• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genes encoding heat shock proteins in the endoparasitoid wasp,Cotesia chilonis, and their expression in response to temperatures

    2018-05-08 09:07:53PANDandanCAOShuangshuangLUMingxingHANGSanbaoDUYuzhou
    Journal of Integrative Agriculture 2018年5期

    PAN Dan-dan, CAO Shuang-shuang, LU Ming-xing, HANG San-bao, DU Yu-zhou,

    1 School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, P.R.China

    2 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education/Yangzhou University,Yangzhou 225009, P.R.China

    Correspondence DU Yu-zhou, E-mail: yzdu@yzu.edu.cn

    ? 2018 CAAS. Publishing services by Elsevier B.V. All rights reserved.

    1. Introduction

    Temperature is one of the most important environmental factors for all living organisms, which could affect nearly all biological processes, rates and functions (Willmeret al.2000). Insect tolerance to temperatures varies considerably and has significant behavioral and ecological implications(Hausmannet al. 2005; Samietzet al. 2005). When exposed to extreme temperatures, insects may rapidly synthesize a set of proteins called heat shock proteins (HSPs) that participate in the refolding and relocalization of proteins(Hoffmann and Parsons 1991; Sorensenet al.2003; Sonoda and Tsumuki 2007). The HSPs are ubiquitous proteins that have been extensively studied in different organisms(Kimet al. 1998; Feder and Hofmann 1999; Aevermann and Waters 2008; Waterset al. 2008). HSPs often exert protective functions in response to a range of environmental stresses, including heat, cold, oxidation, hypertonic stress,UV, heavy metals, organic pollutants, osmolarity, and even high population density of organisms (Feder and Hofmann 1999; Akerfeltet al. 2010; Padmini 2010).

    HSPs can be divided into different gene families based on molecular weights, such as HSP100, HSP90, HSP70,HSP60, HSP40 and small HSPs (sHSPs) (Feder and Hofmann 1999; Li and Srivastava 2004). HSP90, HSP70,HSP60 and HSP40 are highly conserved families that exist across species from prokaryotes to eukaryotes protecting against protein aggregation, renaturing damaged proteins to restore their biological activity (Feder and Hofmann 1999; Li and Srivastava 2004). HSP40 was first known to stimulate the ATPase activity of DnaK, the bacterial HSP70 homologue(Yochemet al. 1978; Libereket al. 1988; Walshet al. 2014).The HSP40 family members contain the J domain, which is present at the N-terminal region of the proteins and binds to their partners HSP70s and HSP90s (Cajoet al. 2006; Qiuet al. 2006). HSP60 was initially discovered and cloned in mammalian mitochondria (Jindalet al. 1989). Most of the HSP60 sequences contain one or more repeat nucleotide sequences like GGM or GGGM at their C-terminus. As a molecular chaperone, HSP 60 has functions in protecting against protein aggregation, renaturing damaged proteins to restore their biological activity (Sanderset al. 1992;Slavotinek and Biesecker 2001), and in the transport of proteins from cytoplasm to organelles (Fink 1999). HSP70 family is the most conservative heat shock protein, and involved in various cellular processes including protein folding and degradation. There are three different groups of proteins in form of HSP70s (S?rensen 2010). The first one is called a solely constitutive group, heat shock cognate 70 (HSC70) that is defined by its constitutive expression and cytoplasmic localization and is distributed under normal cellular conditions in all living cells, such as nuclei, cytoplasm, endoplasmic reticulum, mitochondria and chloroplasts (Boutetet al. 2003). The second one is a solely inducible group, HSP70, which is induced by cellular stress such as temperature changes or exposure to toxic chemicals (Morimotoet al. 1990; McKayet al. 1994; Ravauxet al. 2007). The last one is a constitutive and inducible group: expressed during normal cell functioning and also up-regulated in response to stressful stimuli (Callahanet al.2002). HSP90 family is also highly conserved, and widely exists in various organisms. This family can be categorized into five sub-families: HSP90A, HSP90B, HSP90C, TRAP(tumor necrosis factor receptor-associated protein) and HTPG (High temperature protein G) (Chenet al. 2006).

    Cotesia chilonis(Matsumura) (Hymenoptera: Braconidae)is a major endoparasitoid ofChilo suppressalisand primarily distributed in southeastern and eastern areas of Asia (Huanget al. 2011; Wuet al. 2013). It has been claimed that 10–30%overwintering larvaeofC.suppressaliswere parasitized byC.chilonisin Jiangsu, Anhui, Zhejiang and Hunan provinces in China (Chenet al. 2002; Panet al. 2016). Similarly,approximate 8.1–20.3%C.suppressalislarvae were reported to be parasitized byC.chilonisin Japan (Hang and Lin 1989; Chenet al. 2002; Wuet al. 2013). Secondinstar larvae ofC.chilonishad the strongest resistance to low temperature. The mortality rate of second-instar larvae was 44% while the mortality rates of first- and third-instar larvae were 60 and 77% at 5°C for 30 days (Galichet 1979).The temperature also affects the parasitic and development ofC.chilonis. For example, the parasitic rate ofC.chiloniscould be increased by the low temperature (Chenet al.2002). However, the molecular basis of thermotolerance inC.chilonisis still covered. Therefore, in order to firstly exploit the molecular mechanism of thermotolerance, the genomic and structures of five different HSPgenes (Cchsp40,Cchsp60,Cchsp70,Cchsc70andCchsp90) inC.chiloniswere characterized. In addition, we also investigated the expression patterns of these genes in response to different temperatures in this study.

    2. Materials and methods

    2.1. Insects

    Populations ofC.suppressalisandC.chiloniswere collected from a suburb (32.39°N, 119.42°E) in Yangzhou, Jiangsu,China. More than three generations of theC. suppressalislarvae are feeding as the host for multiple generations ofC.chilonisto reserve.Insects were reared in glass containers (10 cm×13 cm) containing rice plants and maintained in a growth chamber at (27±1)°C, 16 h L:8 h D photoperiod, 60–70% relative humidity as described in Hang(1993).C.suppressalislarvae were then parasitized by the adults ofC.chilonisemerged in 24 h.

    2.2. Cloning and RACE

    Total RNA was extracted fromC.chilonisusing the SV Total RNA Isolation System (Promega, USA) and treated with DNase I to eliminate DNA contamination. cDNA was synthesized using an oligo(dT)18primer (TaKaRa, Japan).Based on fivehsps(hsp40,hsp60,hsp70,hsc70andhsp90) sequences from other species, degenerate primers of the five genes were designed and synthesized to amplify internal fragments (Table 1). The full-length cDNAs of the genes encoding HSPs were determined using 5′- and 3′-RACE, according to the sequence information obtained from internal fragment.

    2.3. Characterization of the genomic DNA

    Thegenomic DNA ofC.chiloniswas extracted according to the AxyprepTMMultisource Genomic DNA Kit (Axygen, USA).Based on the sequences of the full-length cDNAs of the five genes encoding HSPs, primers were designed to amplifyCchspsgenomic fragments (Table 1). DNA products were first purified using Gel Extraction Kit (Axygen, USA), then cloned into pGEM-T Easy vector (Promega, USA), and transformed into competentEscherichia coliDH5α cells for sequencing.

    Table 1 The primer sequences used in the gene cloning of five hsps

    2.4. Temperature treatment

    One-day-old adults (both sexes) were exposed to –13, –12,–9, –6, –3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 and 36°C for 1 h in a constant-temperature incubator. Adults were allowed to recover at 27°C for 1 h, and then number of survivors was recorded. The surviving adults were frozen in liquid nitrogen and stored at –80°C. The insects maintained at 27°C were used as controls. Each experimental treatment contained 20 adults, and each treatment was repeated three times.

    2.5. qRT-PCR analysis

    Total RNA of insects with different temperature treatments was extracted as mentioned above. The integrity of RNA was verified by comparing the ribosomal RNA bands in ethidium bromide-stained gels. RNA sample purity was examined using spectrophotometric measurements at 260 and 280 nm. Real-time PCR reactions were performed in a 20-μL total reaction volume consisting of 10 mL 2× iTaqTMUniversal SYBR?Green Supermix (Bio-Rad, USA), 6 mL sterilized H2O, 1 mL of each gene specific primer, and 2 mL cDNA templates. Reactions were carried out on a CFX-96 Real-time PCR System (Bio-Rad, USA). The homogeneity of the PCR products was con firmed by melting curve analysis,which was evaluated every 5 s per 0.5°C increment from 65 to 95°C. The quantity ofCchspsmRNAs was calculated using the 2–ΔΔCTmethod and normalized to the abundance of theC.chilonisribosomal protein L10 (CcRPL10) gene(Schmittgen and Livak 2008), and each reaction was executed in triplicate (Table 2).

    2.6. Bioinformatic analysis

    ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) was used to identify the open reading frames (ORFs). Deduced amino acid sequences were aligned using Clustal X ver. 2.0 Software. Sequence analysis tools of the ExPASy Molecular Biology Server (Swiss Institute of Bioinformatics) including Translate, Compute pI/MW, and Blast were used to analyze the deducedhspsequences. Amino acid sequences ofhspsinC.chilonis, together with publishedhspssequences of other insectswere used to conduct phylogeny with the neighborjoining methods. Phylogenetic trees were constructed with 1 000 bootstrap replicates in MEGA 7.0 (Kumaret al. 2016).

    2.7. Statistical analysis

    Homogeneity of variances among different treatments was evaluated by Levene’s test. Differences between treatments were identified using Tukey’s test (homogeneity of variances). Statistical analysis was performed using SPSS16.0 software, and presented as means±SE (standard error) (Pallant 2007).

    3. Results

    3.1. Sequence analysis of C. chilonis hsps

    Cchsp40 The full-length cDNA ofCchsp40was 1 265 bp(GenBank accession no. MF377628), which included a 123-bp 5′-untranslated region (UTR), a 74-bp 3′-UTR, and a 1 068-bp ORF. The deduced protein consisted of 355 amino acids with a molecular weight of 39.1 kDa and an isoelectric point of 9.09 (Table 3). MotifScan analysis (http://www.ca.expasy.org) revealed three conserved signature sequences, including J-domain (aa 3–57), G/F domain (aa 70–125) and C domain (aa 176–341), respectively (Appendix A). The genomic DNA sequence ofCchsp40was deposited in GenBank (accession no. MF377630). Comparison between the cDNA and genomic sequences indicated thatCchsp40lacked introns (Appendix B; Fig. 1-A).

    Cchsp60 The full-length cDNA ofCchsp60was 2 551 bp(GenBank accession no. MF377629), which contained a 128-bp 5′-UTR, a 707-bp 3′-UTR, and a 1 716-bp ORF. The deduced protein possessed 571 amino acids with a molecular weight of 60.6 kDa and an isoelectric point of 5.29 (Table 3). MotifScan analysis showed that this protein contained 25 amino acid sequence(MYRLPGLMRGVASRQMQLQARSYK, 1–25) at its N-terminus. In addition, AAVEEGIVPGGG (427–438), a classical family pro file of HSP60, was also observed in theCcHSP60 sequence.. A (GGM)nrepeat motifwas also detected inthe C-terminal ofCcHSP60, suggesting thatCcHSP60 is a member of the mitochondrial Hsp60 family.Furthermore, various binding sites were also observed in theCcHSP60 sequence (Appendix A). The genomic DNA sequence ofCchsp60was deposited in GenBank (accession no. MF377631). Similarly, comparison between the cDNA and genomic sequences indicated thatCchsp60lacked introns (Appendix B; Fig. 1-B).

    Cchsp70 The cDNA ofCchsp70was 2 094 bp in length(GenBank accession no. KM077498) that contained an 89-bp 5′-UTR, a 53-bp 3′-UTR, and a 1 953-bp ORF.The deduced protein contained 650 amino acids with a molecular weight of 71.45 kDa and an isoelectric point of 5.46 (Table 3). MotifScan analysis indicated that this protein had three conserved signature sequences that were commonly present in other HSP70. These three conserved signature sequences were IGIDLGTTYS (aa 3–13),IFDLGGGTFDVSIL (aa 194–207), and VVLVGGSTRIP KIQS(aa 332–346), respectively. Moreover, four motifs were also detected in this protein that included an ATP-GTP binding site AEAYLGQK (aa 128–135), a bipartite nuclear localization signal sequence (NLS) ERKYRKNLKTNPRALRRL(aa 244–261), a non-organellar consensus motif RARFEEL(aa 297–303) as well as the cytoplasmic motif EEVD(aa 647–650) (Appendix A). The genomic DNA sequence ofCchsp70was deposited in GenBank with accession no.KM103515. Likewise, comparison between the cDNA and genomic sequences indicated thatCchsp70lacked introns(Appendix B; Fig. 1-C).

    Table 2 Primers used for qRT-PCR analysis1)

    Table 3 A summary of the five HSP genes from Cotesia chilonis

    Cchsc70 The cDNA ofCchsc70was 2 297 bp in length(GenBank accession no. KM077499) that included a 137-bp 5′-UTR, a 206-bp 3′-UTR, and a 1 956-bp ORF.The deduced protein consisted of 651 amino acids with a predicted molecular weight of 71.19 kDa and a theoretical pI of 5.42 (Table 3). Similarly, MotifScan analysis showed that there were three conserved signature sequences in this protein, which included IDLGTTYS (aa 9–16),IFDLGGGTFDVSIL (aa 197–210) and IVLVGGSTRIPKIQK(aa 334–348). Additionally, five motifs including an ATPGTP binding site AEAYLGQT (aa 131–138), a bipartite NLS(KRKYKKDLT SNKRALRRL, aa 246–263), a non-organellar consensus motif RARFEEL (aa 299–305), a four-fold repeat of the tetrapeptide ‘GGM(I)P’ (aa 615–630) and the cytoplasmic motif EEVD (aa 648–651) were observed in the protein (Appendix A).Cchsc70contained a 461-bp intron and was deposited in GenBank under accession no.KM103516 (Appendix B; Fig. 1-D).

    Cchsp90 The full-length cDNA ofCchsp90was 2 635 bp(GenBank accession no. KM077500), which contained a 112-bp 5′-UTR, a 358-bp 3′-UTR and a 2 166-bp ORF. The predicted protein had 721 amino acids with a molecular weight of 82.92 kDa and a theoretical pI of 4.96 (Table 3).MotifScan analysis indicated that five conserved signature sequences were observed in this protein, which included NKEIFLRELISNSSDALDKIR (aa 35–55), LGTIAKSGT(aa 102–110), IGQFGVGFYSAYLVAD (aa 126–141),IKLYVRRVfi(aa 351–360), and GVVDSEDLPLNISRE(aa 377–391). In addition, a consensus sequence MEEVD was found at the C-terminus ofCcHSP90. Except for that, this protein also contained several other features,such as (1) a typical histidine kinase-like ATPase domain(aa 12–221), which is ubiquitous in all HSP90 family members; (2) two highly charged domains, including a hinge-domain (aa 225–258) and a C-terminal domain(aa 560–682); (3) a NLS (KKKKKK, aa 263–268);and (4) a basic helix-loop-helix (bHLH) protein-folding domain EADKNDKSVKDLVVLLFETALLSSGFSLD DPQVHAARIYRMIKLGLGI (aa 641–688) (Appendix A).The genomic DNA sequence ofCchsp90was deposited in GenBank with accession no. KM103517. Again, comparison between DNA and genomic sequences indicated thatCchsp90lacked introns (Appendix B; Fig. 1-E).

    3.2. Phylogenetic analysis

    Fig. 1 Position and numbers of introns in hsp40 (A), hsp60 (B),hsp70 (C), hsc70 (D) and hsp90 (E) in different insect species.GenBank accession numbers of corresponding insect HSP genes are shown in the brackets.

    Fig. 2 Neighbor-joining phylogenetic trees of CcHSP40 (A),CcHSP60 (B), CcHSP70 (C), CcHSC70 (D) and CcHSP90(E). The location of Cotesia chilonis HSPs were marked with rectangles. Numbers on the branches indicated bootstrap values obtained from 1 000 replicates (only bootstrap values>50 are shown).

    The deduced amino acid sequences of the fiveCchspsinC.chilonisdisplayed high degrees of homology compared with that of other insects. The overall results of phylogenetic analysis were consistent among the five proteins (Fig. 2).Phylogenetic trees of HSP40, HSP60, HSP90and HSC70 could be categorized into three clusters, Braconidae,Apoidea, and Formicidae. Similarity betweenCcHSP60 ofC.chilonisandMdHSP60 ofMicroplitis demolitorreached to 80%. Moreover, similarity ofCcHSP40,CcHSP90 andCcHSC70 inC.chiloniswas almost identical to that inCotesia vestalis, which showed a shared amino acid identity with 97, 96 and 98%, respectively. The phylogenetic tree of HSP70 in the Hymenoptera could be divided into three clusters, Ichneumonoidea, Apoidea, and Formicidae. In addition,CvHSP70 inC.vestaliswas the most closely related ortholog relative toCcHSP70 inC.chilonis; which shared amino acid similarity of 96% (Fig. 2).

    3.3. Expression of Cchsps genes in response to temperature

    The relative mRNA levels of the fiveCchspsgenes were monitored at temperature gradients ranging from –13 to 36°C. The results showed that the expression patterns varied in the fiveCchspsgenes in response to temperature(Fig. 3).Cchsp40andCchsp60responded similarly to the thermal stress. The expression of these two genes were up-regulated by cold, which were significantly different at–6 and –3°C (Cchsp40:F17,36=53.109,P<0.001;Cchsp60:F17,36=43.535,P<0.001), but they showed no response to heat. The mRNA expression level ofCchsp40increased by 653.83-fold at –3°C and 616.2-fold at –6°C compared with the control (Fig. 3-A). Similarly, relative to the control,the mRNA expression level ofCchsp60increased by 647.85-fold and 573.6-fold at –3 and –6°C, respectively(Fig. 3-B).Cchsp70andCchsc70also showed similar response to the thermal stress, which could be induced by both cold and heat stress (Cchsp70:F17,36=8.638,P<0.001;Cchsc70:F17,36=7.731,P<0.001). The results showed that as temperatures increased, transcription ofCchsp70andCchsc70enhanced. The highest expression level forCchsp70was at –3°C and increased by 6.84-fold relative to the control, while these values forCchsc70were –6°C and 6.77-fold, respectively (Fig. 3-C and D).Cchsp90could only be induced by heat and mild cold stress (Cchsp90:F17,36=10.151,P<0.001), but not by cold stress (Fig. 3-E).

    4. Discussion

    Heat shock proteins usually contain stress-inducible and constitutively-expressed genes. They function as chaperones of other proteins (Boorsteinet al. 1994;Daugaardet al. 2007) and play an important role in the thermotolerance of the organisms (Rinehartet al. 2007; Luet al. 2013, 2016; Panet al. 2017; Wanget al. 2017). In this study, five genes encodinghsps(Cchsp40,Cchsp60,Cchsp70,Cchsc70,andCchsp90) were identified inC.chilonis. The results showed that the predicted amino acid sequences of these proteins shared high similarities with published HSPs of other insects in Hymenoptera.For example, amino acid ofCchsp40,Cchsp60,Cchsp70,Cchsc70,andCchsp90inC.chilonishad a high similarity of 97, 80, 96, 98, and 96%, respectively, compared with that of the closed-related speciesC.vestalis. All core signature sequences and motifs were conserved in the fivehspsbetweenC.chilonisandC.vestalisorM.demolitor.These high similarities con firmed the identification of thesegenes as functional HSPs inC.chilonis. The conserved motifs EEVD and MEEVD were consistently located at the C-terminal in the cytoplasm and were supposed to facilitate the interactions of HSPs with other proteins. The results implied that these conserved motifs could enableCcHSP70,CcHSC70 andCcHSP90 to bind other proteins or cochaperones (Zhang and Denlinger 2010) in the cytoplasm ofC.chilonis(Gupta 1995). The amino acid sequence ofCcHSP40 showed that none of the three conserved repeats was displayed as the consensus sequence CxxCxGxG(cysteine-rich region or zinc finger motif), which suggested thatCcHSP40 inC.chiloniswas the Type II HSP40s having lower efficiency in forming chaperone pairs with cytosolic HSP70 and folding proteins (Caplanet al. 1993; Fanet al.2004). A classical family pro file (AAVEEGIVPGGG) and one (GGM)nrepeat motifwere found inCcHSP60. These results indicated thatCcHSP60 is a member of the typical mitochondrial HSP60 family.

    Fig. 3 Relative mRNA expression levels of five hsps of Cotesia chilonis adults exposed to different temperatures. A, Cchsp40.B, Cchsp60. C, Cchsp70. D, Cchsc70. E, Cchsp90. Data are means±SE. Different letters indicate significant differences(P<0.01).

    This study found thatCchsp40,Cchsp60,Cchsp70andCchsp90lacked introns, butCchsc70had a single intron.The nucleotide sequences at the intron splice junctions inCchsc70were consistent with the canonical GT-AG rule.The position and numbers of introns inhsc70homologs are variable. For example, although sequence ofCchsc70andCvhsc70were very similar, they differed in the number and sizes of introns.Cchsc70had a single 461 bp intron at the 5′ end, whileCvhsc70had two introns at the 5′ end(119 and 460 bp; Fig. 1-D). Similarly, as observed in other species, no intron was found in the genome ofCchsp70(Fig. 1-C).Cchsp40(Fig. 1-A),Cchsp60(Fig. 1-B)andCchsp90(Fig. 1-E)inC.chilonis, which was also true for other insects within the same genus. However, these threehspshad variable introns for insects in another genus.The absence of introns favors the expression of stressresponsive genes because no mRNA processing could slow transcript accumulation and/or be disrupted by stress(King and MacRae 2014). Previous studies have suggested that there was a negative correlation between intron size and gene expression level, which was con firmed by our study that expression ofCchsc70was less than that ofCchsp40,Cchsp60andCchsp70(Fig. 3) (Comeron 2004).In summary,Cchsc70might be constitutive and inducible protein expressed during normal cell functioning and also up-regulated in response to stressful stimuli (Callahanet al.2002).

    Temperature is one of the most important factors in determining the distribution and abundance of insects (Jing and Kang 2004). When exposed to extreme temperatures,insects may respond in different ways, such as adopting behaviors to avoid or escape extreme temperatures and/or alter their physiology to withstand the temperature(Hoffmann and Parsons 1991). Various studies have indicated that thermotolerance is largely due to the regulation and expression levels of genes encoding HSPs(S?rensenet al. 2003; Luet al. 2015). In this study, we found that the fivehspsinC.chiloniscan be significantly induced by thermal stress, which was consistent with previous results (Mahroofet al. 2005; Sonodaet al. 2006;Zhanget al. 2010; Wanget al. 2017). In addition, we found that the responses of the fiveCchspsto temperature were different inC.chilonis. The expression ofCchsp40,Cchsp60,Cchsp70andCchsc70could be induced by the cold stress. The highest expression levels ofCchsp40,Cchsp60andCchsp70were at –3°C after 1 h, while it wasat –6°C forCchsc70(Fig. 3-A–D). Compared withCchsp70andCchsc70,Cchsp40andCchsp60were more sensitive to low temperature but showed no response to heat. However,hsp40inAphaenogaster piceaandA.rudis(Cahanet al. 2017), andhsp60inC.suppressalisandSiniperca chuatsicould response to high temperature treatments (Cuiet al. 2014; Wanget al. 2017).Cchsp70andCchsc70showed similar responses to thermal stress and could be induced by both cold and heat. Combining with genomic structures, the results indicatedCchsp70was solely inducible protein induced by temperature changes(Morimotoet al. 1990; McKayet al. 1994; Ravauxet al.2007), butCchsc70was constitutive and inducible protein expressed during normal cell functioning, which also upregulated in response to stressful stimuli (Callahanet al.2002). The expression levels ofhsp70inGrapholita molestaandMusca domesticawere up-regulated with the rise of temperature (Tanget al. 2012; Chenet al. 2014).Fohsc701inFrankliniella occidentalislarvae plays an important role in resisting low temperature stress (Li and Du 2013). Similar induced expression pattern was also reported in other species, such asPlutella xylostella,Locusta migratoriaandMacrocentrus cingulum(Sonodaet al. 2006; Wanget al.2007; Xuet al. 2010). In many organisms, HSP70 are the main family of heat shock proteins that are considered to be a class of thermally induced proteins. However, in this study, we found thathsp70 showed a low level of expression at different temperatures. It is possible that there exist other heat-induced HSP70s inC.chilonis. In this study,we also found thatCchsp90could be induced by heat and mild cold stress, but not cold shock (Fig. 3-E), which was also observed inSehsp90ofSpodoptera exigua(Xuet al.2011) andSihsp90ofSesamia inferens(Sunet al. 2014;Tanget al. 2015).

    5. Conclusion

    We obtained five genes encoding heat shock proteins(HSPs) forCotesia chilonis,Cchsp40,Cchsp60,Cchsp70,Cchsc70andCchsp90and their predicted amino acid sequences showed high similarities with published HSPs of other insects in Hymenoptera. Expression patterns varied in the fiveCchsps in response to temperature. The expression of heat shock protein is related to the thermotolerance of the organism as a physiological mechanism. Physiological acclimation to temperature variation appears to involve modulation of the heat shock response. Our results would be useful in exploring the thermotolerance ofC.chilonisat the molecular level. Further researches are needed to evaluate the expression levels of the other HSPs ofC.chilonisunder different temperatures to gain a deep understanding of various roles of all heat shock proteins.

    Acknowledgements

    This research was funded by the National Key R&D Program of China (2017YFD0200400) and the National Basic Research Program of China (973 Program, 2013CB127604).We sincerely thank Dr. Yang Fei from Texas A&M University,USA for editing and providing comments on the manuscript.We also express our deep gratitude to the Testing Center of Yangzhou University, China.

    Appendicesassociated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    Aevermann B D, Waters E R. 2008. A comparative genomic analysis of the small heat shock proteins inCaenorhabditiselegansandbriggsae.Genetica, 133,307–319.

    Akerfelt M, Morimoto R I, Sistonen L. 2010. Heat shock factors:Integrators of cell stress, development and lifespan.Nature Reviews Molecular Cell Biology, 11, 545–555.

    Boorstein W R, Ziegelhoffer T, Craig E A. 1994. Molecular evolution of the HSP70 multigene family.Journal of Molecular Evolution, 38, 1–17.

    Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D. 2003.Molecular identification and expression of heat shock cognate 70 (hsc70) and heats shock protein 70 (hsp70)genes in the Pacific oysterCrassostrea gigas.Cell Stress and Chaperones, 8, 76–85.

    Cahan S H, Nguyen A D, Stanton-Geddes J, Penick C A,Hernáiz-Hernández Y, DeMarco B B, Gotelli N J. 2017.Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the antsAphaenogaster piceaandA.rudis.Comparative Biochemistry and Physiology(Part A: Molecular and Integrative Physiology), 204, 113–120.

    Cajo G C, Horne B E, Kelley W L, Schwager F, Georgopoulos C, Genevaux P. 2006. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the Dnak(Hsp70) chaperone cycle.Journal of Biological Chemistry,281, 12436–12444.

    Callahan M K, Chaillot D, Jacquin C, Clark P R, Menoret A.2002. Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions.Journal of Biological Chemistry, 277, 33604–33609.

    Caplan A J, Cyr D M, Douglas M G. 1993. Eukaryotic homologs ofEscherichia coliDnaJ: A diverse protein family that functions with Hsp70 stress proteins.Journal of Molecular Biology, 4, 555–563.

    Chen B, Zhong D, Monteiro A. 2006. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms.BMC Genomics, 7, 156.

    Chen H, Xu X, Li Y, Wu J. 2014. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult ofGrapholita molesta(Busck).Insect Science, 21, 439–448.

    Chen H C, Lou Y G, Cheng J A. 2002. Research and application ofApanteles chilonis, a parasitoid of rice striped stemborerChilo suppressalis.Chinese Journal of Biological Control,18, 90–93. (in Chinese)

    Comeron J M. 2004. Selective and mutational patterns associated with gene expression in humans: Influences on synonymous composition and intron presence.Genetics,167, 1293–1304.

    Cui Y D, Du Y Z, Lu M X, Qiang C K. 2014. Cloning of the heat shock protein 60 gene from the stem borer,Chilo suppressalis, and analysis of expression characteristics under heat stress.Journal of Insect Science, 10, 100.

    Daugaard M, Rohde M, Jaattela M. 2007. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions.Federation of European Biochemical Societies, 581, 3702–3710.

    Fan C Y, Lee S, Ren H Y, Cyr D M. 2004. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function.Molecular and Cellular Biology, 15, 761–773.

    Feder M E, Hofmann G E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology.Annual Review of Physiology, 61,243–282.

    Fink A L. 1999. Chaperone-mediated protein folding.Physiological Reviews,79, 425–449.

    Galichet P F. 1979. Hibernation ofApanteles chilonisMun.[Hym.: Braconidae] under Mediterranean climate.Entomophaga, 24, 119–130.

    Gupta R S. 1995 Phylogenetic analysis of the 90 kD heatshock family of protein sequences and an examination of the relationship among animals, plants, and fungi species.Molecular Biology and Evolution, 12, 1063–1073.

    Hang S B. 1993. Studies on the rearing method ofApanteles chilonisin laboratory.Journal of Biosafety, 2, 42–47. (in Chinese)

    Hang S B, Lin G L. 1989. Biological characteristics ofApanteles chilonis(Hymenoptera: Braconidae), a parasite ofChilo suppressalis(Lepidoptera: Pyralidae).Chinese Journal of Biological Control, 5, 16–18. (in Chinese)

    Hausmann C, Samietz J, Dorn S. 2005. Thermal orientation ofAnthonomus pomorum(Coleoptera: Curculionidae) in early spring.Physiological Entomology, 30, 48–53.

    Hoffmann A A, Parsons P A. 1991. Evolutionary genetics and environmental stress.Journal of Evolutionary Biology, 7,634–635.

    Huang J, Wu S F, Ye G Y. 2011. Evaluation of lethal effects of chlorantraniliprole onChilo suppressalisand its larval parasitoid,Cotesia chilonis.Chinese Journal of Eco-Agriculture, 10, 1134–1138. (in Chinese)

    Jindal S, Dudani A K, Singh B, Harley C B, Gupta R S.1989. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen.Molecular and Cellular Biology, 9, 2279–2283.

    Jing X H, Kang L. 2004. Overview and evaluation of research methodology for insect cold hardiness.Entomological Knowledge, 40, 7–10. (in Chinese)

    Kim K K, Kim R, Kim S H. 1998. Crystal structure of a small heat shock protein.Nature, 394, 595–599.

    King, A M, Macrae T H. 2014. Insect heat shock proteins during stress and diapause.Annual Review of Entomology, 60, 59.

    Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular Biology and Evolution, 33, 1870–1874.

    Li H B, Du Y Z. 2013. Molecular cloning and characterization of an hsp90/70 organizing protein gene fromFrankliniella occidentalis.Gene, 520, 148–155.

    Li Z, Srivastava P. 2004. Heat-shock proteins.Current Protocols in Immunology, A-1T.

    Liberek K, Georgopoulos C, Zylicz M. 1988. Role of theEscherichia coliDnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication.Proceedings of the National Academy of Sciences of the United States of America, 85, 6632–6636.

    Lu M X, Cao S S, Du Y Z, Liu Z X, Liu P Y, Li J Y. 2013. Diapause,signal and molecular characteristics of overwinteringChilo suppressalis(Insecta: Lepidoptera: Pyralidae).Scientific Reports, 3, 3211.

    Lu M X, Li H B, Zheng Y T, Shi L, Du Y Z. 2016. Identification,genomic organization and expression pro files of four heat shock protein genes in the Western flower thrips,Frankliniella occidentalis.Journal of Thermal Biology, 57,110–118.

    Mahroof R, Zhu K Y, Neven L, Subramanyam B, Bai J.2005. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle,Tribolium castaneum(Coleoptera: Tenebrionidae).Comparative Biochemistry and Physiology(Part A:Molecular & Integrative Physiology), 141, 247–256.

    McKay D B, Wilbanks S M, Flaherty K M, Ha J H, O’Brien M C,Shirvanee L L. 1994. Stress-70 proteins and their interaction with nucleotides.Cold Spring Harbor Monograph Archive,26, 153–177.

    Morimoto R I, Tissieres A, Georgopoulos C. 1990. The stress response, function of the proteins, and perspectives.Cold Spring Harbor Monograph Archive, 19, 1–36.

    Padmini E. 2010. Physiological adaptations of stressed fish to polluted environments: Role of heat shock proteins.Reviews of Environmental Contamination and Toxicology Volume, 206, 1–27.

    Pallant J. 2007. SPSS survival manual: A step by step guide to data analysis using SPSS for windows (version 12).Open University Press, 37, 597–598.

    Pan D D, Liu Z X, Lu M X, Cao S S, Yan W F, Du Y Z. 2016.Species and occurrence dynamics of parasitic wasps of the rice stem borer,Chilo suppressalis(Walker) (Lepidoptera:Pyralidae) in Yangzhou.Journal of EnvironmentalEntomology, 38, 1106–1113.

    Pan D D, Lu M X, Li Q Y, Du Y Z. 2017. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns fromChilo suppressalis.Cell Stress and Chaperones, 3, 1–10.

    Qiu X B, Shao Y, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones.Cellular and Molecular Life Sciences, 63,2560–2570.

    Ravaux J, Toullec J Y, Leger N, Lopez P, Gaill F, Shillito B. 2007.First hsp70 from two hydrothermal vent shrimps,Mirocaris fortunateandRimicaris exoculata: Characterization and sequence analysis.Gene, 386, 162–172.

    Rinehart J P, Li A, Yocum G D, Robich R M, Hayward S A,Denlinger D L. 2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause.Proceedings of the National Academy of Sciences of the United States of America, 104, 11130–11137.

    Samietz J, Salser M A, Dingle H. 2005. Altitudinal variation in behavioural thermoregulation: Local adaptationvs. plasticity in California grasshoppers.Journal of Evolutionary Biology,18, 1087–1096.

    Sanders B M, Pascoe V M, Nakagawa P A, Martin L S. 1992.Persistence of the heat shock response over time in a commonMytilusmussel.Molecular Marine Biologyand Biotechnology, 1, 147–154.

    Schmittgen T D, Tamura K J. 2008. Analyzing real-time PCR data by the comparative CTmethod.Nature Protocols, 3,1101–1108.

    Slavotinek A M, Biesecker L G. 2001. Unfolding the role of chaperones and chaperonins in human disease.Trends in Genetics, 17, 528.

    Sonoda S, Ashfaq M, Tsumuki H. 2006. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90,hsc70, and hsp19.5) from the diamondback moth,Plutella xylostella(L.) and their expression in relation to developmental stage and temperature.Archives of Insect Biochemistry and Physiology, 62, 80–90.

    Sonoda S, Ashfaq M, Tsumuki H. 2007. A comparison of heat shock protein genes from cultured cells of the Cabbage armyworm,Mamestra brassicae, in response to heavy metals.Archives of Insect Biochemistry and Physiology,65, 210–222.

    S?rensen J G. 2010. Application of heat shock protein expression for detecting natrual adaptation and exposure to stress in natural populations.Current Zoology, 56, 703–713.

    S?rensen J G, Kristensen T N, Loeschcke V. 2003. The evolutionary and ecological role of heat shock proteins.Ecology Letters, 6, 1025–1037.

    Sun M, Lu M X, Tang X T, Du Y Z. 2014. Molecular cloning and sequence analysis of the HSP83 gene inSesamia inferens(Walker) (Lepidoptera: Noctuidae).Chinese Journal of Applied Entomology, 51, 1246–1254. (in Chinese)

    Tang T, Wu C, Li J, Ren G, Huang D, Liu F. 2012. Stressinduced HSP70 fromMusca domesticaplays a functionally significant role in the immune system.Journal ofInsectPhysiology, 58, 1226–1234.

    Tang X T, Sun M, Lu M X, Du Y Z. 2015. Expression patterns of five heat shock proteins inSesamia inferens(Lepidoptera:Noctuidae) during heat stress.Journal of Asia-Pacific Entomology, 18, 529–533.

    Walsh P, Bursac D, Law Y C, Cyr D, Lithgow T. 2004. The J-protein family: Modulating protein assembly, disassembly and translocation.EMBO Reports, 5, 567–571.

    Wang H S, Wang X H, Guo W, Zhang S F, Kang L. 2007.cDNA cloning of heat shock proteins and their expression in the two phases of theMigratory locust.Insect Molecular Biology, 16, 207–219.

    Wang P, Xu P, Zhou L, Zeng S, Li G. 2017. Molecular cloning,characterization, and expression analysis of HSP60 in mandarin fishSiniperca chuatsi.Israeli Journal of Aquaculture-Bamidgeh, 69, 1–13.

    Wang X R, Wang C, Ban F X, Zhu D T, Liu S S, Wang X W.2017. Genome-wide identification and characterization ofHSPgene superfamily in white fly (Bemisia tabaci) and expression pro filing analysis under temperature stress.Insect Science, doi: 10.1111/1744-7917.12505

    Waters E R, Aevermann B D, Sanders-Reed Z. 2008.Comparative analysis of the small heat shock proteins in three angiosperm genomes.Cell Stress and Chaperones,13, 127–142.

    Willmer P, Stone G, Johnston I. 2000. Environmental physiology of animals.Blackwell Science, 71, 57–84.

    Wu S F, Sun F D, Qi Y X, Yao Y, Fang Q, Huang J, Stanley D,Ye G Y. 2013. Parasitization byCotesia chilonisin fluences gene expression in fatbody and hemocytes ofChilo suppressalis.PLoS ONE, 8, e74309.

    Xu P J, Xiao J H, Liu L, Li T, Huang D W. 2010. Molecular cloning and characterization of four heat shock protein genes fromMacrocentrus cingulum(Hymenoptera: Braconidae).Molecular Biology Reports, 37, 2265–2272.

    Xu Q, Zou Q, Zheng H, Zhang F, Tang B, Wang S. 2011.Three heat shock proteins fromSpodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks.Comparative Biochemistry and Physiology(Part B: Biochemistry and Molecular Biology),159, 92–102.

    Yochem J, Uchida H, Sunshine M, Saito H, Georgopoulos C P,Feiss M. 1978. Genetic analysis of two genes, DnaJ and DnaK, necessary forEscherichia coliandBacteriophage lambdaDNA replication.Molecular Genetics and Genomics,164, 9–14.

    Zhang Q R, Denlinger D L. 2010. Molecular characterization of heat shock protein 90, 70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm.Journal of Insect Physiology,56, 138–150.

    亚洲国产色片| 少妇丰满av| 精品亚洲成国产av| 日本猛色少妇xxxxx猛交久久| 精品久久久噜噜| 91在线精品国自产拍蜜月| 午夜日本视频在线| 极品少妇高潮喷水抽搐| 亚洲精品日韩av片在线观看| 99热这里只有是精品50| 国产精品一区二区在线不卡| 亚洲,欧美,日韩| 水蜜桃什么品种好| 久久久久久久久大av| 99视频精品全部免费 在线| 99热这里只有精品一区| 一级片'在线观看视频| 国产精品人妻久久久久久| 91精品国产国语对白视频| 欧美日韩视频精品一区| 免费少妇av软件| xxx大片免费视频| 欧美+日韩+精品| 成人特级av手机在线观看| 欧美性感艳星| 日本免费在线观看一区| 欧美成人精品欧美一级黄| 青春草亚洲视频在线观看| 交换朋友夫妻互换小说| 天天躁日日操中文字幕| 蜜臀久久99精品久久宅男| 97超碰精品成人国产| 我要看黄色一级片免费的| 国产国拍精品亚洲av在线观看| 午夜福利在线观看免费完整高清在| 日韩免费高清中文字幕av| 亚洲成人中文字幕在线播放| 人人妻人人爽人人添夜夜欢视频 | 干丝袜人妻中文字幕| 美女中出高潮动态图| 天美传媒精品一区二区| 制服丝袜香蕉在线| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 欧美人与善性xxx| 在线亚洲精品国产二区图片欧美 | 又黄又爽又刺激的免费视频.| 少妇熟女欧美另类| 日本黄色日本黄色录像| 成人影院久久| 亚洲国产高清在线一区二区三| 午夜视频国产福利| 女的被弄到高潮叫床怎么办| 黄色怎么调成土黄色| 永久网站在线| 人妻制服诱惑在线中文字幕| 日日啪夜夜爽| 乱码一卡2卡4卡精品| 国产成人精品一,二区| 国产成人午夜福利电影在线观看| 日韩电影二区| 最近的中文字幕免费完整| 嫩草影院入口| 欧美精品人与动牲交sv欧美| 免费看光身美女| 纯流量卡能插随身wifi吗| 免费观看的影片在线观看| 久久人人爽人人爽人人片va| 日本免费在线观看一区| 亚洲精品一区蜜桃| 在线观看免费高清a一片| 国产极品天堂在线| 欧美一级a爱片免费观看看| 日韩欧美精品免费久久| 观看av在线不卡| 在线观看免费视频网站a站| 美女xxoo啪啪120秒动态图| 黄片wwwwww| 大话2 男鬼变身卡| 亚洲中文av在线| 欧美日本视频| 熟妇人妻不卡中文字幕| 日韩 亚洲 欧美在线| 精品少妇久久久久久888优播| 五月伊人婷婷丁香| 日韩一区二区视频免费看| 亚洲av电影在线观看一区二区三区| 日本av免费视频播放| 黑丝袜美女国产一区| 99久久精品一区二区三区| 青春草国产在线视频| 观看美女的网站| 成人国产麻豆网| 黑丝袜美女国产一区| 国产淫语在线视频| 性色av一级| 亚洲,一卡二卡三卡| xxx大片免费视频| 亚洲天堂av无毛| 高清视频免费观看一区二区| 亚洲欧美日韩另类电影网站 | 国产精品无大码| 伊人久久精品亚洲午夜| 超碰97精品在线观看| 青春草亚洲视频在线观看| 国产一区二区在线观看日韩| 身体一侧抽搐| 亚洲经典国产精华液单| 赤兔流量卡办理| 免费黄频网站在线观看国产| 18禁动态无遮挡网站| 熟女人妻精品中文字幕| 男男h啪啪无遮挡| 日本wwww免费看| 日韩av不卡免费在线播放| 日韩欧美一区视频在线观看 | av在线播放精品| 高清av免费在线| 成人影院久久| 欧美成人a在线观看| 色婷婷久久久亚洲欧美| 九九爱精品视频在线观看| 国产在线视频一区二区| 制服丝袜香蕉在线| 日韩欧美 国产精品| 男女边摸边吃奶| 国产有黄有色有爽视频| 老司机影院毛片| 中文字幕av成人在线电影| 亚州av有码| 99久久综合免费| 嘟嘟电影网在线观看| 十八禁网站网址无遮挡 | 两个人的视频大全免费| 草草在线视频免费看| 男女边吃奶边做爰视频| 99久久综合免费| 性色av一级| 欧美变态另类bdsm刘玥| 永久网站在线| 三级经典国产精品| 久久鲁丝午夜福利片| 成人毛片60女人毛片免费| 午夜福利网站1000一区二区三区| 国产亚洲欧美精品永久| 一本久久精品| 高清在线视频一区二区三区| 99精国产麻豆久久婷婷| 少妇人妻久久综合中文| 国产在视频线精品| 精品亚洲成国产av| 午夜福利在线观看免费完整高清在| 国产欧美另类精品又又久久亚洲欧美| 在线 av 中文字幕| 国产色婷婷99| 色网站视频免费| 亚洲av.av天堂| 男男h啪啪无遮挡| 特大巨黑吊av在线直播| 人人妻人人看人人澡| av.在线天堂| 亚洲欧洲国产日韩| 搡老乐熟女国产| 三级国产精品片| 亚洲久久久国产精品| 观看av在线不卡| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 国产成人精品福利久久| 亚洲欧美精品专区久久| 狂野欧美激情性xxxx在线观看| 欧美人与善性xxx| 男女边摸边吃奶| 亚洲欧洲日产国产| 亚洲人与动物交配视频| kizo精华| 蜜臀久久99精品久久宅男| 免费大片18禁| 国产亚洲一区二区精品| 一个人看视频在线观看www免费| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 国产人妻一区二区三区在| tube8黄色片| 国产精品一区二区在线观看99| 看非洲黑人一级黄片| 久久97久久精品| 欧美成人精品欧美一级黄| 国产精品99久久久久久久久| 日韩人妻高清精品专区| 免费av中文字幕在线| 秋霞在线观看毛片| 国产精品99久久久久久久久| 精品国产三级普通话版| 亚洲四区av| av在线老鸭窝| 交换朋友夫妻互换小说| 国产综合精华液| 老熟女久久久| 国产欧美亚洲国产| 精品久久久久久电影网| 美女cb高潮喷水在线观看| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 成人影院久久| 91精品国产九色| 一个人看的www免费观看视频| 国产精品秋霞免费鲁丝片| 好男人视频免费观看在线| videos熟女内射| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 国产精品一二三区在线看| 国产av一区二区精品久久 | 日韩中字成人| 少妇猛男粗大的猛烈进出视频| 国产精品蜜桃在线观看| 久久亚洲国产成人精品v| 婷婷色麻豆天堂久久| 亚洲无线观看免费| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 综合色丁香网| 热re99久久精品国产66热6| 中国美白少妇内射xxxbb| 免费高清在线观看视频在线观看| 伦理电影免费视频| 国产淫片久久久久久久久| 中文在线观看免费www的网站| 亚洲欧美日韩东京热| 国产有黄有色有爽视频| 一区在线观看完整版| 激情五月婷婷亚洲| 亚洲综合精品二区| 下体分泌物呈黄色| 国产大屁股一区二区在线视频| 欧美老熟妇乱子伦牲交| 欧美激情极品国产一区二区三区 | 亚洲av中文字字幕乱码综合| 国产有黄有色有爽视频| 成人国产av品久久久| 亚洲av男天堂| av一本久久久久| 嫩草影院入口| 妹子高潮喷水视频| 最近最新中文字幕大全电影3| 久久精品国产亚洲av涩爱| 国产熟女欧美一区二区| 欧美xxⅹ黑人| 欧美日韩视频精品一区| 国产精品三级大全| 夜夜骑夜夜射夜夜干| 亚洲精品中文字幕在线视频 | 久久6这里有精品| 日韩一区二区三区影片| 亚洲不卡免费看| 人妻一区二区av| 两个人的视频大全免费| 精品国产三级普通话版| 免费av中文字幕在线| 欧美xxxx黑人xx丫x性爽| 最近2019中文字幕mv第一页| 18禁动态无遮挡网站| 欧美97在线视频| 91狼人影院| 国产av码专区亚洲av| 中文欧美无线码| 免费观看性生交大片5| 国产精品一区www在线观看| 如何舔出高潮| 国产精品久久久久久av不卡| 久久精品国产亚洲网站| tube8黄色片| 蜜桃在线观看..| 久久99精品国语久久久| 中国国产av一级| 免费在线观看成人毛片| 久久这里有精品视频免费| 男的添女的下面高潮视频| xxx大片免费视频| 女人十人毛片免费观看3o分钟| 婷婷色av中文字幕| 亚洲精品一二三| 成人毛片a级毛片在线播放| 黄色配什么色好看| 亚洲国产av新网站| 最后的刺客免费高清国语| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 女人十人毛片免费观看3o分钟| 久久久a久久爽久久v久久| 22中文网久久字幕| 一级毛片久久久久久久久女| 老熟女久久久| 大话2 男鬼变身卡| 99久久精品热视频| 春色校园在线视频观看| av黄色大香蕉| 久久久久国产网址| 色吧在线观看| 久久精品夜色国产| 九草在线视频观看| 国产成人精品婷婷| 成人二区视频| 国产精品久久久久久久电影| 亚洲精品国产色婷婷电影| 在线亚洲精品国产二区图片欧美 | 色婷婷久久久亚洲欧美| 国产伦在线观看视频一区| 日韩不卡一区二区三区视频在线| 日韩亚洲欧美综合| 欧美人与善性xxx| 国产精品一及| 亚洲精品第二区| 亚洲av二区三区四区| 午夜激情久久久久久久| 一级黄片播放器| 成年免费大片在线观看| 久久久久网色| 国产色爽女视频免费观看| 国产有黄有色有爽视频| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 97超视频在线观看视频| 日韩免费高清中文字幕av| av专区在线播放| 男人舔奶头视频| 一级a做视频免费观看| 亚洲aⅴ乱码一区二区在线播放| 中文字幕精品免费在线观看视频 | 久久人人爽人人爽人人片va| 亚洲四区av| 蜜桃久久精品国产亚洲av| 成人免费观看视频高清| 日日撸夜夜添| 免费观看无遮挡的男女| 18禁在线无遮挡免费观看视频| 国产精品伦人一区二区| 成人一区二区视频在线观看| .国产精品久久| 欧美亚洲 丝袜 人妻 在线| 一边亲一边摸免费视频| 高清欧美精品videossex| 蜜桃久久精品国产亚洲av| 在线精品无人区一区二区三 | 多毛熟女@视频| 最后的刺客免费高清国语| 直男gayav资源| 欧美高清成人免费视频www| 国产精品久久久久久久电影| 美女主播在线视频| 一级片'在线观看视频| 亚洲欧美清纯卡通| 久久人人爽人人片av| 一个人免费看片子| h日本视频在线播放| 亚洲熟女精品中文字幕| 国产国拍精品亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 在线亚洲精品国产二区图片欧美 | 久久久久久伊人网av| 下体分泌物呈黄色| 91久久精品国产一区二区成人| 免费黄网站久久成人精品| 国产乱人视频| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 亚洲精品乱久久久久久| 国产v大片淫在线免费观看| 国产女主播在线喷水免费视频网站| 免费观看无遮挡的男女| 亚洲av中文字字幕乱码综合| 亚洲伊人久久精品综合| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 日本爱情动作片www.在线观看| 一级毛片aaaaaa免费看小| 最新中文字幕久久久久| 99热全是精品| 永久网站在线| 美女福利国产在线 | 大话2 男鬼变身卡| 久久韩国三级中文字幕| 欧美高清成人免费视频www| 黑人高潮一二区| 亚洲精品中文字幕在线视频 | 亚洲精品久久久久久婷婷小说| 一级毛片黄色毛片免费观看视频| 这个男人来自地球电影免费观看 | 亚洲av电影在线观看一区二区三区| 国产精品国产三级国产专区5o| 成人高潮视频无遮挡免费网站| 亚州av有码| 一级黄片播放器| 欧美人与善性xxx| 国产精品国产三级国产av玫瑰| 日本一二三区视频观看| 亚洲综合精品二区| 高清视频免费观看一区二区| 2018国产大陆天天弄谢| 久久精品国产亚洲av天美| 日产精品乱码卡一卡2卡三| 欧美亚洲 丝袜 人妻 在线| 美女福利国产在线 | 亚洲欧美日韩另类电影网站 | 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 午夜福利在线在线| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 国产综合精华液| 国产伦精品一区二区三区四那| 久久久久久久久大av| 中文字幕制服av| 国产亚洲5aaaaa淫片| 久久精品久久精品一区二区三区| 欧美成人午夜免费资源| av在线观看视频网站免费| 色视频在线一区二区三区| 尤物成人国产欧美一区二区三区| 观看av在线不卡| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站| 欧美日韩国产mv在线观看视频 | 嫩草影院新地址| kizo精华| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久| 亚洲美女视频黄频| 国产精品久久久久久精品古装| 午夜日本视频在线| 国产淫片久久久久久久久| 九九在线视频观看精品| 少妇猛男粗大的猛烈进出视频| 欧美人与善性xxx| 日韩强制内射视频| 亚洲丝袜综合中文字幕| 久久久久视频综合| 亚洲图色成人| 一区在线观看完整版| 99热这里只有是精品在线观看| 亚洲第一区二区三区不卡| 成年美女黄网站色视频大全免费 | 97精品久久久久久久久久精品| kizo精华| xxx大片免费视频| 97在线视频观看| 日韩欧美精品免费久久| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 亚洲精品国产av成人精品| 97超碰精品成人国产| 一区二区av电影网| 日韩亚洲欧美综合| 亚洲国产精品999| 午夜福利在线在线| 免费大片18禁| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 多毛熟女@视频| 在线观看人妻少妇| 亚洲一区二区三区欧美精品| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 午夜福利高清视频| 啦啦啦视频在线资源免费观看| 男女无遮挡免费网站观看| 我的女老师完整版在线观看| 欧美精品亚洲一区二区| 国产探花极品一区二区| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 国产精品一区二区性色av| 天堂8中文在线网| 丝袜喷水一区| 男女边摸边吃奶| 一区二区三区乱码不卡18| 日韩国内少妇激情av| 麻豆成人午夜福利视频| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 永久免费av网站大全| 能在线免费看毛片的网站| 黄色日韩在线| 久久国产亚洲av麻豆专区| 色综合色国产| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 色综合色国产| av卡一久久| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 看十八女毛片水多多多| 嫩草影院入口| 夫妻性生交免费视频一级片| 六月丁香七月| 久久久久久久久久人人人人人人| 亚洲成人手机| 欧美日韩综合久久久久久| 一本久久精品| 亚洲欧美一区二区三区黑人 | 国产欧美另类精品又又久久亚洲欧美| 97在线人人人人妻| 街头女战士在线观看网站| 日本wwww免费看| 婷婷色av中文字幕| 蜜臀久久99精品久久宅男| 草草在线视频免费看| 99热6这里只有精品| 中文天堂在线官网| 亚洲va在线va天堂va国产| 性高湖久久久久久久久免费观看| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 欧美精品国产亚洲| av在线app专区| 日韩中字成人| 欧美 日韩 精品 国产| 中文欧美无线码| 日韩一区二区三区影片| 久久精品人妻少妇| 国产成人aa在线观看| 天堂中文最新版在线下载| 国产av国产精品国产| 久久鲁丝午夜福利片| 嫩草影院新地址| 色婷婷久久久亚洲欧美| 亚洲av二区三区四区| 午夜老司机福利剧场| 国产伦在线观看视频一区| 中国国产av一级| 十八禁网站网址无遮挡 | 国产成人免费观看mmmm| 国产 一区精品| 七月丁香在线播放| 久久午夜福利片| 亚洲无线观看免费| 精品国产一区二区三区久久久樱花 | 国产精品三级大全| 亚洲不卡免费看| 蜜臀久久99精品久久宅男| 人人妻人人添人人爽欧美一区卜 | 中国美白少妇内射xxxbb| 精品一区二区免费观看| 在线免费观看不下载黄p国产| 性高湖久久久久久久久免费观看| 国国产精品蜜臀av免费| av在线老鸭窝| 少妇人妻 视频| 色婷婷久久久亚洲欧美| 久久久久久久久久久免费av| 日韩强制内射视频| 一个人免费看片子| 又大又黄又爽视频免费| 久久精品国产亚洲网站| 22中文网久久字幕| 99久久精品国产国产毛片| 三级经典国产精品| 天美传媒精品一区二区| 丝袜喷水一区| 亚洲国产精品专区欧美| 日韩亚洲欧美综合| 亚洲av二区三区四区| 18禁在线播放成人免费| 精品久久久噜噜| 久久99蜜桃精品久久| 国产精品99久久99久久久不卡 | 国内少妇人妻偷人精品xxx网站| 嫩草影院入口| 久久久久国产网址| 啦啦啦视频在线资源免费观看| 国产成人一区二区在线| 一级毛片电影观看| 精品视频人人做人人爽| 色吧在线观看| 纯流量卡能插随身wifi吗| 国产 一区精品| 中文字幕制服av| 最黄视频免费看| 在线亚洲精品国产二区图片欧美 | 亚洲美女搞黄在线观看| 3wmmmm亚洲av在线观看| 嘟嘟电影网在线观看| 91aial.com中文字幕在线观看| 日韩一区二区三区影片| 在线观看免费日韩欧美大片 | 国产永久视频网站| 人妻少妇偷人精品九色| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 在线天堂最新版资源| 成人无遮挡网站| 成人亚洲精品一区在线观看 | 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 日本黄色片子视频| 少妇人妻一区二区三区视频| 如何舔出高潮| www.色视频.com| 观看免费一级毛片| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 久久99热这里只有精品18| 精品亚洲成a人片在线观看 | 尤物成人国产欧美一区二区三区| 日本vs欧美在线观看视频 | 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| 国产v大片淫在线免费观看|