• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of T-complex polypeptide 1 (TCP-1) from the Chilo suppressalis HSP60 family and its expression in response to temperature stress

    2018-05-08 09:07:55YUTongyingLUMingxingCUIYadong
    Journal of Integrative Agriculture 2018年5期

    YU Tong-ying , LU Ming-xing, CUI Ya-dong

    1 Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, P.R.China

    2 School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, P.R.China

    1. Introduction

    Molecular chaperones are an evolutionarily-conserved family of proteins that are responsible for the folding and assembly of newly-synthesized proteins and the refolding of denatured proteins (Yamet al.2008). Furthermore,chaperones can prevent the unfolding of denatured proteins and promote the aggregation of dissolved protein (Sonnaet al.2002). Heat shock protein, HSP60, is a ubiquitous,highly-abundant molecular chaperone that is induced in response to high temperature, hypoxia, infection, and trauma (Ohashiet al.2000; Borges and Ramos 2005).HSP60 plays an important role in enhancing the ability of cells to tolerate stress and maintaining protein stability and functionality (Wanget al.2012). HSP60 is further classified into types I and II (Chenet al.2011); type II occurs in the cytosol of eukaryotes and includes T-complex polypeptide 1(TCP-1), which is conserved in eukaryotes, archaebacteria and eubacteria (Kubotaet al.1995). TCP-1 assists in the folding of newly synthesized proteins, such as tubulins and actins (Sternlichtet al.1993), cyclin E (Wonet al.1998),and α-transducin (Farret al.1997).

    The rice stem borer,Chilo suppressalis(Walker)(Lepidoptera: Pyralidae) is a major pest of rice in Asia, North Africa and southern Europe (Luoet al.2014).C.suppressalisoccurs in both southern and northern China, which indicates a high tolerance to extreme temperatures (Guoet al.2002).The mechanistic basis of thermal tolerance inC.suppressalisis unclear; genes encoding four large and seven small HSPs have been identified inC.suppressalisand were proposed to have roles in temperature stress (Sonodaet al.2006; Cuiet al.2010a, b, c; Luet al.2014; Panet al.2017).

    HSP60 has been previously characterized inC.suppressalis(Cuiet al.2010c), but its role in this insect pest is not entirely clear. In this study, we isolated and characterizedTcp-1inC.suppressalis. The expression ofTcp-1in various insect tissues and in response to thermal stress were also investigated.

    2. Materials and methods

    2.1. Insects

    Populations ofC.suppressaliswere collected from a suburb of Yangzhou (32°39′N(xiāo), 119°42′E), which was located in the Jiangsu Province, China.C.suppressaliswas reared for three or more generations in an indoor breeding room maintained at (27±1)°C with a 16 h L:8 h D photoperiod and approximately 75% humidity as described previously(Shanget al.1979).

    2.2. RNA extraction and cDNA synthesis

    Total RNA was isolated using the SV Total RNA Isolation System (Promega, USA) and combined with DNase digestion to eliminate DNA contamination. cDNA was synthesized from 1 μL of RNA using oligo(dT)18primers(Fermentas, Canada) by rapid ampli fication of cDNA ends(3′- and 5′-RACE); these experiments were conducted using the TaKaRa RACE cDNA Ampli fication Kit (TaKaRa, Dalian,China) according to the manufacturer.

    2.3. Cloning and characterization of Tcp-1

    Degenerate primers were used to amplify the partial segments ofTcp-1(Table 1). Full-length cDNAs ofTcp-1were obtained using 5′- and 3′-RACE (SMARTer? RACE,Clontech, USA) and the primers were shown in Table 1. The sequence of theTcp-1ORF was con firmed by 5′-RACE.Genomic DNA ofC.suppressaliswas extracted using the AxyprepTMMultisource Genomic DNA Kit (Axygen, USA).Based on the sequence of the full-lengthTcp-1gene, pairs of specific primers (Table 1) were designed to amplifyTcp-1genomic fragments. These products were purified using a gel extraction kit (Axygen, USA), cloned into pGEM-T Easy vector (Promega, USA), and transformed into competentEscherichia coliDH5α cells for sequencing.

    2.4. Sample preparation

    In experiments focusing on differential expression in seven tissue types, fifth-instar larvae were selected with similar body sizes; each group contained ten larvae and experiments were repeated four times. Larvae were anesthetized on ice before dissection. Heads, epidermis,fat body, foregut, midgut, hindgut, and malpighian tubules were collected from larvae and rinsed with a 0.9% sodium chloride solution. The samples were frozen immediately in liquid nitrogen and stored at –70°C until needed for analysis.

    Table 1 Primers used in this study1)

    2.5. Temperature treatments

    Larvae (n=30) were con fined individually in glass tubes, and experimental groups were exposed to selected temperatures(–11, –9, –8, –6, –3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30,33, 36, 39, 42, and 43°C) for 2 h in a constant temperature subzero incubator (DC-3010, Jiangnan Equipment,Changzhou, China). Larvae were then allowed to recover at(27±1)°C for 2 h, after which surviving larvae were frozen in liquid nitrogen and stored at –70°C. The larvae exposed to 27°C were regarded as the control group. Each treatment included four or more surviving larvae.

    2.6. Quantitative real-time PCR analysis

    Total RNA was extracted using the SV Total RNA Isolation System (Z3100, Promega, USA), followed by DNase treatment to eliminate DNA contamination. The integrity of RNA in all samples was verified by comparing the ribosomal RNA bands in ethidium bromide-stained gels and purity was evaluated using spectrophotometric measurements(BioPhotometer plus; Eppendorf, Germany) at 260 and 280 nm. Reactions were performed in a 20 μL volume containing 10 μL of iTaq? Universal SYBR?Green Supermix (Bio-Rad, USA), 6 μL ddH2O, 1 μL of each genespecific primer (Table 1) and 2 μL of cDNA templates.Reactions were carried out using a CFX-96 Real-time PCR System (Bio-Rad, USA). The efficiencies of the target and reference genes were similar (Nolanet al.2006; Bustinet al.2009). The quantity ofTcp-1mRNA was calculated using the 2–ΔΔCTmethod (Pfaffl 2001) and normalized to the abundance of histone 3 (H3) and elongation factor 1 (EF1)genes for tissues and thermal stress, respectively (Xuet al.2017). Expression in larvae maintained at (27±1)°C and in insect heads were used as controls as described previously(Schmittgen and Livak 2008). The homogeneity of PCR products was con firmed by melting curve analysis, which was read every 5 s per 0.5°C increment from 65 to 95°C.Treatments included four replicates, and each reaction was run in triplicate.

    2.7. Phylogenetic analysis

    ORF Finder Software (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) was used to identify ORFs in theTcp-1sequence.Sequence analysis tools of the ExPASy Molecular Biology Server, including Translate, Compute pI/MW and Blast(Swiss Institute of Bioinformatics). ScanProsite (http://prosite.expasy.org/scanprosite/) was used to detect motifs in TCP-1. Amino acid sequences were used to estimate phylogeny using neighbor-joining, minimum evolution, maximum likelihood, and maximum parsimony methods. Phylogenetic trees were constructed with 1 000 bootstrap replicates using MEGA version 7.0 (Kumaret al.2016).

    2.8. Statistical analysis

    Homogeneity of variances among different groups was evaluated by Levene’s test. One-way ANOVA and a LSD test were used to detect significant differences among treatments, followed by Tukey’s tests and SPSS16.0 (Pallant 2007).

    3. Results

    3.1. Sequence analysis

    In this study, degenerative primers based on a conserved region ofTcp-1were used to amplify cDNAs derived fromC.suppressalislarvae. The 5′ and 3′ flanking sequences were obtained by 5′- and 3′-RACE. After assembly, a 2 144 bp full-length cDNA sequence was obtained (Fig. 1)that contained start and stop codons at 99–101 bp (ATG)and 1 733–1 735 bp (TAA), respectively. The sequence contained a 98 bp 5′-UTR with a polyadenylation signal sequence (AATAAA), a 1 635-bp ORF, a 408-bp 3′-UTR,and a poly(A) tail at the 3′ end (GenBank accession number: MF471349) (Fig. 1). The deduced translational product contained 545 amino acids with a predicted mass of 59.42 kDa and isoelectric point of 5.29. TCP-1 had two signature sequences homologous to the TCP-1 family of proteins, namely RSAYGPNGMNKMI (residues 44–56) and QDAEVGDGT (residues 93–101). Genomic analyses indicated there were lacked introns in theTcp-1gene.

    3.2. Phylogenetic analysis

    The deduced amino acid sequence of TCP-1 inC.suppressaliswas highly similar to orthologous proteins in other insects. We used CLUSTALX and MEGA 7.0 to compare selected TCP-1 proteins using neighbor-joining, minimum evolution, maximum likelihood and maximum parsimony methods. The four phylogenetic trees were highly similar and each contained two clusters (Fig. 2). TCP-1 fromC.suppressalis,Bombyx mori,Danaus plexippus,Papilio xuthusandOperophtera brumatafell into a single well-supported cluster with a high level of similarity (60–99%),indicating that TCP-1 inC.suppressalisis closely related to other Lepidopteran forms of the protein.

    Fig. 1 The complete cDNA sequence and predicted amino acid sequence of the gene encoding T-complex polypeptide 1(TCP-1) in Chilo suppressalis. Two highly-conserved typical motifs of TCP-1 family were selected in the boxes. The asterisk indicates the translational termination codon.

    3.3. Expression of Tcp-1 in different tissues of C. suppressalis larvae

    Quantitative real-time PCR indicated thatTcp-1was expressed differentially in the seven tissues/organs ofC.suppressalislarvae (F6,17=7.093;P=0.001) (Fig. 3).Expression ofTcp-1was the highest in the hindgut and the lowest in malpighian tubules. Expression in larval heads was 4.30 times higher than expression in malpighian tubules.Tcp-1expression was similar in the foregut, midgut and epidermis (Fig. 3).

    3.4. Expression of Tcp-1 in C. suppressalis exposed to temperature stress

    Tcp-1expression was different from the control (27°C) inC.suppressalislarvae exposed to reduced temperatures(F14,38=4.158;P<0.001) (Fig. 4).Tcp-1expression was 2.01-fold higher at 6°C than that of the control (27°C) (Fig. 4).Tcp-1expression at –6, –3, 9, 12, 15, 18, and 21°C was nearly the same as those of the controls (27°C).Tcp-1expression was 1.70-fold higher than that of the control(27°C) after a 2-h exposure to 24°C.

    The expression ofTcp-1was induced when temperature increased from 27 to 43°C (F6,18=4.970,P=0.002)(Fig. 5).Tcp-1expression was 1.35- and 1.29-fold higher than the control (27°C) after a 2-h exposure to 30 and 36°C, respectively. Expression ofTcp-1declined when temperature exceeded 36°C, and the expression level at 43°C was significantly lower than that at 27°C (P=0.002;Fig. 5).

    4. Discussion

    In this study,Tcp-1was cloned and characterized from the rice stem borer,C.suppressalis. The cDNA sequence encoded a 1 635-bp ORF, and the predicted translational product contained 545 amino acids. TCP-1 had an estimated mass of 59.42 kDa and an isoelectric point of 5.29.Tcp-1contained no introns, which is also the case forhsp60in humans and Chinese hamster (Venner 1990).However,hsp60had five introns inFrankliniella occidentalis(Luet al.2016), indicating heterogeneity in this gene. An inverse correlation between intron size and gene expression has been suggested, and genes lacking introns or containing shorter introns showed higher levels of expression than genes containing multiple or longer introns (Comeron 2004).

    Fig. 2 Phylogenetic tree of T-complex polypeptide 1 (TCP-1) proteins determined by the neighbor-joining method. Chilo suppressalis TCP-1 is labeled with black rectangle.

    Fig. 3 Relative expression of Tcp-1 in different tissues (organs)of Chilo suppressalis as determined by quantitative real-time PCR. FG, foregut; MG, midgut; FB, fat body; MT, malpighian tubules; EP, epidermis; HE, head; HG, hindgut. Expression in insect heads was regarded as a control. Columns labeled with different letters indicate significantly different (P<0.05) by one-way ANOVA and Tukey’s test. Error bars indicate SE.

    The role of molecular chaperones in response to various stressors has been widely studied in eukaryotes.Our results demonstrated thatTcp-1expression was the highest in the hindgut of fifth-instar larvae and the lowest inC.suppressalisheads. However, Kumaret al.(2015)reported that the expression ofhsp60inLucilia cuprinawas significantly increased in the malpighian tubules and fat body. One explanation is that hindgut and malpighian tubules reabsorb water, salts and other substances prior to excretion by the insect, and HSPs protect these tissues or organs from toxic injury. This may be also related to the function of TCP-1 in the folding of newly synthesized proteins(Yamet al.2008), including tubulins and actins (Sternlichtet al.1993), cyclin E (Wonet al.1998), α-transducin (Farret al.1997) and von Hippel-Lindau protein (Hansenet al.2002). álvarez-Fernándezet al.(2015) demonstrated that TCP-1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response inDrosophila.

    Fig. 4 Relative expression of Tcp-1 in Chilo suppressalis larvae exposed to low temperatures. Expression at 27°C was regarded as a control. Columns labeled with different letters indicate significantly different (P<0.05) by one-way ANOVA and Tukey’s test. Error bars indicate SE.

    Fig. 5 Relative expression of Tcp-1 in Chilo suppressalis larvae exposed to elevated temperature (27–43°C). Expression at 27°C was regarded as a control. Columns labeled with different letters indicate significantly different (P<0.05) by one-way ANOVA and Tukey’s test. Error bars indicate SE.

    Heat shock proteins play an important role in environmental stress tolerance and heat adaptation (Frydenberget al.2003; Hoffmannet al.2003). The production of HSPs can affect insect growth and development and negatively impact many physiological processes (Krebs and Feder 1997;Feder and Hofmann 1999; Huang and Kang 2007). TCP-1, a member of the HSP60 family, was first shown to be induced by heat shock in human cells (Schenaet al.1996). In this study, expression ofTcp-1inC.suppressaliswas inhibited at 39 and 43°C, indicating that transcription had decreased.However, Cuiet al.(2010c) previously demonstrated thathsp60expression inC.suppressaliswas the highest after a 2-h exposure to 36°C and declined at 39°C. Huang and Kang (2007) observed a similar induction pattern forhsp60inLiriomyza sativaewhere expression was induced in response to heat shock and inhibited when temperatures exceeded 42.5°C. It has also been reported that heat shock can suppress activation of the mitogen-activated protein kinase (MAPK) pathway (Gaoet al.2014). Inhibition of the MAPK pathway can reduce the synthesis of ternary complex factors (TCFs), which further inhibit expression of TCP-1(Gendronet al.2003).

    Surprisingly, exposure to low temperatures did changeTcp-1expression inC.suppressalis.Tcp-1expression was the highest, which was 2.01-fold higher than the control after a 2-h exposure to 6°C. However, Huang and Kang (2007)observed thathsp60expression at low temperatures (–20,–17.5, –15, –12.5, –10, –7.5, –5, –2.5, 0, 2.5, and 25°C)were nearly the same as the control (25°C). Difference inTcp-1expression inC.suppressalisat low temperature may be related to the structure and function of TCP-1 (Yamet al.2008). Factors that contribute to cold hardiness in insects have been described, including cryoprotectants,supercooling points, antifreeze proteins, homeoviscous adaptation, and heat shock proteins (Storey and Storey 1991; Graetheret al.2000; Kostálet al.2003). Kayukawaet al.(2005) clearly demonstrated that expression levels ofTcp-1are highly correlated with the cold hardiness inDelia antiquapupae. Since the production of HSPs may impact the survival and viability of offspring, it is important to understand the cost/benefit ratio balance in terms ofhspgene expression (Luet al.2014).

    In summary, TCP-1 helps protect insects from cellular damage. The role of TCP-1 in adjusting actin and tubulin levels is worthy of further study and will advance our understanding of TCP-1 function in insect behavior and development.

    5. Conclusion

    We obtainedTcp-1encoding heat shock protein forC.suppressalis, and its predicted amino acid sequence showed high similarities with published TCP-1s of other insects in Lepidoptera. When exposed to heat stress, the expression ofTcp-1was induced. Our results indicated thatTcp-1expression was differentially expressed inC.suppressalistissues, and was impacted by temperature stress, and provided useful information in understanding the thermotolerance ofC.suppressalisat the molecular basis.

    Acknowledgements

    This research was funded by the National Natural Science Foundation of China (31401733) and the Incubation Study Project of Science and Technology of Fuyang Normal University, China (2014KJFH02). We sincerely thank Dr.Carol L. Bender from Consulting Limited Liability Company,USA for editing and providing comments on the manuscript.We express our deep gratitude to the Testing Center of Yangzhou University, China.

    álvarez-Fernández C, Tamirisa S, Prada F, Chernomoretz A,Podhajcer O, Blanco E, Martín-Blanco E. 2015. Identification and functional analysis of healing regulators inDrosophila.PLoS Genetics, 11, e1004965.

    Borges J C, Ramos C H I. 2005. Protein folding assisted by chaperones.Protein and Peptide Letters, 12, 257–261.

    Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J,Kubista M, Mueller R, Nolan T, Pfaf fl M W, Shipley G L,Vandesompele J, Wittwer C T. 2009. The MIQE guidelines:Minimum information for publication of quantitative real-time PCR experiments.Clinical Chemistry, 55, 611–622.

    Chen J S, Chang L C, Wu C C, Yeung L K, Lin Y F. 2011.Involvement of F-actin in chaperonin-containing t-complex 1 beta regulating mouse mesangial cell functions in a glucoseinduction cell model.Experimental Diabetes Research,2011, 645–647.

    Comeron J M. 2004. Selective and mutational patterns associated with gene expression in humans: Influences on synonymous composition and intron presence.Genetics,167, 1293–1304.

    Cui Y D, Du Y Z, Lu M X. 2010a. Cloning of the heat shock protein 70 gene fromChilo suppressalisand the analysis of its expression characteristics under heat stress.Acta Entomologica Sinica, 53, 841–848. (in Chinese)

    Cui Y D, Du Y Z, Lu M X, Hu M Z. 2010b. Effect of thermal stress on the generation of ROS, HSP90 and apoptosis in haemocytes ofChilo suppressalis(Lepidoptera: Pyralidae)larvae.Acta Entomologica Sinica,53, 721–726. (in Chinese)

    Cui Y D, Du Y Z, Lu M X, Qiang C K. 2010c. Cloning of the heat shock protein 60 gene from the stem borer,Chilo suppressalis, and analysis of expression characteristics under heat stress.Journal of Insect Science, 10, 1–13.

    Farr G W, Scharl E C, Schumacher R J, Sondek S, Horwich A L. 1997. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms.Cell, 89, 927–937.

    Feder M E, Hofmann G E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology.Annual Review of Physiology, 61,243–282.

    Frydenberg J, Hoffmann A A, Loeschcke V. 2003. DNA sequence variation and latitudinal associations in hsp23,hsp26 and hsp27 from natural populations ofDrosophila melanogaster.Molecular Ecology, 12, 2025–2032.

    Gao S C, Yin H B, Liu H X, Sui Y H. 2014. Research progress on mapk signal pathway in the pathogenesis of osteoarthritis.China Journal of Orthopaedics and Traumatology, 27,441–444. (in Chinese)

    Gendron F P, Neary J T, Theiss P M, Sun G Y, Gonzalez F A, Weisman G A. 2003. Mechanisms of P2X7 receptormediated ERK1/2 phosphorylation in human astrocytoma cells.American Journal of Physiology(Cell Physiology),284, 571–581.

    Graether S P, Kuiper M J, Gagne S M, Walker V K, Jia Z, Sykes B S, Davies P L. 2000. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.Nature, 406, 325–328.

    Guo H F, Li Q, Fang J C, Zhang H. 2002. Comparison of cold hardiness in three species of overwintering rice stem borers in Nanjing area.Jiangsu Journal of Agricultural Sciences,18, 85–88. (in Chinese)

    Hansen W J, Ohh M, Moslehi J, Kondo K, Kaelin W G, Welch W J. 2002. Diverse effects of mutations in exon II of the von Hippel-Lindau (VHL) tumor suppressor gene on the interaction of pVHL with the cytosolic chaperonin and pVHL-dependent ubiquitin ligase activity.Molecular and Cellular Biology, 22, 1947–1960.

    Hoffman A A, Sorensen J G, Loeschcke V. 2003. Adaptation ofDrosophilato temperature extremes: Bringing together quantitative and molecular approaches.Journal of Thermal Biology, 28, 175–216.

    Huang L H, Kang L. 2007. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress.Insect Molecular Biology, 16, 491–500.

    Kayukawa T, Chen B, Miyazaki S, Itoyama K, Shinoda T,Ishikawa Y. 2005. Expression of mRNA for the t-ccomplex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness inDelia antiqua.Cell Stress and Chaperones, 10, 204–210.

    Kostál V, Berková P, Simek P. 2003. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae ofChymomyza costata(Drosophilidae).Comparative Biochemistry and Physiology(Part B), 135, 407–419.

    Krebs R A, Feder M E. 1997. Deleterious consequences of Hsp70 over expression inDrosophila melanogasterlarvae.Cell Stress and Chaperones, 2, 60–71.

    Kubota H, Hynes G, Willison K. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol.European Journal of Biochemistry, 230, 3–16.

    Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular Biology and Evolution, 33, 1870–1874.

    Kumar S M, Janardhan Reddy P V, Sreedhar A S, Tiwari P K.2015. Molecular characterization and expression analysis ofhsp60gene homologue of sheep blow fly,Lucilia cuprina.Journal of Thermal Biology, 52, 24–37.

    Lu M X, Hua J, Cui Y D, Du Y Z. 2014. Five small heat shock protein genes fromChilo suppressalis: Characteristics of gene, genomic organization, structural analysis, and transcription pro files.Cell Stress and Chaperones, 19,91–104.

    Lu M X, Li H B, Zheng Y T, Shi L, Du Y Z. 2016. Identification,genomic organization and expression pro files of four heat shock protein genes in the western flower thrips,Frankliniella occidentalis.Journal of Thermal Biology, 57,110–118.

    Luo G H, Li X H, Han Z J, Guo H F, Yang Q, Wu M, Zhang Z C,Liu B S, Qian L, Fang J C. 2014. Molecular characterization of thepiggyBac-likeelement, a candidate marker for phylogenetic research ofChilo suppressalis(Walker) in China.Biomedcentral Molecular Biology, 15, 28.

    Nolan T, Hands R E, Bustin S A. 2006. Quanti fication of mRNA using real-time RT-PCR.Nature Protocols, 1, 1559–1582.

    Ohashi K, Burkart V, Flohé S, Kolb H. 2000. Cutting edge:heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex.Journal of Immunology,164, 558–561.

    Pallant J. 2007.SPSS Survival Manual:A Step by Step Guide to Data Analysis Using SPSS for Windows Version 15. Open University Press, Maidenhead, England.

    Pan D D, Lu M X, Li Q Y, Du Y Z. 2017. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns fromChilo suppressalis.Cell Stress and Chaperones, 3, 1–10.

    PfafflM W. 2001. A new mathematical model for relative quantification in real-time RT-PCR.NucleicAcids Research,29, e45.

    Schena M, Shalon D, Heller R, Chai A, Brown P O, Davis R W.1996. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.Proceedings of the National Academy of Sciences of the United States of America, 93, 10614–10619.

    Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CTmethod.Nature Protocols, 3,1101–1108.

    Shang Z Z, Wang Y S, Zou Y H. 1979. Study on rearing method of rice stem borerChilo suppressalisWalker.Acta Entomologica Sinica, 2, 164–167. (in Chinese)

    Sonna L A, Fujita J, Gaf fin S L, Lilly C M. 2002. Molecular biology of thermoregulation: Effects of heat and cold stress on mammalian gene expression.Journal of Applied Physiology, 92, 1725–1742.

    Sonoda S, Fukumoto K, Izumi Y, Yoshida H, Tsumuki H. 2006.Cloning of heat shock protein genes (hsp90andhsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer,Chilo suppressalisWalker.Archives of Insect Biochemistry and Physiology, 63, 36–47.

    Sternlicht H, Farr G W, Sternlicht M L, Driscoll J K, Williso K,Yaffe M B. 1993. The t-complex polypeptide 1 complex is a chaperonin for tubulin and actinin vivo.Proceedings of the National Academy of Sciences of the United States of America, 90, 9422–9426.

    Storey K B, Storey J M. 1991. Biochemistry of cryoprotectants.Insects at Low Temperature, 4, 64–93.

    Venner T J, Singh B, Gupta R S. 1990. Nucleotide sequences and novel structural features of human and chinese hamster hsp60 (Chaperonin) gene families.DNA and Cell Biology,9, 545–552.

    Wang F, Chen J, Shi Y H, Lu X J, Li M Y. 2012. Molecular cloning, sequence analysis and stress-related changes of the heat shock protein 60 gene inNeobenedenia melleni.Zoological Research, 33, 603–608.

    Won K A, Schumacher R J, Farr G W, Horwich A L, Reed S I.1998. Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT.Molecular and Cellular Biology,18, 7584–7589.

    Xu J, Lu M X, Cui Y D, Du Y Z. 2017. Selection and evaluation of reference genes for expression analysis using qRT-PCR inChilo suppressalis(Lepidoptera: Pyralidae).Journal of Economic Entomology, 110, 683–691.

    Yam A Y, Xia Y, Lin H T J, Burlingame A, Gerstein M,Frydman J. 2008. De fining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies.Nature Structural and Molecular Biology, 15, 1255–1262.

    十八禁网站免费在线| 久久亚洲真实| 久久香蕉精品热| 夜夜夜夜夜久久久久| 听说在线观看完整版免费高清| 最后的刺客免费高清国语| 在线观看av片永久免费下载| 欧美激情久久久久久爽电影| 免费av观看视频| 成人亚洲精品av一区二区| 在现免费观看毛片| 有码 亚洲区| 日本五十路高清| 国产亚洲精品av在线| 久久精品国产99精品国产亚洲性色| 国内毛片毛片毛片毛片毛片| 婷婷亚洲欧美| 久久久精品大字幕| 免费看日本二区| 亚洲最大成人手机在线| а√天堂www在线а√下载| 日本五十路高清| 国产极品精品免费视频能看的| 丁香六月欧美| 如何舔出高潮| 国产美女午夜福利| 精品久久久久久久末码| 国产精品日韩av在线免费观看| 99久久精品热视频| 欧美又色又爽又黄视频| 欧美日韩综合久久久久久 | av天堂中文字幕网| 欧美日韩瑟瑟在线播放| h日本视频在线播放| 人人妻人人澡欧美一区二区| 国产三级黄色录像| 非洲黑人性xxxx精品又粗又长| 淫妇啪啪啪对白视频| 一个人看的www免费观看视频| 亚洲乱码一区二区免费版| 亚洲精品粉嫩美女一区| 成人av在线播放网站| av黄色大香蕉| 国产欧美日韩一区二区精品| 51国产日韩欧美| 中国美女看黄片| 99久久无色码亚洲精品果冻| 亚洲精品粉嫩美女一区| 国产精品,欧美在线| АⅤ资源中文在线天堂| 国产精品三级大全| 少妇裸体淫交视频免费看高清| a级毛片免费高清观看在线播放| 国产精品国产高清国产av| 欧美日韩国产亚洲二区| 国产精品永久免费网站| 97超视频在线观看视频| 99热只有精品国产| 免费看光身美女| ponron亚洲| 伊人久久精品亚洲午夜| 国产不卡一卡二| 国产精品久久久久久精品电影| 国产三级黄色录像| 成年人黄色毛片网站| 日韩欧美国产在线观看| 国产老妇女一区| 亚洲专区国产一区二区| 精品一区二区免费观看| 国产精品久久久久久精品电影| 天堂√8在线中文| 亚洲成人中文字幕在线播放| 国产爱豆传媒在线观看| 日本黄色视频三级网站网址| 国产老妇女一区| h日本视频在线播放| 国产在线男女| 欧美在线一区亚洲| 欧美在线黄色| 免费在线观看影片大全网站| 黄色一级大片看看| 18+在线观看网站| 好看av亚洲va欧美ⅴa在| 欧美中文日本在线观看视频| 欧美精品国产亚洲| 在线观看免费视频日本深夜| 欧美日韩国产亚洲二区| 中文字幕av在线有码专区| 窝窝影院91人妻| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看免费完整高清在 | 18禁裸乳无遮挡免费网站照片| 国产欧美日韩一区二区精品| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 午夜两性在线视频| 亚洲成人精品中文字幕电影| 精品久久久久久久末码| 国产成人欧美在线观看| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 一个人观看的视频www高清免费观看| 男插女下体视频免费在线播放| 亚洲在线自拍视频| 97碰自拍视频| 少妇的逼好多水| 精品一区二区三区视频在线| 国产伦在线观看视频一区| 色哟哟哟哟哟哟| 欧美精品国产亚洲| 免费观看的影片在线观看| 狂野欧美白嫩少妇大欣赏| 成年免费大片在线观看| 日韩精品中文字幕看吧| 每晚都被弄得嗷嗷叫到高潮| 最好的美女福利视频网| 免费高清视频大片| 91久久精品国产一区二区成人| 免费观看人在逋| 欧美成人免费av一区二区三区| 国产av一区在线观看免费| 伦理电影大哥的女人| 国产精品av视频在线免费观看| 国产精品日韩av在线免费观看| 超碰av人人做人人爽久久| 精品日产1卡2卡| 亚洲av五月六月丁香网| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 日韩 亚洲 欧美在线| 窝窝影院91人妻| 久久久久久九九精品二区国产| 国产蜜桃级精品一区二区三区| 99热只有精品国产| 久99久视频精品免费| 免费在线观看日本一区| 欧美+亚洲+日韩+国产| 国产一区二区三区在线臀色熟女| 如何舔出高潮| 老女人水多毛片| 久久国产精品影院| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 女生性感内裤真人,穿戴方法视频| 九色国产91popny在线| 国产人妻一区二区三区在| 午夜亚洲福利在线播放| 黄色视频,在线免费观看| 中文字幕熟女人妻在线| 淫秽高清视频在线观看| 观看美女的网站| 欧美zozozo另类| x7x7x7水蜜桃| 欧美高清成人免费视频www| 精品一区二区三区视频在线观看免费| ponron亚洲| 老司机午夜十八禁免费视频| av黄色大香蕉| 日韩欧美国产在线观看| 网址你懂的国产日韩在线| 在线观看av片永久免费下载| 舔av片在线| 精品久久久久久久久av| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 日本黄色片子视频| 国产色婷婷99| 亚洲经典国产精华液单 | av欧美777| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av涩爱 | 久久欧美精品欧美久久欧美| 久久久久久国产a免费观看| 国产三级在线视频| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 国产伦精品一区二区三区四那| 国产av麻豆久久久久久久| 久久国产乱子免费精品| 男女视频在线观看网站免费| 日本在线视频免费播放| 亚洲真实伦在线观看| 舔av片在线| 一级作爱视频免费观看| 国语自产精品视频在线第100页| 人人妻人人澡欧美一区二区| 男女之事视频高清在线观看| 国产日本99.免费观看| av福利片在线观看| 日韩欧美三级三区| 久99久视频精品免费| 内射极品少妇av片p| 村上凉子中文字幕在线| 91久久精品国产一区二区成人| 高潮久久久久久久久久久不卡| 亚洲人成网站在线播放欧美日韩| 欧美精品国产亚洲| 99在线视频只有这里精品首页| 夜夜躁狠狠躁天天躁| 国产亚洲精品久久久久久毛片| 欧美最新免费一区二区三区 | 国产精品久久视频播放| 极品教师在线视频| 精品国内亚洲2022精品成人| 中文字幕久久专区| av在线天堂中文字幕| 欧美精品国产亚洲| 91麻豆精品激情在线观看国产| 九九在线视频观看精品| 伦理电影大哥的女人| 黄色配什么色好看| 国产免费男女视频| 91九色精品人成在线观看| 国产色婷婷99| 美女被艹到高潮喷水动态| 老女人水多毛片| 久久伊人香网站| 久久久成人免费电影| 亚洲精品在线美女| 成人精品一区二区免费| 内射极品少妇av片p| 天堂av国产一区二区熟女人妻| 全区人妻精品视频| 99国产综合亚洲精品| 我的女老师完整版在线观看| 国产高清有码在线观看视频| 国产一区二区在线观看日韩| 国产av不卡久久| www.www免费av| 免费观看人在逋| 无人区码免费观看不卡| 国产高清三级在线| 丰满人妻熟妇乱又伦精品不卡| 欧美最新免费一区二区三区 | 亚洲成av人片在线播放无| 午夜福利成人在线免费观看| 午夜福利成人在线免费观看| 久久伊人香网站| 99热这里只有是精品50| 欧美极品一区二区三区四区| 日本一本二区三区精品| av女优亚洲男人天堂| 丝袜美腿在线中文| 国产久久久一区二区三区| 亚洲欧美精品综合久久99| 十八禁国产超污无遮挡网站| 人妻夜夜爽99麻豆av| 欧美精品国产亚洲| 非洲黑人性xxxx精品又粗又长| 成人一区二区视频在线观看| 不卡一级毛片| 亚洲成人中文字幕在线播放| 18美女黄网站色大片免费观看| 国产av一区在线观看免费| 日本三级黄在线观看| 熟女电影av网| 中文亚洲av片在线观看爽| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| 国产野战对白在线观看| 免费搜索国产男女视频| 我要看日韩黄色一级片| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 男人的好看免费观看在线视频| 听说在线观看完整版免费高清| 深夜精品福利| 欧美激情在线99| 欧美极品一区二区三区四区| 成年人黄色毛片网站| 欧美成人性av电影在线观看| 又粗又爽又猛毛片免费看| 99久久成人亚洲精品观看| 日本一本二区三区精品| 免费在线观看日本一区| 精品不卡国产一区二区三区| 一a级毛片在线观看| 久久人妻av系列| 中文字幕精品亚洲无线码一区| 看免费av毛片| 欧美黑人欧美精品刺激| 高清在线国产一区| 亚洲成av人片在线播放无| 美女大奶头视频| 99精品久久久久人妻精品| netflix在线观看网站| 亚洲自拍偷在线| 精品久久久久久久末码| 免费一级毛片在线播放高清视频| 少妇被粗大猛烈的视频| 欧美丝袜亚洲另类 | 国产亚洲欧美在线一区二区| 1000部很黄的大片| 国产精品av视频在线免费观看| 亚洲五月婷婷丁香| 欧美在线一区亚洲| 久久6这里有精品| 韩国av一区二区三区四区| 色噜噜av男人的天堂激情| 国产精品久久视频播放| 亚洲第一欧美日韩一区二区三区| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 丰满乱子伦码专区| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 久久久久性生活片| 又粗又爽又猛毛片免费看| 亚洲三级黄色毛片| 欧美午夜高清在线| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 国产免费av片在线观看野外av| 美女黄网站色视频| 久久99热6这里只有精品| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在 | 成年人黄色毛片网站| 亚洲 国产 在线| 他把我摸到了高潮在线观看| av视频在线观看入口| 日韩精品青青久久久久久| 18禁黄网站禁片免费观看直播| 黄色视频,在线免费观看| 亚洲国产欧洲综合997久久,| 国产精品三级大全| 97热精品久久久久久| 十八禁人妻一区二区| 午夜亚洲福利在线播放| 亚洲不卡免费看| 欧美乱色亚洲激情| 麻豆成人av在线观看| 午夜a级毛片| 舔av片在线| 在线免费观看不下载黄p国产 | 日本在线视频免费播放| netflix在线观看网站| 99国产精品一区二区三区| 色视频www国产| 极品教师在线视频| 国内精品久久久久精免费| 国产毛片a区久久久久| 日本免费一区二区三区高清不卡| 国产熟女xx| 精品国内亚洲2022精品成人| 国产综合懂色| 国产精品亚洲av一区麻豆| 亚洲av不卡在线观看| 精品人妻一区二区三区麻豆 | 一区二区三区免费毛片| 亚洲精华国产精华精| 成人特级黄色片久久久久久久| 国内精品一区二区在线观看| 精品人妻偷拍中文字幕| 国产精品电影一区二区三区| 国产淫片久久久久久久久 | 一级作爱视频免费观看| 麻豆国产av国片精品| 中文字幕熟女人妻在线| 免费观看精品视频网站| 男插女下体视频免费在线播放| 在现免费观看毛片| 哪里可以看免费的av片| 亚洲精品日韩av片在线观看| 国产乱人视频| 亚洲电影在线观看av| 精品不卡国产一区二区三区| 91字幕亚洲| 日韩成人在线观看一区二区三区| 看十八女毛片水多多多| 亚洲 国产 在线| 亚洲av美国av| www.色视频.com| 国内精品美女久久久久久| 美女高潮喷水抽搐中文字幕| 亚洲性夜色夜夜综合| 麻豆成人午夜福利视频| 99久国产av精品| 亚洲午夜理论影院| 欧美区成人在线视频| 精品久久久久久久久亚洲 | 亚洲久久久久久中文字幕| 亚洲午夜理论影院| 在线a可以看的网站| 国产精品98久久久久久宅男小说| 国产在线精品亚洲第一网站| 国内少妇人妻偷人精品xxx网站| 啪啪无遮挡十八禁网站| 青草久久国产| 日韩欧美国产在线观看| 无遮挡黄片免费观看| 亚洲欧美日韩高清专用| 小蜜桃在线观看免费完整版高清| 88av欧美| 亚洲久久久久久中文字幕| 此物有八面人人有两片| 俄罗斯特黄特色一大片| 欧美成狂野欧美在线观看| 国内精品一区二区在线观看| 露出奶头的视频| xxxwww97欧美| 免费一级毛片在线播放高清视频| 好看av亚洲va欧美ⅴa在| 亚洲av电影不卡..在线观看| 国产欧美日韩精品一区二区| 91九色精品人成在线观看| 亚洲人成网站在线播放欧美日韩| 欧美+日韩+精品| 久久久久免费精品人妻一区二区| av视频在线观看入口| av在线老鸭窝| 亚洲一区高清亚洲精品| 级片在线观看| 精品午夜福利视频在线观看一区| 午夜亚洲福利在线播放| 老司机午夜福利在线观看视频| 精品99又大又爽又粗少妇毛片 | 日本一二三区视频观看| 蜜桃亚洲精品一区二区三区| 夜夜看夜夜爽夜夜摸| 久久午夜亚洲精品久久| 成人欧美大片| 亚洲精品在线观看二区| 成人鲁丝片一二三区免费| 国产视频一区二区在线看| 男人的好看免费观看在线视频| 欧美绝顶高潮抽搐喷水| 波多野结衣高清作品| av女优亚洲男人天堂| 小说图片视频综合网站| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 免费在线观看影片大全网站| 国产精品,欧美在线| 男人舔女人下体高潮全视频| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| 国产极品精品免费视频能看的| 日本精品一区二区三区蜜桃| 日本在线视频免费播放| 国产精品久久久久久精品电影| 极品教师在线视频| 在线观看av片永久免费下载| 51国产日韩欧美| 看免费av毛片| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 757午夜福利合集在线观看| 欧美一区二区精品小视频在线| 波野结衣二区三区在线| 成年版毛片免费区| 日本 av在线| 国产黄色小视频在线观看| 中文字幕免费在线视频6| 天堂av国产一区二区熟女人妻| 精品日产1卡2卡| 看十八女毛片水多多多| 国产午夜福利久久久久久| 亚洲国产精品999在线| 日韩欧美精品v在线| 国产精品三级大全| 一区二区三区免费毛片| 桃色一区二区三区在线观看| 国产探花在线观看一区二区| 日日摸夜夜添夜夜添小说| 久久久久国产精品人妻aⅴ院| 国产伦精品一区二区三区视频9| 性插视频无遮挡在线免费观看| 国产精品一区二区免费欧美| 日本五十路高清| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 成人特级av手机在线观看| 一本综合久久免费| 日韩欧美免费精品| 观看免费一级毛片| 久久中文看片网| 1024手机看黄色片| 内射极品少妇av片p| 日韩欧美免费精品| 一进一出抽搐动态| 欧美日韩黄片免| 久久精品国产自在天天线| 国产精品亚洲av一区麻豆| 又黄又爽又刺激的免费视频.| av在线观看视频网站免费| 嫩草影院新地址| 国产亚洲精品综合一区在线观看| 欧美日韩综合久久久久久 | 少妇的逼水好多| www.熟女人妻精品国产| 99热这里只有精品一区| 网址你懂的国产日韩在线| 久久久久久久久大av| 久久中文看片网| 免费搜索国产男女视频| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 我要看日韩黄色一级片| 男人狂女人下面高潮的视频| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 国产成人a区在线观看| 成人永久免费在线观看视频| 身体一侧抽搐| 欧美性猛交黑人性爽| av在线老鸭窝| 国产三级中文精品| 又爽又黄a免费视频| 国产真实乱freesex| 天天一区二区日本电影三级| 人妻制服诱惑在线中文字幕| 国内少妇人妻偷人精品xxx网站| 在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 婷婷精品国产亚洲av| 精品国产三级普通话版| 天天躁日日操中文字幕| 精品久久久久久久末码| 日韩 亚洲 欧美在线| 18+在线观看网站| 日本成人三级电影网站| 亚洲精品在线观看二区| 我要看日韩黄色一级片| 亚洲欧美日韩卡通动漫| 中文字幕精品亚洲无线码一区| 在线国产一区二区在线| 亚洲午夜理论影院| 亚洲美女黄片视频| 我要搜黄色片| 色综合欧美亚洲国产小说| 熟女电影av网| 丰满人妻一区二区三区视频av| 国产精品一区二区三区四区久久| 久久精品综合一区二区三区| 又爽又黄a免费视频| 精品人妻偷拍中文字幕| 亚洲内射少妇av| 99riav亚洲国产免费| 日本黄色片子视频| 在线观看66精品国产| 亚洲综合色惰| 别揉我奶头 嗯啊视频| 国内精品久久久久精免费| 51午夜福利影视在线观看| 国产成+人综合+亚洲专区| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 天天躁日日操中文字幕| 男人舔奶头视频| 99riav亚洲国产免费| 亚洲乱码一区二区免费版| 国产精品一区二区免费欧美| 欧美bdsm另类| 国产中年淑女户外野战色| 69av精品久久久久久| 亚洲五月婷婷丁香| 国产欧美日韩精品一区二区| av国产免费在线观看| 极品教师在线视频| 少妇高潮的动态图| 最近视频中文字幕2019在线8| 毛片女人毛片| 欧美国产日韩亚洲一区| www日本黄色视频网| 国产美女午夜福利| 欧美+亚洲+日韩+国产| av视频在线观看入口| 欧美日韩福利视频一区二区| 国产极品精品免费视频能看的| 欧美乱妇无乱码| 少妇熟女aⅴ在线视频| 一夜夜www| 亚洲av成人精品一区久久| 最近最新中文字幕大全电影3| 神马国产精品三级电影在线观看| 免费黄网站久久成人精品 | 免费看a级黄色片| 免费在线观看影片大全网站| 90打野战视频偷拍视频| 国产精品伦人一区二区| 亚洲成人久久性| 88av欧美| 成年免费大片在线观看| 免费看日本二区| 亚洲欧美日韩高清专用| 日本熟妇午夜| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 亚洲最大成人中文| 婷婷六月久久综合丁香| 搡老妇女老女人老熟妇| 亚洲精品久久国产高清桃花| 久久久久久久久中文| 亚洲av成人不卡在线观看播放网| 国产一区二区三区视频了| 少妇裸体淫交视频免费看高清| 一级av片app| 网址你懂的国产日韩在线| 听说在线观看完整版免费高清| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 国产高清有码在线观看视频| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 久久伊人香网站| 成年版毛片免费区| 国产黄色小视频在线观看| 成人毛片a级毛片在线播放| 99精品久久久久人妻精品| 久久欧美精品欧美久久欧美| 久久国产乱子伦精品免费另类|