• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of seawater carbonate variables on post-larval bivalve calcification*

    2018-05-07 06:07:31LIJiaqi李加琦MAOYuze毛玉澤JIANGZengjie蔣增杰ZHANGJihong張繼紅BIANDapeng卞大鵬FANGJianguang方建光
    Journal of Oceanology and Limnology 2018年2期
    關(guān)鍵詞:大鵬

    LI Jiaqi (李加琦) , MAO Yuze ( 毛玉澤) , JIANG Zengjie ( 蔣增杰) ,ZHANG Jihong ( 張繼紅) , BIAN Dapeng ( 卞大鵬) , FANG Jianguang ( 方建光) ,

    1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

    2 Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology,Qingdao 266071, China

    3 Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    4 National Engineering and Research Center of Marine Shellfish, Weihai 264316, China

    1 INTRODUCTION

    Marine calcifiers, such as corals, coralline algae,and shellfish that produce calcium carbonate are vulnerable to ocean acidification (OA) (Anthony et al., 2008; Kuff ner et al., 2008; Pandolfiet al., 2011).The calcification rate of coral reefs (Maier et al.,2009; Jokiel, 2013; Maier et al., 2016) and coralline algae (Kuff ner et al., 2008; Semesi et al., 2009b) will decrease under acidified conditions based on the carbon dioxide partial pressure (pCO2) levels predicted at the end of this century. Larval shell growth and hardness of eastern oysters (Crassostrea virginica) decreases under highpCO2conditions(Anthony et al., 2008). Larval shells in several species of shellfish, such as mussels (Kurihara et al., 2009;Gazeau et al., 2010; Kelly et al., 2016), oysters(Kurihara et al., 2007; Parker et al., 2010; Waldbusser et al., 2016), abalone (Byrne et al., 2011; Crim et al.,2011; Li et al., 2013), and scallops (Talmage and Gobler, 2009; White et al., 2013; Wang et al., 2016)are malformed by OA. Larval (Miller et al., 2009;Talmage and Gobler, 2010) and adult bivalves(Gazeau et al., 2007; Pfister et al., 2016; Ries et al.,2016) will also suff er reduced calcification under the pH conditions predicted for the end of this century.The calcification response by these marine calcifiers to acidified environments is a main issue for OA-related studies to explore. However, the variables regulating calcification rate are controversial.

    It is well known that marine calcifiers useto deposit their calcareous skeleton by the following reaction:(Frankignoulle et al., 1995). Therefore, a decline in calcification rates of calcifiers under acidified conditions might be attributed to increased [H+] or a decrease ofor dissolved inorganic carbon (DIC). Some researchers have proposed that calcification rate of coral (Madracisauretenra)responds to variations in bicarbonate concentration rather than carbonate concentration or pH (Jury et al.,2010). They observed a normal or even elevated calcification rate of corals at pH 7.6–7.8 when bicarbonate concentration was >1 800 μmol/L, but the calcification rate decreased if the bicarbonate concentration was lower under a normal pH condition.Other researchers believe that coral calcification is determined by the availability of therather than pH orˉ (Kleypas et al., 1999; Silverman et al.,2007; Marubini et al., 2008). Gazeau et al. (2007)reported that the calcification rates of mussels (Mytilus edulis) and Pacific oysters (Crassostreagigas) decline linearly with increasingpCO2, but they did not differentiate the roles of pH, bicarbonate, carbonate,or DIC concentration when determining the calcification rate.

    To identify the key factors involved in biomineralization, calcification rates of calcifiers have been measured in manipulated CO2-carbonate systems. Gattuso et al. (1998) manipulated calcium concentration under constant pH and carbonate conditions to adjust the aragonite saturation level of seawater and found that the coral calcification rate increased if the aragonite saturation level was also increased. Langdon et al. (2000) manipulated both calcium and carbonate concentrations to obtain the required aragonite saturation level of seawater and found consistent regulated changes in calcification rate of coral to the manipulated aragonite saturation.Waldbusser et al. (2015) manipulated seawater DIC with mineral acids and bases and reported that shell development of two bivalve larvae,C.gigas, andMytilusgalloprovincialis, are dependent on carbonate saturation state, and not onpCO2or pH. Another study reported that limiting DIC strongly reduced calcification, despite a high(Thomsen et al.,2015). They believed that mussels utilizerather thanas the inorganic carbon source for biomineralization. To distinguish the key factors determining calcification rate of post-larval shellfish,conditions with decreased pH or lowered DIC were created by bubbling CO2-enriched air or adding a hydrochloride solution to natural seawater.Calcification rates of juvenile blue mussels (M.edulis)and Zhikong scallops (Chlamysfarreri) were measured in these different carbonate systems.Significant correlations were observed between calcification rate and DIC/[H+] andin both species. We also found that calcification rate of these two bivalve species increased under elevated pH conditions.

    2 MATERIAL AND METHOD

    2.1 Animal collection and cultivation

    All animals used in the experiment were collected from Sangou Bay, Weihai, China. The shell heights of the Zhikong scallops and blue mussels sampled from the local aquaculture populations were 3.53±0.25 cm and 3.55±0.41 cm, respectively. Individuals were acclimated to experimental conditions for 2 weeks before being used to measure calcification rate.Animals were reared together withUlvapertusaKjellman in 1-L beakers placed in an illumination incubator. The incubation temperature was 20°C and the light-dark photoperiod was 6 min light: 3 min dark. The pH of the experimental seawater was maintained at 8.20±0.10 by adjusting the amount ofU.pertusain the beaker. No aeration was used, as the mollusks obtained sufficient oxygen from the photosynthetic activity ofU.pertusa(dissolved oxygen [DO]>6.5 mg/L). Animals in each beaker were fed about a 50 mL suspension ofPlatymonassp.(about 2×106/mL seawater) twice daily.

    2.2 Manipulation of the seawater carbonate system

    The pH level or DIC was adjusted in the seawater carbonate system. The seawater was bubbled with CO2-enriched air, and pH was adjusted down to the required level.U.pertusawas added and incubated in the illumination incubator to increase seawater pH. A two-step method was applied to decrease DIC of seawater while the pH remained constant. In the first step, seawater pH was increased by incubating withU.pertusain the illumination incubator. Then, a mixture of seawater and concentrated hydrochloric acid (1:1) was added to the experimental seawater to reduce pH down to pH 8.2 in the second step. After repeating these steps twice, we acquired experimental seawater with an extremely low DIC level and normal pH (8.2). Experimental seawater with the requiredDIC level was prepared by mixing seawater with a low level of DIC and natural seawater.

    Table 1 Initial water temperature, salinity, total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and carbonate saturation state (Ω Cal) of the experimental seawater

    Water temperature and salinity were measured using a combined electrode (YSI ProPlus; YSI,Yellow Springs, OH, USA), and pH was measured using a pH electrode (Thermo Scientific 3-Star,ORION; Waltham, MA, USA). The pH electrode was calibrated daily with buff ers traceable to the NIST(NBS) standard. The DO concentration in the experimental seawater was measured using a DO electrode (Multi 3420; WTW, Weilheim, Germany).Total alkalinity (TA) was measured within hours after sampling using an automatic titrator (848 Titrino plus;Metrohm, Riverview, FL, USA).

    2.3 Calcification rate measurement

    We used the following equation to calculate the calcification rate (Gazeau et al., 2007):

    whereGis calcification rate (μmol/(g·h)), TAiis initial TA of the experimental seawater (μmol/L), TAfis the final TA of the experimental seawater (μmol/L),Tis the experimental duration (h),Mis whole wet weight of the experimental animals (g), andVis the volume of the experimental seawater (L).

    Four to six animals and about 3 g ofU.pertusawere placed in a 500-mL beaker filled with 400 mL of seawater and the required carbonate system. The beaker was placed in the illumination incubator with a light-dark photoperiod of 6 min light: 3 min dark. The animals were incubated in the beaker for 1 hour while the amount ofU.pertusawas adjusted every 15 min to maintain a stable pH. Before measuring the calcification rate, the incubating seawater was replaced with fresh seawater. During the 2 h incubation for the calcification rate measurement, the amount ofU.pertusawas adjusted every 30 min to maintain pH within ±0.1 units. Seawater that was used to measure pH, salinity, and TA was sampled before and immediately after the incubation. Mean pH, TA, water temperature, and salinity were used to calculate thepCO2,DIC, calcite, and aragonite saturation values (Table 1) using CO2SYS (Pierrot et al., 2006). Four replicate groups were employed for the calcification rate measurements of each species.

    2.4 Statistics

    The correlation coefficient between carbonate variables and the calcification rates of blue mussels and Zhikong scallops and its significance was calculated using Pearson’s correlation analysis and SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). A two-tailed procedure was used to test the significance of the correlation coefficient, and aP<0.05 was considered significant for all tests.

    3 RESULT

    Calcification rate of juvenile blue mussels was associated with the seawater carbonate system (Fig.1).However, different results were found between the two different carbonate systems. Positive correlations were observed between calcification rate of juvenile blue mussels and pH, DIC/[H+] orwhereas negative correlations were observed between calcification rate and DIC orduring incubations under high or low pH conditions (Fig.1,column a). Positive correlations were observed between calcification rate and DIC,, DIC/[H+], andduring the incubation with low DIC and normal pH, whereas no correlation was detected between calcification rate and pH (Fig.1, column b).

    Fig.1 Plot of seawater pH,, dissolved inorganic carbon (DIC), DIC/[H+], andvs. calcification rate of blue mussels

    Table 2 Correlation coefficients between carbonate variables and calcification rate of blue mussels and Zhikong scallops

    Table 3 Variations in pH, total alkalinity (TA), and the carbonate system variables in the experimental seawater incubated with Ulva pertusa for 60 min

    It was clear that the calcification rate of juvenile mussels was positively correlated (P<0.05) with and DIC/[H+] andin both carbonate systems (Table 2).

    Similar results were found in Zhikong scallops(Fig.2). Positive correlations were observed between calcification rate of Zhikong scallops and pH, DIC/[H+], andwhereas negative correlations were observed between calcification rate and DIC andunder low and high pH conditions (Fig.1,column a). Positive correlations were detected between calcification rate and DIC,, DIC/[H+], andwhereas no significant correlation was observed between calcification rate and pH in seawater with a low DIC level and normal pH (Fig.1,column b). Only DIC/[H+] andshowed a positive dominant effect (P<0.05) when determining calcification rate of juvenile Zhikong scallops in both carbonate systems (Table 2).

    4 DISCUSSION

    It has been reported that ocean surface seawater pH will drop to about 7.7 (IPCC, 2007) by the end of this century. Marine calcifiers, such as mollusks, may face a stressful future as it will be more difficult for them to generate calcareous shells (Gazeau et al., 2007). It seems that the decrease in calcification rate under acidified conditions is directly attributed to higher[H+]. However, higher [H+] changes the seawater carbonate system, which may play a determining role in biological calcium carbonate deposition. Therefore,it is important to isolate the main factor from acidified seawater that is responsible for the decrease in calcification rate. We measured calcification rate of blue mussels and Zhikong scallops under conditions created in different carbonate systems. The results support that the calcifying ability of post-larval shellfish was correlated withorrather than pH, DIC, or

    Experimental animals continuously released CO2into seawater during the calcification rate measurement. If this CO2is absorbed, experimental seawater pH would decrease. Thus, we introducedU.pertusainto the incubation system to remove the CO2. However, this raised concern about the accuracy of the calcification measurement, as the seawater carbonate system would change in response to the photosynthetic activity ofU.pertusa. The carbonate system variables and pH of the experimental seawater changed in response to the photosynthetic activity ofU.pertusa, but the TA of seawater remained unchanged (Table 3). As a result, addingU.pertusato the incubation system did not affect the calcification rate calculation.

    Fig.2 Plot of seawater pH, ˉ], dissolve inorganic carbon (DIC), DIC/[H+ ], and [ vs. calcification rate of Zhikong scallops

    Several studies have investigated the dominant variables in carbonate systems while calcium carbonate deposition rate was determined in marine calcifiers. Jury et al., (2010) reported that calcification rate of coral (Madracisauretenra) responds to variations in bicarbonate concentration rather than carbonate concentration. In contrast, Jokiel (2013)found that the calcification rates of the coralPorites rusand the crustose coralline algae (CCA)Hydrolithon onkodesare correlated with the DIC/[H+] andMoreover, Gattuso et al. (1998) manipulated a carbonate chemistry system by adjusting calcium concentration and found that calcification rate of the coralStylophorapistillatawas affected by carbonate saturation state. Waldbusser et al. (2015) reported that larval bivalve shell development and growth are dependent on seawater carbonate saturation state, but not onpCO2or pH. They did not discuss the correlation between calcification rate of larval bivalves with DIC/[H+]. Jokiel (2013) reported that calcification of coral reefs is driven by the DIC/[H+] ratio and thathas no physiological relevance. However, the carbonate saturation state orin natural seawater is tightly correlated with the DIC/[H+] ratio, and carbonate saturation state is determined byTherefore, it is difficult to determine whetheror the DIC/[H+] ratio is the key variable when calculating calcification rate. Our findings support that calcification rates of post-larval blue mussels and Zhikong scallops are correlated withand DIC/[H+] ratio rather than DIC,or pH.

    Several biological processes of calcifying organisms are stressed under acidified conditions (Orr et al., 2005). We also found that biological calcification of bivalves is susceptible to seawater acidification.No signs of acclimation to a saturated state by a coral reef have been observed, as no significant difference in calcification rate was observed between short-term and long-term incubation (Pandolfiet al., 2011). This result reminds us that some species of marine calcifiers may lack the capacity to generate a calcium carbonate skeleton under acidified conditions even after longterm acclimation. These calcifying organisms may face severe challenges in the acidified future.However, blue mussels generated a calcareous shell under extremely low levels of carbonate saturation in a long-term incubation experiment (Thomsen and Melzner, 2010). This finding is markedly different from short-term research (White et al., 2013), in which blue mussels nearly lost their calcifying ability under similar conditions to that of the long-term incubation. It seems that some bivalves may possess the mechanisms to acclimate to lowor DIC/[H+] conditions. As a result, more studies are required to understand the response of shellfish calcification to the seawater carbonate system.

    This study may provide some novel insight about the benefit that shellfish can acquire in integrated shellfish-algae aquaculture. Algae are helpful for producing oxygen and absorbing waste in integrated aquaculture systems (Mao et al., 2009; Tang et al.,2011; Chopin et al., 2012). Algae may also be helpful in creating a comfortable carbonate environment for shellfish to calcify. Algae provide oxygen, absorb nutrients, and are capable of adjusting the carbonate system. Seawater pH in a low water exchange bay can increase from 7.9 to 8.9 because of the photosynthetic activity of seaweeds (Semesi et al., 2009a), and a high seaweed biomass can easily elevate the pH of seawater in confined tidal pools (Clements and Chopin, 2016).This higher seawater pH would then increase the level ofor the DIC/[H+] ratio, which is beneficial for biomineralization of shellfish. Therefore, algae can help enhance the calcium carbonate deposition efficiency of shellfish in an integrated aquaculture system.

    5 CONCLUSION

    Our findings show that calcification rates of postlarval blue mussels and Zhikong scallops are correlated withand the DIC/[H+] ratio rather than DIC,or pH. However, the calcification rate differed in short-term and long-term experiments.As a result, more studies are required to understand the response of shellfish calcification to the seawater carbonate system.

    6 ACKNOWLEDGEMENT

    We thank Mr. James Yang Xie from Hong Kong Baptist University (HKBU) for editing our manuscript.

    Anthony K R N, Kline D I, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders.Proceedings oftheNationalAcademyofSciencesoftheUnitedStates ofAmerica,105(45): 17 442-17 446.

    Byrne M, Ho M, Wong E, Soars N A, Selvakumaraswamy P,Shepard-Brennand H, Dworjanyn S A, Davis A R. 2011.Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean.Proceedingsofthe RoyalSocietyB:BiologicalSciences,278(1716): 2 376-2 383.

    Chopin T, Cooper J A, Reid G, Cross S, Moore C. 2012. Openwater integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture.Reviewsin Aquaculture,4(4): 209-220.

    Clements J C, Chopin T. 2016. Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies.ReviewsinAquaculture,56(3): 182-196

    Crim R N, Sunday J M, Harley C D G. 2011. Elevated seawater CO2concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana).JournalofExperimentalMarineBiology andEcology,400(1-2): 272-277.

    de Putron S J, McCorkle D C, Cohen A L, Dillon A B. 2011.The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals.CoralReefs,30(2): 321-328.

    Frankignoulle M, Pichon M, Gattuso J P. 1995. Aquatic calcification as a source of carbon dioxide.In: Beran M A ed. Carbon Sequestration in the Biosphere: Processes and Prospects. Springer, Berlin Heidelberg. p.265-271.

    Gattuso J P, Frankignoulle M, Bourge I, Romaine S,Buddemeier R W. 1998. effect of calcium carbonate saturation of seawater on coral calcification.Globaland PlanetaryChange,18(1-2): 37-46.

    Gazeau F, Gattuso J P, Dawber C, Pronker A E, Peene F, Peene J, Heip C H R, Middelburg J J. 2010. effect of ocean acidification on the early life stages of the blue musselMytilusedulis.Biogeosciences,7(7): 2 051-2 060.

    Gazeau F, Quiblier C, Jansen J M, Gattuso J P, Middelburg J J,Heip C H R. 2007. Impact of elevated CO2on shellfish calcification.GeophysicalResearchLetters,34(7):L07603.

    IPCC. 2007. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press,Cambridge, UK and New York, USA.

    Jokiel P L. 2013. Coral reef calcification: carbonate,bicarbonate and proton flux under conditions of increasing ocean acidification.ProceedingsoftheRoyalSocietyB:BiologicalSciences,280(1764): 20130031.

    Jury C P, Whitehead R F, Szmant A M. 2010. effects of variations in carbonate chemistry on the calcification rates ofMadracisauretenra(=MadracismirabilissensuWells,1973): bicarbonate concentrations best predict calcification rates.GlobalChangeBiology,16(5): 1 632-1 644.

    Kelly M W, Padilla-Gami?o J L, Hofmann G E. 2016. HighpCO2aff ects body size, but not gene expression in larvae of the California mussel (Mytiluscalifornianus).ICES JournalofMarineScience,73(3): 962-969.

    Kleypas J A, Buddemeier R W, Archer D, Gattuso J P, Langdon C, Opdyke B N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Science,284(5411): 118-120.

    Kuff ner I B, Andersson A J, Jokiel P L, Rodgers K S, Mackenzie F T. 2008. Decreased abundance of crustose coralline algae due to ocean acidification.NatureGeoscience,1(2):114-117.

    Kurihara H, Asai T, Kato S, Ishimatsu A. 2009. effects of elevatedpCO2on early development in the musselMytilus galloprovincialis.AquaticBiology,4(3): 225-233.

    Kurihara H, Kato S, Ishimatsu A. 2007. effects of increased seawater pCO2on early development of the oysterCrassostreagigas.AquaticBiology,1(1): 91-98.

    Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J,Marubini F, Aceves H, Barnett H, Atkinson M J. 2000.effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef.Global BiogeochemicalCycles,14(2): 639-654.

    Li J Q, Jiang Z J, Zhang J H, Qiu J W, Du M R, Bian D P, Fang J G. 2013. Detrimental effects of reduced seawater pH on the early development of the Pacific abalone.Marine PollutionBulletin,74(1): 320-324.

    Maier C, Hegeman J, Weinbauer M G, Gattuso J P. 2009.Calcification of the cold-water coralLopheliapertusa,under ambient and reduced pH.Biogeosciences,6(8):1 671-1 680.

    Maier C, Popp P, Sollfrank N, Weinbauer M G, Wild C,Gattuso J P. 2016. effects of elevatedpCO2and feeding on net calcification and energy budget of the Mediterranean cold-water coralMadreporaoculata.TheJournalof ExperimentalBiology,219(20): 3 208-3 217.

    Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. 2009. Potential of the seaweedGracilarialemaneiformisfor integrated multi-trophic aquaculture with scallopChlamysfarreriin North China.JournalofAppliedPhycology,21(6): 649-656.

    Marubini F, Ferrier-Pagès C, Furla P, Allemand D. 2008. Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism.Coral Reefs,27(3): 491-499.

    Miller A W, Reynolds A C, Sobrino C, Riedel G F. 2009.Shellfish face uncertain future in high CO2world:influence of acidification on oyster larvae calcification and growth in estuaries.PLoSOne,4(5): e5661.

    Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A,Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M,Lindsay K, Maier-Reimer E, Matear R, Monfray P,Mouchet A, Najjar R G, Plattner G K, Rodgers K B,Sabine C L, Sarmiento J L, Schlitzer R, Slater R D,Totterdell I J, Weirig M F, Yamanaka Y, Yool A. 2005.Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Nature,437(7059): 681-686.

    PandolfiJ M, Connolly S R, Marshall D J, Cohen A L. 2011.Projecting coral reef futures under global warming and ocean acidification.Science,333(6041): 418-422.

    Parker L M, Ross P M, O’Connor W A. 2010. Comparing the effect of elevatedpCO2and temperature on the fertilization and early development of two species of oysters.Marine Biology,157(11): 2 435-2 452.

    Pfister C A, Roy K, Wootton J T, McCoy S J, Paine R T,Suchanek T H, Sanford E. 2016. Historical baselines and the future of shell calcification for a foundation species in a changing ocean.ProceedingsoftheRoyalSocietyB:BiologicalSciences,283(1832): 20160392.

    Pierrot D, Lewis E, Wallace D W R. 2006. MS Excel program developed for CO2system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.

    Ries J B, Ghazaleh M N, Connolly B, Westfield I, Castillo K D. 2016. Impacts of seawater saturation state (ΩA=0.4-4.6) and temperature (10, 25°C) on the dissolution kinetics of whole-shell biogenic carbonates.Geochimicaet CosmochimicaActa,192: 318-337.

    Semesi I S, Beer S, Bj?rk M. 2009a. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow.MarineEcologyProgressSeries,382: 41-47.

    Semesi I S, Kangwe J, Bj?rk M. 2009b. Alterations in seawater pH and CO2affect calcification and photosynthesis in the tropical coralline alga,Hydrolithonsp. (Rhodophyta).Estuarine,CoastalandShelfScience,84(3): 337-341.

    Silverman J, Lazar B, Erez J. 2007. effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef.JournalofGeophysical Research:Oceans,112(C5): C05004.

    Talmage S C, Gobler C J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenariamercenaria),bay scallops (Argopectenirradians), and Eastern oysters(Crassostreavirginica).LimnologyandOceanography,54(6): 2 072-2 080.

    Talmage S C, Gobler C J. 2010. effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.Proceedingsofthe NationalAcademyofSciencesoftheUnitedStatesof America,107(40): 17 246-17 251.

    Tang Q S, Zhang J H, Fang J G. 2011. Shellfish and seaweed mariculture increase atmospheric CO2absorption by coastal ecosystems.MarineEcologyProgressSeries,424: 97-105.

    Thomsen J, Haynert K, Wegner K M, Melzner F. 2015. Impact of seawater carbonate chemistry on the calcification of marine bivalves.Biogeosciences,12(14): 4 209-4 220.

    Thomsen J, Melzner F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue musselMytilusedulis.MarineBiology,157(12): 2 667-2 676.

    Waldbusser G G, Gray M W, Hales B, Langdon C J, Haley B A, Gimenez I, Smith S R, Brunner E L, Hutchinson G.2016. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification.Limnologyand Oceanography,61(6): 1 969-1 983.

    Waldbusser G G, Hales B, Langdon C J, Haley B A, Schrader P, Brunner E L, Gray M W, Miller C A, Gimenez I. 2015.Saturation-state sensitivity of marine bivalve larvae to ocean acidification.Nat.ClimateChang,5(3): 273-280.

    Wang W M, Liu G X, Zhang T W, Chen H J, Tang L, Mao X W. 2016. effects of elevated seawater pCO2on early development of scallopArgopectenirradias(Lamarck,1819).JournalofOceanUniversityofChina,15(6):1 073-1 079.

    White M M, McCorkle D C, Mullineaux L S, Cohen A L.2013. Early exposure of bay scallops (Argopecten irradians) to high CO2causes a decrease in larval shell growth.PLoSOne,8(4): e61065.

    猜你喜歡
    大鵬
    周鵬飛:大鵬展翅 跨界高飛
    華人時刊(2022年7期)2022-06-05 07:33:46
    Beating standard quantum limit via two-axis magnetic susceptibility measurement
    看圖紙
    三棱錐中的一個不等式
    Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations *
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    李大鵬:打造縱向、橫向全域發(fā)展的蘇交科
    中國公路(2017年14期)2017-09-26 11:51:42
    劉業(yè)偉、王大鵬設(shè)計作品
    非誠勿擾
    AComparingandContrastingAnalysisofCooperationandPoliteness
    黄色a级毛片大全视频| 一级片'在线观看视频| 亚洲精品国产精品久久久不卡| 亚洲五月色婷婷综合| 18禁裸乳无遮挡动漫免费视频| 免费观看人在逋| 久久国产精品男人的天堂亚洲| 色婷婷久久久亚洲欧美| av一本久久久久| 亚洲国产欧美一区二区综合| 国产日韩欧美在线精品| 午夜福利影视在线免费观看| 亚洲精品国产av蜜桃| 成人18禁高潮啪啪吃奶动态图| 母亲3免费完整高清在线观看| 国产一卡二卡三卡精品| 精品少妇一区二区三区视频日本电影| 国产精品一区二区免费欧美 | 免费一级毛片在线播放高清视频 | 9191精品国产免费久久| 日韩有码中文字幕| 国产欧美亚洲国产| 老汉色∧v一级毛片| av在线播放精品| 视频区图区小说| 国产av精品麻豆| 国产欧美日韩一区二区三区在线| 黄色a级毛片大全视频| 操出白浆在线播放| 欧美激情高清一区二区三区| 亚洲精品一二三| 国产成人欧美| 一级毛片精品| 久久香蕉激情| 久久中文字幕一级| 欧美黑人精品巨大| 欧美亚洲日本最大视频资源| av国产精品久久久久影院| 欧美日韩福利视频一区二区| 国产av精品麻豆| 久久久精品免费免费高清| 国产成人欧美| 老司机深夜福利视频在线观看 | 三上悠亚av全集在线观看| 美国免费a级毛片| 欧美另类亚洲清纯唯美| 成人黄色视频免费在线看| 岛国毛片在线播放| 久久精品国产a三级三级三级| 亚洲欧美清纯卡通| 久久久精品94久久精品| 久久精品久久久久久噜噜老黄| 亚洲av美国av| 18禁观看日本| 黑人操中国人逼视频| av网站在线播放免费| 桃红色精品国产亚洲av| 国产精品.久久久| 女人被躁到高潮嗷嗷叫费观| 午夜福利视频精品| 亚洲第一欧美日韩一区二区三区 | 亚洲欧美清纯卡通| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人妻熟女乱码| 51午夜福利影视在线观看| 午夜福利一区二区在线看| 老司机亚洲免费影院| 久久综合国产亚洲精品| e午夜精品久久久久久久| 日韩大码丰满熟妇| 19禁男女啪啪无遮挡网站| 深夜精品福利| 91av网站免费观看| 男女边摸边吃奶| 欧美成狂野欧美在线观看| 日本vs欧美在线观看视频| 99热国产这里只有精品6| 黄频高清免费视频| 国产欧美亚洲国产| 国产淫语在线视频| 亚洲全国av大片| 中文字幕精品免费在线观看视频| 亚洲欧洲精品一区二区精品久久久| 别揉我奶头~嗯~啊~动态视频 | 午夜成年电影在线免费观看| 久久这里只有精品19| 国产成人影院久久av| 黄色视频,在线免费观看| av欧美777| 蜜桃国产av成人99| 免费在线观看视频国产中文字幕亚洲 | 国产精品久久久久成人av| 黑人猛操日本美女一级片| 国产熟女午夜一区二区三区| 在线看a的网站| 91成年电影在线观看| 日韩欧美一区二区三区在线观看 | 亚洲国产毛片av蜜桃av| 一区二区三区激情视频| av不卡在线播放| 亚洲色图综合在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲熟女精品中文字幕| 51午夜福利影视在线观看| 国产一区二区激情短视频 | 久久久精品国产亚洲av高清涩受| 免费看十八禁软件| 老司机影院毛片| 国产免费av片在线观看野外av| av线在线观看网站| 精品国产超薄肉色丝袜足j| a 毛片基地| 中文字幕高清在线视频| 免费av中文字幕在线| av片东京热男人的天堂| 免费观看a级毛片全部| 麻豆av在线久日| 日韩视频一区二区在线观看| 午夜福利一区二区在线看| 国产野战对白在线观看| 悠悠久久av| 9热在线视频观看99| 在线观看免费高清a一片| 欧美大码av| 高清av免费在线| 亚洲国产av影院在线观看| 又大又爽又粗| 国内毛片毛片毛片毛片毛片| 黄色视频不卡| 蜜桃在线观看..| 精品亚洲成a人片在线观看| 热re99久久精品国产66热6| 亚洲精品一卡2卡三卡4卡5卡 | 超碰成人久久| 王馨瑶露胸无遮挡在线观看| av国产精品久久久久影院| 国产人伦9x9x在线观看| 首页视频小说图片口味搜索| 日本wwww免费看| tocl精华| 老鸭窝网址在线观看| 大陆偷拍与自拍| 国产在线免费精品| 一本一本久久a久久精品综合妖精| 啦啦啦免费观看视频1| 成年av动漫网址| 亚洲国产欧美日韩在线播放| 欧美成人午夜精品| 欧美日韩精品网址| 天天躁日日躁夜夜躁夜夜| 国产99久久九九免费精品| 欧美大码av| 国产成人啪精品午夜网站| 亚洲av男天堂| 亚洲欧美成人综合另类久久久| 精品熟女少妇八av免费久了| 桃红色精品国产亚洲av| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲综合一区二区三区_| 一个人免费在线观看的高清视频 | 亚洲精品美女久久av网站| 91麻豆精品激情在线观看国产 | 国产色视频综合| 亚洲激情五月婷婷啪啪| 亚洲av日韩在线播放| 一个人免费在线观看的高清视频 | 满18在线观看网站| 成在线人永久免费视频| 99国产精品免费福利视频| 亚洲国产精品999| av欧美777| 在线观看一区二区三区激情| av线在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩黄片免| 99国产精品99久久久久| 国产精品亚洲av一区麻豆| av福利片在线| 中文欧美无线码| 国产精品成人在线| 成人手机av| 十八禁人妻一区二区| 一级片免费观看大全| 最近最新免费中文字幕在线| 亚洲国产欧美一区二区综合| 亚洲一码二码三码区别大吗| 精品国产乱码久久久久久男人| 黑丝袜美女国产一区| 久久久国产精品麻豆| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人免费电影在线观看| 亚洲一区中文字幕在线| 老熟妇乱子伦视频在线观看 | 久久精品国产a三级三级三级| 99久久人妻综合| 波多野结衣av一区二区av| 男女午夜视频在线观看| 极品少妇高潮喷水抽搐| 天天影视国产精品| 男人添女人高潮全过程视频| 午夜影院在线不卡| 久久亚洲精品不卡| 国产精品国产av在线观看| 国产精品国产av在线观看| kizo精华| 一二三四社区在线视频社区8| 亚洲av美国av| 一二三四社区在线视频社区8| 19禁男女啪啪无遮挡网站| 亚洲精品粉嫩美女一区| 19禁男女啪啪无遮挡网站| 国产一区二区三区在线臀色熟女 | av在线app专区| 天天躁狠狠躁夜夜躁狠狠躁| 久久狼人影院| 男女无遮挡免费网站观看| 久久精品国产亚洲av香蕉五月 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av教育| 国产精品秋霞免费鲁丝片| 三级毛片av免费| 久久久久视频综合| 午夜久久久在线观看| www.熟女人妻精品国产| 人人妻人人添人人爽欧美一区卜| 免费一级毛片在线播放高清视频 | 女人高潮潮喷娇喘18禁视频| 波多野结衣av一区二区av| 日韩电影二区| 男女床上黄色一级片免费看| 午夜福利在线免费观看网站| 黄频高清免费视频| 免费看十八禁软件| 99久久国产精品久久久| 两个人看的免费小视频| 亚洲中文字幕日韩| 美女高潮到喷水免费观看| 一级片免费观看大全| 中亚洲国语对白在线视频| 中文欧美无线码| 麻豆国产av国片精品| 欧美日韩一级在线毛片| 亚洲免费av在线视频| www.精华液| 黑人欧美特级aaaaaa片| 午夜福利视频精品| 欧美精品啪啪一区二区三区 | 亚洲 国产 在线| 国产又爽黄色视频| 亚洲,欧美精品.| 美女高潮到喷水免费观看| 免费观看人在逋| 视频在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美在线一区| svipshipincom国产片| 久久久久久久精品精品| 搡老熟女国产l中国老女人| 免费日韩欧美在线观看| 激情视频va一区二区三区| 99国产极品粉嫩在线观看| av欧美777| 国产一区二区激情短视频 | 青春草亚洲视频在线观看| 免费一级毛片在线播放高清视频 | 午夜两性在线视频| 蜜桃国产av成人99| av视频免费观看在线观看| 欧美在线一区亚洲| 操美女的视频在线观看| 一本综合久久免费| 纯流量卡能插随身wifi吗| 国产在线观看jvid| 美女高潮喷水抽搐中文字幕| 亚洲性夜色夜夜综合| 电影成人av| 国产成人一区二区三区免费视频网站| 亚洲avbb在线观看| 真人做人爱边吃奶动态| a 毛片基地| 每晚都被弄得嗷嗷叫到高潮| 少妇精品久久久久久久| 国产精品二区激情视频| 大陆偷拍与自拍| 国产欧美日韩一区二区精品| 国产片内射在线| 亚洲成人手机| 美女视频免费永久观看网站| 美女中出高潮动态图| 欧美激情极品国产一区二区三区| 人成视频在线观看免费观看| 亚洲色图 男人天堂 中文字幕| 成年女人毛片免费观看观看9 | 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 亚洲中文日韩欧美视频| 久久人人爽人人片av| 嫩草影视91久久| 国产不卡av网站在线观看| 国产精品av久久久久免费| 又大又爽又粗| 18禁裸乳无遮挡动漫免费视频| www.熟女人妻精品国产| 丝袜美足系列| 建设人人有责人人尽责人人享有的| 午夜免费成人在线视频| 亚洲国产精品999| 狠狠婷婷综合久久久久久88av| 欧美成狂野欧美在线观看| 午夜激情久久久久久久| 免费在线观看日本一区| 亚洲午夜精品一区,二区,三区| 老司机靠b影院| 日韩电影二区| 久久精品人人爽人人爽视色| 午夜福利在线观看吧| 女人精品久久久久毛片| 国产精品一区二区免费欧美 | 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费| 69精品国产乱码久久久| √禁漫天堂资源中文www| 热re99久久国产66热| 妹子高潮喷水视频| 国产淫语在线视频| 免费高清在线观看日韩| 欧美精品一区二区免费开放| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人免费无遮挡视频| 国产亚洲av高清不卡| av在线老鸭窝| 亚洲av日韩精品久久久久久密| 亚洲激情五月婷婷啪啪| 老司机午夜福利在线观看视频 | 99精国产麻豆久久婷婷| 国产黄频视频在线观看| 欧美另类亚洲清纯唯美| 亚洲欧美一区二区三区久久| 激情视频va一区二区三区| av欧美777| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 国产片内射在线| 亚洲午夜精品一区,二区,三区| 99国产极品粉嫩在线观看| 老汉色av国产亚洲站长工具| 免费看十八禁软件| 国产亚洲欧美精品永久| 亚洲国产欧美网| 悠悠久久av| 男女床上黄色一级片免费看| 亚洲激情五月婷婷啪啪| 操美女的视频在线观看| 成人三级做爰电影| 亚洲情色 制服丝袜| 精品少妇内射三级| 免费日韩欧美在线观看| 精品亚洲乱码少妇综合久久| 国产三级黄色录像| 成年人黄色毛片网站| 欧美国产精品一级二级三级| www日本在线高清视频| 国产在线一区二区三区精| 美女高潮到喷水免费观看| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| avwww免费| 欧美xxⅹ黑人| 日韩中文字幕视频在线看片| 黑人操中国人逼视频| 99久久人妻综合| 国产在线免费精品| 欧美人与性动交α欧美精品济南到| 人妻人人澡人人爽人人| 亚洲久久久国产精品| 国产麻豆69| 亚洲av片天天在线观看| 18禁观看日本| 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 国产精品一区二区精品视频观看| 精品国产一区二区三区四区第35| 91av网站免费观看| 国产97色在线日韩免费| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 黄色视频不卡| 在线观看免费午夜福利视频| 看免费av毛片| 久久久久久久大尺度免费视频| 捣出白浆h1v1| 国产欧美日韩一区二区精品| 久久综合国产亚洲精品| 亚洲精品在线美女| 国产精品二区激情视频| 香蕉国产在线看| 黄片播放在线免费| 不卡一级毛片| 国产在线视频一区二区| 国产熟女午夜一区二区三区| 精品国内亚洲2022精品成人 | 国产精品久久久av美女十八| 中文字幕另类日韩欧美亚洲嫩草| 欧美黄色淫秽网站| 久久精品亚洲熟妇少妇任你| 午夜影院在线不卡| 男女下面插进去视频免费观看| 欧美另类亚洲清纯唯美| 97人妻天天添夜夜摸| 久久久欧美国产精品| 一区二区三区精品91| 我的亚洲天堂| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 一区二区av电影网| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 在线看a的网站| svipshipincom国产片| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 69精品国产乱码久久久| 男男h啪啪无遮挡| 国产亚洲精品第一综合不卡| 国产免费福利视频在线观看| 免费久久久久久久精品成人欧美视频| 日韩 亚洲 欧美在线| 久久中文看片网| 美女主播在线视频| 亚洲av片天天在线观看| 国产一区有黄有色的免费视频| cao死你这个sao货| 国产高清国产精品国产三级| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 久久天堂一区二区三区四区| 男人操女人黄网站| 王馨瑶露胸无遮挡在线观看| 国产一区有黄有色的免费视频| 人成视频在线观看免费观看| 成人影院久久| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 成人三级做爰电影| 亚洲熟女毛片儿| 国产三级黄色录像| 久久久久视频综合| 少妇 在线观看| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 久久国产亚洲av麻豆专区| 欧美少妇被猛烈插入视频| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 成人黄色视频免费在线看| 99久久综合免费| 男女无遮挡免费网站观看| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 欧美av亚洲av综合av国产av| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| tube8黄色片| a在线观看视频网站| 91精品伊人久久大香线蕉| tube8黄色片| a在线观看视频网站| 亚洲中文日韩欧美视频| 男人添女人高潮全过程视频| 两性夫妻黄色片| 国产亚洲精品一区二区www | 午夜老司机福利片| 国产成+人综合+亚洲专区| 日韩电影二区| 视频区图区小说| 一级a爱视频在线免费观看| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 国产日韩欧美亚洲二区| 91国产中文字幕| 在线十欧美十亚洲十日本专区| 国产有黄有色有爽视频| 亚洲国产欧美网| 啦啦啦 在线观看视频| 亚洲欧洲日产国产| 人人妻,人人澡人人爽秒播| 免费高清在线观看视频在线观看| 日韩免费高清中文字幕av| 在线精品无人区一区二区三| 成人三级做爰电影| 亚洲全国av大片| 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| 精品人妻熟女毛片av久久网站| 高清av免费在线| 亚洲伊人色综图| 欧美激情高清一区二区三区| 一本色道久久久久久精品综合| 一区二区三区乱码不卡18| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到| 欧美亚洲日本最大视频资源| 成人免费观看视频高清| 黑人猛操日本美女一级片| 国产精品影院久久| a在线观看视频网站| 9191精品国产免费久久| 久久亚洲国产成人精品v| 在线av久久热| 免费在线观看影片大全网站| 永久免费av网站大全| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 国产一级毛片在线| 老鸭窝网址在线观看| 国产免费一区二区三区四区乱码| 日韩欧美一区视频在线观看| 日韩一卡2卡3卡4卡2021年| 丝袜在线中文字幕| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 99久久99久久久精品蜜桃| 宅男免费午夜| 久久青草综合色| 女人久久www免费人成看片| 热re99久久国产66热| 成在线人永久免费视频| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 亚洲人成电影免费在线| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 三上悠亚av全集在线观看| 亚洲美女黄色视频免费看| 亚洲中文字幕日韩| 超碰97精品在线观看| 国产有黄有色有爽视频| 精品国内亚洲2022精品成人 | 1024香蕉在线观看| 欧美另类亚洲清纯唯美| 精品亚洲成国产av| 99热国产这里只有精品6| 国产亚洲一区二区精品| 永久免费av网站大全| 午夜福利影视在线免费观看| 亚洲精品粉嫩美女一区| 国产高清国产精品国产三级| 欧美97在线视频| 欧美黄色淫秽网站| 99久久人妻综合| 99香蕉大伊视频| 亚洲欧美激情在线| 日韩人妻精品一区2区三区| 国产在视频线精品| 亚洲中文av在线| 精品国内亚洲2022精品成人 | 一级片免费观看大全| 亚洲va日本ⅴa欧美va伊人久久 | 久久香蕉激情| 妹子高潮喷水视频| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 欧美精品一区二区大全| 欧美人与性动交α欧美软件| 精品久久久久久久毛片微露脸 | 亚洲熟女毛片儿| 亚洲精品自拍成人| 欧美精品亚洲一区二区| 亚洲七黄色美女视频| 无限看片的www在线观看| 天天添夜夜摸| 亚洲av片天天在线观看| 视频区欧美日本亚洲| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 淫妇啪啪啪对白视频 | 男女之事视频高清在线观看| 9191精品国产免费久久| av有码第一页| 国产1区2区3区精品| 国产一区二区激情短视频 | 久久精品aⅴ一区二区三区四区| 精品久久蜜臀av无| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色淫秽网站| 国产精品影院久久| 极品人妻少妇av视频| 人人妻,人人澡人人爽秒播| 亚洲国产av影院在线观看| 欧美日韩亚洲高清精品| 欧美日韩一级在线毛片| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 久久精品久久久久久噜噜老黄| 女人被躁到高潮嗷嗷叫费观| 99香蕉大伊视频| 亚洲全国av大片| 日本wwww免费看| 新久久久久国产一级毛片| 成人国产av品久久久| 另类亚洲欧美激情| 成人影院久久| 人妻一区二区av| av天堂久久9|