型建立的基礎[21-22]。由于降雨是隨機過程, 故需建立土壤水分概率密度函數(shù)求解土壤水平衡過程(公式1)。通過將Laio模型的各土壤水分損失過程轉(zhuǎn)化為查普曼-柯爾莫哥洛夫前進方程(Chapman- Kolmogorov Forward Function)可分析求解導出土壤水分概率密度函數(shù), 其具體表達式[7,11,21-22]為:
表2 壟溝集雨系統(tǒng)Laio模型參數(shù)取值范圍及其不同覆蓋處理的初始值
表中模型參數(shù)取值范圍由相關實測數(shù)據(jù)和文獻資料[11,16]獲得。UBV: 參數(shù)取值下限; LBV: 參數(shù)取值上限。Values ranges of model parameters in the table were obtained from the relevant measured data and literatures[11,16]. UBV: upper bound value of model parameter; LBV: lower bound value of model parameter.
模型參數(shù)的敏感性分析是研究參數(shù)變化所引起的模型響應, 是模型參數(shù)不確定分析的重要內(nèi)容之一, 也是研發(fā)和評價模型不可缺少的重要環(huán)節(jié)[23]。同時, 參數(shù)敏感性分析有助于深入理解模型的特性并改進模型結構的穩(wěn)定性[24]。為不失一般性, 可將土壤水分概率密度函數(shù)表示為:
1.4.1 改進單純形法尋優(yōu)原理
1.4.2 粒子群優(yōu)化算法尋優(yōu)原理
1.4.3 混合粒子群優(yōu)算法尋優(yōu)原理
為提高優(yōu)化算法在全局和局部意義下的搜索能力和收斂效率, 以粒子群優(yōu)算法流程為基礎, 引入改進單純形搜索方法構成混合粒子群優(yōu)算法(Hybrid Particle Swarm Optimization, HPSO)[29], 即在每1次迭代中先用PSO算法對群體進行全局尋優(yōu), 然后通過ISM算法對粒子群中部分精英粒子在其較優(yōu)解領域內(nèi)進行局部搜索, 尋找更優(yōu)解。
通過比較研究區(qū)不同處理實測土壤水分概率密度函數(shù)曲線與ISM、PSO和HPSO算法優(yōu)化參數(shù)值模擬曲線的特征, 評價以上3種算法對Laio模型參數(shù)優(yōu)化的有效性。驗證評價指標選擇CM(Consistency Measure)指數(shù)[32], 其表示兩目標曲線的一致性程度, 計算方法如下:
式中: 表示目標曲線1下方的面積, 表示目標曲線2下方的面積, 表示目標曲線1和目標曲線2下方的公共面積(圖2a, b, c)。顯然, 目標曲線1與目標曲線2一致性越好, 越大, CM指數(shù)越大; 反之, 一致性越差, 越小, CM指數(shù)越小。CM指數(shù)的變化范圍為[0, 1], 當CM=1時, 表明目標曲線1和目標曲線2一致性最佳; 當CM=0時, 表明目標曲線1和目標曲線2之間不存在一致性(見圖2d, e)。
圖3 不同土壤含水率下不同覆蓋處理的壟溝集雨系統(tǒng)Laio模型各參數(shù)敏感性分析
模型參數(shù)的意義見表2。Meanings of parameters are shown in the table 2.
圖4 基于SOM神經(jīng)網(wǎng)絡聚類法的壟溝集雨系統(tǒng)Laio模型參數(shù)敏感性分類
模型參數(shù)的意義見表2。Meanings of parameters are shown in the table 2.
圖5 參數(shù)α(生長季平均降水量)和sw(凋萎系數(shù))對壟溝集雨系統(tǒng)土壤水分概率密度函數(shù)[p(s)]的影響
為確保算法的優(yōu)化精度和有效性, 當算法運行過程中符合下列3個終止準則之一時停止計算[35]。準則1: 兩次迭代的最優(yōu)目標函數(shù)值對應的參數(shù)距離小于給定精度1≤10-5; 準則2: 兩次迭代的目標函數(shù)值之差小于給定精度2≤10-5; 準則3: 循環(huán)的最大次數(shù)已達到。同時, 為盡可能消除算法隨機性對各算法比較的影響, 每個優(yōu)化算法均隨機獨立運行10次后取各參數(shù)平均最優(yōu)解和計算效率。算法運行結果和優(yōu)化參數(shù)驗證見表3及圖6所示。
從3種優(yōu)化算法(ISM、PSO和HPSO)對Laio模型參數(shù)優(yōu)化結果(表3)和優(yōu)化效率(圖6)可看出, ISM算法優(yōu)化參數(shù)的有效性明顯低于另外兩種算法, 其對模型參數(shù)初始值依賴性較強, 如果不事先用具有較強全局尋優(yōu)能力的算法獲取一組較優(yōu)初始值, 其優(yōu)化結果將易陷入局部最優(yōu)。PSO算法具有較強的全局尋優(yōu)能力, 優(yōu)化參數(shù)的有效性較強, 但其在算法迭代后期收斂速度相對較慢, 存在有早熟、局部收斂等缺陷。HPSO算法優(yōu)化參數(shù)的有效性明顯優(yōu)于ISM算法和PSO算法的優(yōu)化解, 其不但具有較強的全局搜索能力, 而且具有較快的收斂速度, 能較顯著地克服ISM算法和PSO算法相互存在的缺陷。這與陳俊風等[29]對HPSO算法的仿真實驗結論相一致, 說明其有利于增強全局和局部意義下優(yōu)化結果的可靠性和算法的優(yōu)化性能, 是求解優(yōu)化問題的一種有效的算法。
表3 基于ISM、PSO和HPSO算法的壟溝集雨系統(tǒng)Laio模型參數(shù)優(yōu)化結果
模型參數(shù)的意義見表2。Meanings of parameters are shown in the table 2.
圖6 基于ISM、PSO和HPSO算法的壟溝集雨系統(tǒng)Laio模型參數(shù)優(yōu)化效率和有效性驗證
SMC: 土壤含水量; NCF: 正態(tài)曲線擬合; SPSO: PSO優(yōu)化參數(shù)模擬曲線; SISM: ISM優(yōu)化參數(shù)模擬曲線; SHPSO: HPSO優(yōu)化參數(shù)模擬曲線。SMC: soil moisture content; NCF: normal curve fitting; SPSO: simulating curves with PSO-optimized parameters; SISM: simulating curves with ISM-optimized; SHPSO: simulating curves with HPSO-optimized parameters.
采用試驗區(qū)2012—2013年田間壟溝集雨系統(tǒng)各處理(SR、CMR和BMR)降雨、徑流、土壤含水率等實測數(shù)據(jù)資料, 基于3種算法(ISM、PSO和HPSO)對Laio模型參數(shù)優(yōu)化值, 比較模型模擬與實測的土壤水分概率密度函數(shù)在曲線形狀[峰值、峰值出現(xiàn)的位置, 95%置信區(qū)間(CI95%)]和CM指數(shù)之間的匹配程度, 評價3種算法對Laio模型參數(shù)優(yōu)化的有效性, 選擇較優(yōu)模型參數(shù)優(yōu)化值及參數(shù)優(yōu)選算法類型。圖6和表4為3種算法的壟溝集雨系統(tǒng)Laio模型優(yōu)化參數(shù)有效性驗證與評價結果。
表4 基于ISM、PSO和HPSO算法的壟溝集雨系統(tǒng)Laio模型參數(shù)優(yōu)化性能比較
CPV: 峰值; PP: 峰值位置; CI95%: 95%置信區(qū)間; CM: 一致性指數(shù)。CPV: the curve peak value; PP: the position of the peak; CI95%: the confidence interval of 95%; CM: the consistency measure.
從圖6和表4可看出, 3種算法優(yōu)化模型參數(shù)值均能比較準確地描繪出曲線的形狀, 捕捉到峰值的位置, 描述出土壤水分概率密度函數(shù)的主要特征, 且CPV、PP和CI95%實測值與模擬值相對誤差均小于10%, CM指數(shù)均大于0.5, 說明3種算法優(yōu)化參數(shù)值對壟溝集雨系統(tǒng)土壤水分概率密度函數(shù)模擬效果較好。同時, HPSO算法優(yōu)化參數(shù)的模擬效果(CM指數(shù)均值為0.901)優(yōu)于PSO算法(CM指數(shù)均值為0.848), PSO算法優(yōu)于ISM算法(CM指數(shù)均值為0.678), 且HPSO算法優(yōu)化參數(shù)的收斂速度(進化代數(shù)均值為285)均快于PSO算法(進化代數(shù)均值為503), 說明HPSO算法優(yōu)化模型參數(shù)值可較顯著提高壟溝集雨系統(tǒng)土壤水分概率密度模擬精度和效率,故HPSO算法可作為該系統(tǒng)土壤水分動態(tài)隨機模型參數(shù)優(yōu)選的較優(yōu)待選方案。但是, 相關研究表明[36], 全局算法與局部算法相混合得到的混合優(yōu)化算法,盡管可以提高局部收斂速度和性能, 但也加劇了陷入局部極小的可能。因此, 構建能顯著提高局部搜索能力, 且能高概率搜索全局最優(yōu)解的混合優(yōu)化算法, 有待進一步深入的研究。
本文采用多因素敏感性分析法, 對半干旱區(qū)壟溝集雨系統(tǒng)Laio土壤水分動態(tài)隨機模型參數(shù)的敏感性進行了分析和分類。同時, 基于3種優(yōu)化算法(ISM、PSO和HPSO), 對壟溝集雨系統(tǒng)Laio模型的13個參數(shù)進行了優(yōu)化和優(yōu)選, 并利用實測數(shù)據(jù)資料對3種算法優(yōu)化參數(shù)的有效性進行了驗證和評價。得到的主要結論如下:
3)3種算法的優(yōu)化參數(shù)值均能較好地模擬壟溝集雨系統(tǒng)土壤水分概率密度函數(shù), 各處理的CPV、PP和CI95%實測值與模擬值相對誤差均小于10%, CM指數(shù)均大于0.5。
4)HPSO算法優(yōu)化參數(shù)的模擬效果和收斂速度均顯著優(yōu)于PSO算法和ISM算法, 且能較顯著克服ISM算法和PSO算法存在的缺陷, HPSO算法可作為壟溝集雨系統(tǒng)土壤水分動態(tài)隨機模型參數(shù)優(yōu)選的較優(yōu)待選方案。
[1] 莫非, 周宏, 王建永, 等. 田間微集雨技術研究及應用[J]. 農(nóng)業(yè)工程學報, 2013, 29(8): 1–17 MO F, ZHOU H, WANG J Y, et al. Development and application of micro-field rain-harvesting technologies[J]. Transactions of the CSAE, 2013, 29(8): 1–17
[2] ZHOU L M, ZHANG F, LIU C A. Improved yield by harvesting water with ridges and subgrooves using buried and surface plastic mulchs in a semiarid area of China[J]. Soil and Tillage Research, 2015, 150: 21–29
[3] DU Y J, LI Z Z, LI W L. Effect of different water supply regimes on growth and size hierarchy in spring wheat populations under mulched with clear plastic film[J]. Agricultural Water Management, 2006, 79(3): 265–279
[4] JIA Y, LI F M, WANG X L. Soil quality responses to alfalfa watered with a field micro-catchment technique in the Loess Plateau of China[J]. Field Crops Research, 2006, 95(1): 64–74
[5] 李小雁. 干旱地區(qū)土壤-植被-水文耦合、響應與適應機制[J]. 中國科學: 地球科學, 2011, 41(12): 1721–1730 LI X Y. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions[J]. Scientia Sinica Terrae, 2011, 41(12): 1721–1730
[6] PORPORATO A, FENG X, MANZONI S, et al. Ecohydrological modeling in agroecosystems: Examples and challenges[J]. Water Resources Research, 2015, 51(7): 5081–5099
[7] 姚淑霞, 張銅會, 趙傳成. 科爾沁沙地土壤水分動態(tài)分析及其概率密度函數(shù)模擬[J]. 水科學進展, 2013, 24(1): 62–72YAO S X, ZHANG T H, ZHAO C C. Analysis of soil moisture dynamics and its probability density function simulation in Horqin Sand Land[J]. Advances in Water Science, 2013, 24(1): 62–72
[8] EAGLESON P S. Climate, soil, and vegetation: 1. Introduction to water balance dynamics[J]. Water Resources Research, 1978, 14(5): 705–712
[9] MILLY P C D. An analytic solution of the stochastic storage problem applicable to soil water[J]. Water Resources Research, 1993, 29(11): 3755–3758
[10] RODRIGUEZ-ITURBE I, PORPORATO A, RIDOLFI L, et al. Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation[J]. Proceedings of the Royal of Society A, 1999, 455(1990): 3789–3805
[11] LAIO F, PORPORATO A, RIDOLFI L, et al. Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: Ⅱ. Probabilistic soil moisture dynamics[J]. Advances in Water Resources, 2001, 24(7): 707–723
[12] PORPORATO A, DALY E, RODRIGUEZ-ITURBE I. Soil water balance and ecosystem response to climate change[J]. The American Naturalist, 2004, 164 (5): 625–632
[13] PAN X Y, POTTER N J, XIA J, et al. Hillslope-scale probabilistic characterization of soil moisture dynamics and average water balance[J]. Hydrological Processes, 2013, 27(10): 1464–1474
[14] BEN-ASHER J, WARRICK A W. Effect of variations in soil properties and precipitation on microcatchment water balance[J]. Agricultural Water Management, 1987, 12(3): 177–194
[15] LI X Y, SHI P J, SUN Y L, et al. Influence of various in situ rainwater harvesting methods on soil moisture and growth ofin the semiarid loess region of China[J]. Forest Ecology and Management, 2006, 233(1): 143–148
[16] WANG Q, REN X, SONG X Y, et al. The optimum ridge-furrow ratio and suitable ridge-covering material in rainwater harvesting for oats production in semiarid regions of China[J]. Field Crops Research, 2015, 172: 106–118
[17] 任慶福. 氣候變化下典型農(nóng)田土壤水分隨機模擬及應用[D].北京: 北京林業(yè)大學, 2016: 83–94 REN Q F. Stochastic simulation for the typical farmland soil moisture under climate change and its application to the Shijin irrigated district in Hebei Province[D]. Beijing: Beijing Forestry University, 2016: 83–94
[18] MILLER G R, BALDOCCHI D D, LAW B E, et al. An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites[J]. Advances in Water Resources, 2007, 30(5): 1065–1081
[19] 任祥, 王琦, 張恩和, 等. 覆蓋材料和溝壟比對燕麥產(chǎn)量和水分利用效率的影響[J]. 中國生態(tài)農(nóng)業(yè)學報, 2014, 22(8): 945–954 REN X, WANG Q, ZHANG E H, et al. Effects of mulching materials and furrow-to-ridge ratios on oat grain/hay yield and water use efficiency under rainwater harvesting cultivation[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 945–954
[20] 尹鑫衛(wèi), 李曉玲, 康燕霞, 等. 基于SCS-CN模型的溝壟微型集雨系統(tǒng)徑流預測[J]. 生態(tài)學雜志, 2015, 34(12): 3502–3508 YIN X W, LI X L, KANG Y X, et al. Prediction of runoff in ridge-furrow rainwater harvesting system based on SCS-CN model[J]. Chinese Journal of Ecology, 2015, 34(12): 3502–3508
[21] 潘興瑤, 夏軍, 張櫓. 土壤水分隨機模型支持下的土壤水平衡研究進展[J]. 資源科學, 2008, 30(3): 460–467 PAN X Y, XIA J, ZHANG L. A review of soil water balance studies based on stochastic soil moisture model[J]. Resources Science, 2008, 30(3): 460–467
[22] 胡健, 呂一河. 土壤水分動態(tài)隨機模型研究進展[J]. 地理科學進展, 2015, 34(3): 389–400 HU J, LYU Y H. Research progress on stochastic soil moisture dynamic model[J]. Progress in Geography, 2015, 34(3): 389–400
[23] VANROLLEGHEM P A, MANNINA G, COSENZA A, et al. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods[J]. Journal of Hydrology, 2015, 522: 339–352
[24] 李毅, 邵明安, 王文焰, 等. 土壤非飽和導水率模型中參數(shù)的敏感性分析[J]. 水科學進展, 2003, 14(5): 593–597 LI Y, SHAO M A, WANG W Y, et al. Sensitive analyses of parameters in unsaturated soil hydraulic conductivity model[J]. Advances in Water Science, 2003, 14(5): 593–597
[25] NELDER J A, MEAD R. A Simplex Method for function minimization[J]. The Computer Journal, 1965, 7(4): 308–313
[26] 劉歡培, 黃建華. 改進單純形法尋優(yōu)的MATLAB實現(xiàn)[J]. 浙江工業(yè)大學學報, 2003, 31(4): 377–381 LIU H P, HUANG J H. Realization of improved simplex method using MATLAB[J]. Journal of Zhejiang University of Technology, 2003, 31(4): 377–381
[27] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942–1948
[28] 劉蘇寧, 甘泓, 魏國孝. 粒子群算法在新安江模型參數(shù)率定中的應用[J]. 水利學報, 2010, 41(5): 537–544 LIU S N, GAN H, WEI G X. Application of PSO algorithm to calibrate the Xin’anjiang Hydrological Model[J]. Shuili Xuebao, 2010, 41(5): 537–544
[29] 陳俊風, 任子武, 范新南. 一種基于改進單純形法和粒子群算法的混合優(yōu)化算法[C]//中國自動化學會控制理論專業(yè)委員會. 第25屆中國控制會議論文集(中冊). 哈爾濱: 哈爾濱工業(yè)大學出版社, 2006: 7–11 CHEN J F, REN Z W, FAN X N. A hybrid optimized algorithm based on improved simplex method and particle swarm optimization[C]//Technical Committee on Control Theory, Chinese Association of Automation. Proceedings of the 25th Chinese Control Conference (Middle). Harbin: Harbin Institute of Technology Press, 2006: 7–11
[30] 陸克中, 吳璞, 王汝傳. 基于粒子群優(yōu)化算法的非線性系統(tǒng)模型參數(shù)估計[J]. 計算機技術與發(fā)展, 2008, 18(6): 57–59 LU K Z, WU P, WANG R C. A method of parameter estimation in a nonlinear system model based on particle swarm optimization[J]. Computer Technology and Development, 2008, 18(6): 57–59
[31] 吳春梅. 現(xiàn)代智能優(yōu)化算法的研究綜述[J]. 科技信息, 2012, (8): 31 WU C M. A review of modern intelligent optimized algorithm[J]. Science & Technology Information, 2012, (8): 31
[32] ZHU A X. A personal construct-based knowledge acquisition process for natural resource mapping[J]. International Journal of Geographical Information Science, 1999, 13(2): 119–141
[33] 任小龍, 賈志寬, 丁瑞霞, 等. 我國旱區(qū)作物根域微集水種植技術研究進展及展望[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2010, 28(3): 83–89 REN X L, JIA Z K, DING R X, et al. Progress and prospect of research on root-zone water micro-collecting farming for crop in arid region of China[J]. Agricultural Research in the Arid Areas, 2010, 28(3): 83–89
[34] 宋秉海. 旱地地膜玉米“貧水富集”種植模式研究[J]. 中國生態(tài)農(nóng)業(yè)學報, 2006, 14(3): 93–95 SONG B H. Study on planting models of rainwater harvesting technique of mulched maize in arid areas[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 93–95
[35] 江燕, 劉昌明, 胡鐵松, 等. 新安江模型參數(shù)優(yōu)選的改進粒子群算法[J]. 水利學報, 2007, 38(10): 1200–1206JIANG Y, LIU C M, HU T S, et al. Improved particle swarm optimization for parameter calibration of Xin’anjiang model[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1200–1206
[36] 俞歡軍, 許寧, 張麗平, 等. 混合粒子群優(yōu)化算法研究[J]. 信息與控制, 2005, 34(4): 500–504 YU H J, XU N, ZHANG L P, et al. Research on hybrid particle swarm optimization[J]. Information and Control, 2005, 34(4): 500–504
Sensitivity analysis and optimization of parameters for Laio soil moisture dynamic stochastic model for ridge-furrow rainwater harvesting system*
YIN Xinwei1,2, LI Xiaoling3, WANG Qi4**, ZHANG Yongmei1,2
(1. Fukang Station for Desert Ecosystem Observation and Experiment / Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China; 4. College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China)
Sensitivity analysis of parameters, calibration and validation of eco-hydrological modelsare essential for model evaluation and application. It is important in model application to accurately estimate the values of model parameters and to further improve model prediction capacity. Based on eco-hydrological process, the Laio soil moisture dynamics stochastic model (Laio model) was used to describe daily water balance in active soil depth of ridge-furrow rainwater harvest system during growing season to analyze the effects of the interactions among plants, soil and environment under different climatic conditions on soil water balance and plant water conditions. The performance of the Laio model varied with climatic zone due to the heterogeneity of climate, vegetation and soil characteristics. In this study, in order to establish an effective system for parameter sensitivity analysis, calibration and validation of the Laio model in a ridge-furrow rainwater harvesting system in a semi-arid area, a field experiment with a randomized complete block design was conducted during the 2012 and 2013 oat growing seasons at Dingxi Arid Meteorology and Ecological Environment Experimental Station. The experiment was designed to investigate the parameter sensitivity and to determine the optimal mode of parameter optimization of the Laio model under various mulching materials (common plastic film, biodegradable film mulch and manually compacted soil) and various ridge-furrow ratios (60 cm∶30 cm, 60 cm∶45 cm and 60 cm∶60 cm). The methods included multi-factor sensitivity analysis, simplex method (ISM), particle swarm optimization algorithm (PSO) and hybrid particle swarm optimization algorithm (HPSO). Also continuously monitored soil moisture, precipitation runoff and daily precipitation data for 2012–2013 were used to run the model. The results indicated that: (1) mean precipitation per rainfall event () and soil saturation degree at wilting point (w) were the most sensitive parameters for probabilistic density function of soil moisture [(s)] in different experimental treatments. While the sensitivity of(s) towas more obvious under low soil moisture content, that towwas more obvious under high soil moisture content. (2) There were good agreements among the results of modelling using optimized parameters of the Laio model for the three optimization algorithms (ISM, PSO and HPSO) and the observation values, which were determined from the(s) curve. This included curve peak value (CPV), curve peak position (PP), 95% confidence interval (CI95%) and consistency measure (CM). All of these indicated that the optimized parameters of the Laio model using the ISM, PSO and HPSO methods correctly estimated(s) of ridge-furrow rainwater harvesting. (3) The HPSO method not only improved global optimization performance, but also quickened convergence and gave robust results with good quality. It was an effective optimization method for the Laio model calibration and validation. The study improved the efficiency of model parameter calibration, upgraded the accuracy of model simulation results and provided guidance for application of the Laio model in ridge-furrow rainwater harvesting research.
Ridge-furrow rainwater harvesting system; Soil moisture dynamic; Laio soil moisture dynamic stochastic model; Sensitivity analysis; Model parameter optimization
, E-mail: wangqigsau@gmail.com
Aug. 14, 2017;
Nov. 28, 2017
10.13930/j.cnki.cjea.170737
S152.7
A
1671-3990(2018)05-0746-13
王琦, 主要從事牧草、草坪及作物節(jié)水灌溉方面研究。E-mail: wangqigsau@gmail.com 尹鑫衛(wèi), 主要研究方向為干旱區(qū)水文生態(tài)學。E-mail: xinweiyin@foxmail.com
2017-08-14
2017-11-28
* This study was supported by the National Natural Science Foundation of China (41461062, 41661059).
* 國家自然科學基金項目(41461062, 41661059)資助
尹鑫衛(wèi), 李曉玲, 王琦, 張永梅. 壟溝集雨系統(tǒng)Laio土壤水分動態(tài)隨機模型參數(shù)敏感性分析及優(yōu)化[J]. 中國生態(tài)農(nóng)業(yè)學報, 2018, 26(5): 746-758
YIN X W, LI X L, WANG Q, ZHANG Y M. Sensitivity analysis and optimization of parameters for Laio soil moisture dynamic stochastic model for ridge-furrow rainwater harvesting system[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 746-758