• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Response of ammonia-oxidizing betaproteobacteria to shortterm fertilization in a salt marsh in China*

    2018-05-07 06:07:23MAYuexin馬悅欣TAOWei陶韋LIUJiao劉姣LIUChangfa劉長發(fā)LIJin李晉LIUJichen劉繼晨
    Journal of Oceanology and Limnology 2018年2期
    關(guān)鍵詞:長發(fā)

    MA Yuexin (馬悅欣) , TAO Wei (陶韋) , LIU Jiao (劉姣) LIU Changfa (劉長發(fā)) ,LI Jin (李晉) , LIU Jichen (劉繼晨)

    1 INTRODUCTION

    Coastal salt marshes provide a number of services to ecosystems, including the interception of derived nitrogen (N) before it reaches nearshore oceans(Nelson and Zavaleta, 2012). Human alteration of the N cycle has accelerated the transfer of N through rivers to coastal areas (Vitousek et al., 1997). By intercepting the excess nutrients, salt marshes mitigate eutrophication in coastal areas (Valiela and Cole,2002; Vivanco et al., 2015).

    One of the most important processes in the marine N cycle is nitrification, a two-step process that first oxidizes ammonia to nitrite via the intermediate hydroxylamine; then oxidizes the nitrite to nitrate.The first step, ammonia oxidation, is the rate-limiting step and is executed by autotrophic ammoniaoxidizing bacteria (AOB) and ammonia-oxidizing archaea. AOB are restricted to two monophyletic clusters within the beta- and gamma-proteobacteria(β-AOB and γ-AOB) (Head et al., 1993; Purkhold et al., 2000). β-AOB are thought to be more abundant than γ-AOB in marine sediments (Nold et al., 2000).Environmental factors clearly influence the nitrification, abundance and composition of ammoniaoxidizers in salt marshes. Dollhopf et al. (2005) found that high concentrations of Fe (III) and macrofauna burrowing activity influenced the abundance of β-AOB and nitrification in a Georgia salt marsh dominated bySpartinaalterniflora. In the Wequetequock-Pawcatuck tidal marsh of southeastern Connecticut, Moin et al. (2009) observed a significant salinity effect on β-AOB abundance at sites dominated by short or tallS.alternifloraorS.patens, but detected no γ-AOB 16S rRNA genes at these sites. Lage et al.(2010) and Peng et al. (2012) investigated the impact of fertilization on β-AOB. They identified the changes in β-AOB community after short-term (2 years) N addition in the saline Scarborough Marsh (which is dominated byS.patens), and after long-term (nearly 40 years) NPK application in the Great Sippewissett Marsh (which is dominated byS.alterniflora,S.patensorDistichlisspicata). The β-AOB abundance remained unaff ected in both marshes. Conversely, in grassland soil systems, the β-AOB abundance reportedly increases after N addition (Shen et al.,2011; Chen et al., 2014; Tian et al., 2014).

    The Shuangtai estuary wetland, located north of Liaodong Bay (which forms part of the innermost gulf of the Bohai Sea in northeast China), was listed as a wetland of international importance in 2004. Bai et al. (2010, 2011) found that nitrification was largely affected by ammonia N and total phosphorus content,and that soluble salt, total N and organic matter greatly influenced the quantity of AOB in sediments of the Liaohe estuary wetland. Moreover, high salinity significantly reduced the number and diversity of AOB in a reed wetland of Liaohe estuary (Zhong et al., 2013). The ecosystem of the Shuangtai estuary wetland receives increasing nitrogen inputs from anthropogenic sources, such as wastewater and N fertilizer application (Yi, 2013). However, how the β-AOB respond to N enrichment in this ecosystem has not been reported. In the present study, we investigated whether different levels and forms of N addition alter the composition and abundance of β-AOB in Shuangtai estuary, and the potential nitrification rate in a saltmarsh of this estuary, at a site dominated bySuaedaheteroptera.

    2 MATERIAL AND METHOD

    2.1 Experimental design

    The experiment was conducted in asaltmarsh located in Shuangtai estuary, China. The dominant plant in the study area (~4 800 m2) wasS.heteroptera.We selected six fertilization treatments and an unfertilized control. Each treatment was applied to three replicate plots. At each plot, a polyvinyl chloride(PVC) plastic pipe (inner diameter 15 cm; height 20 cm) was driven into the sediment, leaving 2–3 cm of pipe above the ground. Each pipe contained approximately 15 strains of seedlings. The plots were treated with (a) different amounts of a single N fertilizer (urea: 0.1 (A1), 0.2 (A2), 0.4 (A3), and 0.8 g/kg (A4)) and (b) different forms of N fertilizers (urea(B1=A2), (NH4)2SO4(B2), and NH4NO3(B3), each applied at 0.2 g/kg). Treatments were applied 1–4 times during the plant-growing season (on May 15,July 4, August 14 and September 26 of 2013).Untreated plots (A0=B0) were included as controls.Each N amendment was blended in 50 mL of water and injected into the appropriate pipes using a spinal needle. An equivalent volume of deionized water was injected into the control pipes.

    2.2 Sediment sampling

    Before the nitrogen application, sediment samples(10–15 cm) were collected from each PVC pipe on July 4, August 14, September 26, and November 22 of 2013, placed in sealed plastic bags, and labeled. All samples were kept on ice in the dark during transportation to the laboratory, then stored at -20°C until required for denaturing gradient gel electrophoresis(DGGE) and real-time quantitative PCR (qPCR) analysis.

    2.3 β-AOB community analysis by DGGE

    The community DNA was extracted from 0.6 g of the pooled samples from the three replicate plots using a fast genomic DNA isolation kit for soils (Shanghai Sangon Biological Engineering Technology and Services Company Limited, Shanghai, China)following the manufacturer’s instructions. The β-AOB 16S rRNA gene was detected by a nested PCR strategy.The first amplification was performed using βAMO primers (McCaig et al., 1994) in a 50-μL reaction mixture containing 5 μL of 10×PCR buff er, 3 μL of template, 200 μmol/L of dNTP, 1.5 mmol/L of MgCl2,0.4 μmol/L of each primer and 0.5 UTaqof polymerase.The PCR procedure was 5 min of initial denaturation at 94°C, 30 cycles of denaturation (30 s) at 94°C,annealing (30 s) at 55°C and primer extension (90 s) at 72°C, followed by a final extension at 72°C for 5 min.The secondary amplification was performed using CTO189f-GC and CTO654r primers (Kowalchuk et al., 1997) in 50 μL of a reaction mixture with the above-described composition. The procedure was 5 min of initial denaturation at 94°C, 20 cycles of denaturation (1 min) at 94°C, 1 min of initial annealing at 65°C (decreasing by 0.5°C per cycle to a touchdown temperature of 55°C), and extension (1 min) at 72°C;this was followed by 10 cycles of denaturation (1 min)at 94°C, annealing (1 min) at 55°C, extension (1 min)at 72°C, and a final extension at 72°C for 10 min. The amplification products were analyzed by electrophoresis in 1% (w/v) agarose gel containing GoldView.

    The sequence-specific separation of the PCR products was performed by a Dcode? Universal Mutation Detection System (Bio-Rad Laboratories Inc., Hercules, CA, USA). The PCR samples were applied onto 6% (w/v) polyacrylamide gels in a running buff er (1% tris-acetate-EDTA). The gels were prepared with a denaturing urea and formamide gradient of 45% to 55%, and a polyacrylamide and bis-acrylamide ratio of 37.5:1. Electrophoresis was run at 70 V and 60°C for 16 h. Subsequently, the gels were stained with Genfinder according to the manufacturer’s instructions and photographed under UV transillumination. The DGGE fingerprint patterns were analyzed by Quantity One Software (Bio-Rad Laboratories). The differences between the DGGE patterns and dendrograms were determined by presence-absence matrices constructed using the Dice coefficient and the unweighted pair-group method with arithmetic average algorithms. These analyses were performed in the NTSYS software package(version 2.10e, Exeter Software, Setauket, New York).

    Bands selected from the DGGE gel were eluted and reamplified with the same primers but omitting the GC-clamp. The PCR products were sequenced by Shanghai Sangon Biological Engineering Technology and Services Company Limited (Shanghai, China).The sequences have been submitted to GenBank under NCBI accession numbers KT259283–KT259292, KT259294–KT259305, KT280472–KT280473 and KX819277–KX819292. They were aligned using the ClustalW program and compared with other AOB 16S rRNA gene sequences available in the NCBI database of GenBank (http://www.ncbi.nlm.nih.gov/BLAST). The neighbor-joining tree was constructed using MEGA 4 based on the Kimura-2-parameter distances and a bootstrap analysis of 1 000 re-samplings (Tamura et al., 2007).

    2.4 Quantification of β-AOB amoA gene by qPCR

    The genomic DNA was extracted from 0.3 g of sample using the fast genomic DNA isolation kit for soils (Shanghai Sangon Biological Engineering Technology and Services Company Limited,Shanghai, China) according to the instructions. qPCR was performed on a 7500 real-time PCR system(StepOne?, Applied Biosystems, Foster City, CA,USA) using Green-2-Go qPCR Mastermix. The β-AOBamoAgene was amplified using an amoA-1F and amoA-2R primer set (Rotthauwe et al., 1997).The qPCR mixture (20 μL) contained 10 μL of Green-2-Go qPCR Mastermix (2×), 0.25 μmol/L of each primer, and 2 μL template DNA. All reactions were performed in 8-strip thin-well PCR tubes with ultraclean cap strips. The qPCR thermocycling parameters were as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 15 s and primer annealing at 60°C for 60 s. The copy number of the standard plasmids carrying theamoAgenes (constructed by cloning the sediment samples) ranged from 102to 106. The qPCRs of the standards and DNA from each sample were performed in triplicate. The specificity of the qPCR amplification was determined from the melting curve.In all experiments, possible contamination was detected by qPCR of negative controls containing no template DNA. Gene abundance was normalized per gram of wet sediment.

    2.5 Potential nitrification rates

    Potential nitrification rate experiments were set up within 2 h of transportation to the laboratory. Samples of ~10 g wet sediment were transferred to 250 mL flasks containing 100 mL of NH4Cl solution (25 mg N/L, salinity 5). All samples were incubated at 25°C with continuous shaking at 150 r/min. Nitrogen(nitrate-N+nitrite-N) in the subsamples was measured every 4 h from 0 to 24 h using an AutoAnalyzer 3(Bran Luebbe, Norderstedt, Germany). Potential nitrification rates were calculated from the exponential phase of the increase in N (nitrate-N+nitrite-N) per gram of wet sediment over time.

    2.6 Statistical analyses

    Multiple comparisons and Pearson’s correlations among the quantitative variables were performed using SPSS version 22.0. The quantitative differences between treatments were examined by Tukey’s test.The β-AOBamoAabundance data were logarithmtransformed prior to analyses to alleviate heteroscedasticity. If the normality criteria were not met, the data were analyzed by nonparametric tests.

    3 RESULT

    3.1 Responses of β-AOB community to fertilization

    Fig.1 DGGE profile of nested PCR-amplified CTO fragments

    Fig.2 Phylogenetic relationships among the β-AOB 16S rRNA gene nucleotide sequences recovered from the saltmarsh plots

    The different amounts and forms of N treatment yielded different banding patterns (Fig.1). Forty bands were excised from the DGGE profiles, sequenced and subjected to phylogenetic analysis (Fig.2). The sequences of 11 bands (7-2, 7-3, 7-4, 7-5, 7-6, 7-7,7-8, 7-9 7-10, 8-3 and 8-8) were highly similar to those of members of the genusNitrosospira, while the sequences of the other 27 bands (excluding 8-1 and 8-6) were closely related toNitrosomonasbacteria(Table 1). Bands 7-2, 7-3, 7-4, 7-5, 7-6, 7-10, 8-6, 8-8,9-2, 9-3, 9-8, 9-12, 11-7 and 11-10 were detected only in the N fertilizer treatments (Fig.1). Bands 9-8 and 9-12 were unique to the 0.8 g N and (NH4)2SO4treatments, respectively (Fig.1). Nitrogen treatment effects were verified by the unweighted pair group method with arithmetic average clustering (Fig.3).

    3.2 Responses of abundance of β-AOB and potential nitrification rate to fertilization

    Across all sampling dates except September, the β-AOBamoAgene abundance was significantly higher in samples treated with 0.2 g N than in the control samples (Table 2,P<0.05). In samples treated with 0.1, 0.4 and 0.8 g N, the β-AOBamoAgene abundance was significantly higher than the control abundance only in July and August (Table 2,P<0.05).Across all sampling dates, no significant differences in β-AOBamoAgene abundance were observed among different amounts of N application (Table 2,P>0.05). Thus, the β-AOBamoAgene abundance was significantly affected by the N amount only in July and August (Table 2,P<0.05).

    Fig.3 Dendrograms comparing the similarity levels of the β-AOB communities in different sediment samples

    Table 1 Blast analysis of the AOB 16S rDNA sequences derived from DGGE bands

    Table 2 effects of varying the amount and form of N treatment on β-AOB amoA gene abundance

    Relative to the control, the β-AOBamoAgene abundance was significantly increased by urea application across all sampling dates except November(Table 2,P<0.05), by (NH4)2SO4addition in July and August alone (Table 2,P<0.05), and by NH4NO3addition in August alone (Table 2,P<0.05). Moreover,the β-AOBamoAgene abundance significantly differed between the urea- and NH4NO3-treated samples in August and November (Table 2,P<0.05),between the urea- and (NH4)2SO4-treated applications in August alone (Table 2,P<0.05), and between the NH4NO3- and (NH4)2SO4-treated applications in November alone (Table 2,P<0.05). Thus, the β-AOBamoAgene abundance was significantly affected by the N form across all sampling dates (Table 2,P<0.05).

    Over 6 months’ application of 0.1, 0.2 and 0.4 g N,the potential nitrification rate was significantly higher than the control rate (Table 3,P<0.05). However, the addition of 0.8 g N significantly increased the potential nitrification rate only in November (Table 3,P<0.05).Moreover, the potential nitrification rate after 0.2 g N addition was significantly higher than after 0.1 and 0.4 g N addition in August and November (Table 3,P<0.05), and after 0.8 g N addition at all sampling dates except September (Table 3,P<0.05). The potential nitrification rates after 0.4 g N and 0.8 g Naddition were significantly different only in November(Table 3,P<0.05). No significant differences in potential nitrification rate were observed between 0.1 g N and 0.4 g N application, or between 0.1 g N and 0.8 g N addition, across all sampling dates. Thus,the potential nitrification rate was significantly affected by the N amount at all sampling dates (Table 3,P<0.05).

    Table 3 effects of varying the amount and form of N on potential nitrification rate

    Urea, (NH4)2SO4and NH4NO3addition significantly increased the potential nitrification rate over the control (Table 3,P<0.05) across all sampling dates except July (in which the rates of the (NH4)2SO4-and NH4NO3-treated samples were statistically similar to the control rate). Furthermore, significant differences in the potential nitrification rate were observed between the urea- and (NH4)2SO4-treated samples in August and November alone (Table 3,P<0.05), and between the urea- and NH4NO3-treated samples in November alone (Table 3,P<0.05).Finally, no differences in potential nitrification rate were observed between the (NH4)2SO4- and NH4NO3-treated samples at any sampling date.Thus, the potential nitrification rate was significantly affected by the N form across all sampling dates (Table 3,P<0.05).

    The potential nitrification rates were significantly correlated with β-AOB abundance across all sampling dates (Fig.4,P<0.05), suggesting that the resident β-AOBs are active ammonia oxidizers.

    Fig.4 Relationship between potential nitrification rate and amoA gene abundance of β-AOBs

    4 DISCUSSION

    In previous experiments on salt marsh sediments,the β-AOB community composition shifted after 2 years’ application of single nutrients (N), and after nearly 40 years of mixed fertilizer (NPK) application(Lage et al., 2010; Peng et al., 2012). In the present study, the β-AOB community responded to shortterm (2–6 months) fertilization with different amounts of a specific N source (urea) and with different forms of N (urea, (NH4)2SO4and NH4NO3). The AOB community composition might actually be linked to N availability (Hynes and Germida, 2012). Similarly,the β-AOB community in fertilized soils is affected by urea, (NH4)2HPO4and NH4NO3applied at different amounts (Shen et al., 2011; Chen et al., 2013; Xiao et al., 2014; Wang et al., 2015). Sequences related toNitrosospiraandNitrosomonaswere detected in the present study of a saltmarsh in Shuangtai estuary.ElevenNitrosospirasequences were recovered in July and August. In the Wequetequock-Pawcatuck tidal marsh (dominated byS.alternifloraorS.patens)and the saltmarsh in Scarborough Marsh (dominated byS.patens), almost all of the β-AOBamoAsequences form aNitrosospira-like clade (Moin et al.,2009; Lage et al., 2010). The same sequence type predominates in the Great Sippewissett Marsh, which is mainly populated byS.alterniflora,S.patensorD.spicata(Peng et al., 2012). The present study found 27Nitrosomonassequences in July, August,September and November. The intensities of bands 8-4 and 9-5 increased after N addition, band 9-8 was restricted by 0.8 g N treatment, and band 9-12 was detected only after (NH4)2SO4application. These findings were partly supported by Peng et al. (2012),who found that sequences related toNitrosomonasspp. dominated in systems treated with high-toexcessive levels of mixed NPK fertilizer.Nitrosomonas-related sequences also predominate in fertilized or polluted sediments (Beman and Francis,2006; Dang et al., 2010; Cao et al., 2012). Moreover,most of the 16S rRNA gene sequences were closely related to uncultured AOB. By cultivating these culturally recalcitrant AOBs and characterizing their ecophysiology, we can potentially identify specific AOB populations that consistently respond to fertilization (Peng et al., 2012).

    In this study, the abundances of the β-AOBamoAgenes ranged from 4.1×105to 1.6×106copies/g sediment, within the abundance ranges reported in other estuarine and saltmarsh studies (Moin et al.,2009; Bernhard and Bollmann, 2010; Peng et al.,2012; Marton et al., 2015). Specifically, the abundance of β-AOBamoAgenes ranged from 3.6×103to 2.6×107copies/g sediment in the Wequetequock-Pawcatuck tidal marsh (Moin et al., 2009), from 1.2×106to 1.63×108copies g/wet sediment in a midtidal saltmarsh in Scarborough Marsh (Lage et al.,2010), and from 4.5×103to 1.3×107copies/g sediment in the Great Sippewissett Marsh (Peng et al., 2012). In our study, the β-AOB abundance significantly increased in the presence of various amounts of a specific N source (urea), and in the presence of various N sources (urea, (NH4)2SO4and NH4NO3). Nitrogen addition positively aff ects the β-AOB abundance in agricultural soils (Glaser et al., 2010; Xu et al., 2012;Ai et al., 2013), forest soils (Long et al., 2012; Wertz et al., 2012) and grassland soils (Di et al., 2009; Shen et al., 2011; Tian et al., 2014; Chen et al., 2014).Consistent with our results, Kastl et al. (2015) found that N amounts aff ects the β-AOB abundance at the root–soil interfaces of plants with different N-uptake strategies, and Tian et al. (2014) reported that β-AOB abundance in fertilized grassland soil responds differently to different forms of N. However, Lage et al. (2010) and Peng et al. (2012) reported no effect of fertilization on β-AOB abundance in saltmarshes. The contrasting responses may arise from differences in the duration and amount of the added N, the form in which the N was applied, the plant species and the environmental factors of the investigated sites. In the present study, the β-AOB abundance may have positively responded to the increased N availability(Bai et al., 2011), as N provides energy for ammonia oxidizers. In addition, different amounts and forms of N fertilizers can alter the salinity, which may also affect β-AOB abundance (Moin et al., 2009).

    The range of potential nitrification rates was higher in the saltmarsh in Shuangtai estuary than in other saltmarsh sediments (Dollhopf et al., 2005; Moin et al., 2009). Consistent with previous studies (Di et al.,2009; Wertz et al., 2012; Ai et al., 2013; Chen et al.,2013, 2014), we found that N fertilization increases the sediment potential nitrification rate, indicating that short-term N application greatly promotes the sediment nitrification function. Moreover, the potential nitrification rate was significantly correlated with β-AOB abundance during the plant-growing season, suggesting that nitrification is driven by β-AOB in the saltmarsh in Shuangtai estuary. Dollhopf et al. (2005) reported similar findings in saltmarsh sediments.

    5 CONCLUSION

    In summary, N addition altered the β-AOB community composition, increasing both β-AOB abundance and potential nitrification rate. Moreover,the microbial parameters responded differently to varying amounts of a specific nitrogen source (urea)and to different forms of nitrogen applied at the same concentration. To our knowledge, we present the first demonstration that short-term N application influences the sediment β-AOB community, β-AOB abundance and potential nitrification rate in a saltmarsh ecosystem.

    Ai C, Liang G Q, Sun J W, Wang X B, He P, Zhou W. 2013.different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil.Soil Biol.Biochem.,57: 30-42.

    Bai J, Chen C T, Zhao Y G, Tian W J, Dong X, Yin N N. 2010.Studies on nitrobacteria and nitrification in Liaohe estuary wetland sediments.Environ.Sci.,31(12): 3 011-3 017. (in Chinese with English abstract)

    Bai J, Dong X, Zhao Y G. 2011. Characteristics of temporal and spatial distribution of ammonia-oxidizing bacteria in Liaohe estuary wetland soil.ChinaEnviron.Sci.,31(11):1 870-1 874. (in Chinese with English abstract)

    Bayer K, Schmitt S, Hentschel U. 2008. Physiology, phylogeny andinsituevidence for bacterial and archaeal nitrifiers in the marine spongeAplysinaaerophoba.Environ.Microbiol.,10(11): 2 942-2 955.

    Beman J M, Francis C A. 2006. Diversity of ammoniaoxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari,Mexico.Appl.Environ.Microbiol.,72(12): 7 767-7 777.

    Bernhard A E, Bollmann A. 2010. Estuarine nitrifiers: new players, patterns and processes.Estuar.Coast.ShelfSci.,88(1): 1-11.

    Burrell P C, Phalen C M, Hovanec T A. 2001. Identification of bacteria responsible for ammonia oxidation in freshwater aquaria.Appl.Environ.Microbiol.,67(12): 5 791-5 800.

    Cao H L, Hong Y G, Li M, Gu J D. 2012. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea.Appl.Microbiol.Biotechnol.,94(1): 247-259.

    Chen Y L, Hu H W, Han H Y, Du Y, Wan S Q, Xu Z W, Chen B D. 2014. Abundance and community structure of ammonia-oxidizingArchaeaandBacteriain response to fertilization and mowing in a temperate steppe in Inner Mongolia.FEMSMicrobiol.Ecol.,89(1): 67-79.

    Chen Y L, Xu Z W, Hu H W, Hu Y J, Hao Z P, Jiang Y, Chen B D. 2013. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia.Appl.SoilEcol.,68: 36-45.

    Dang H Y, Li J, Chen R P, Wang L, Guo L Z, Zhang Z N, Klotz M G. 2010. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizingBetaproteobacteriain response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China.Appl.Environ.Microbiol.,76(14): 4 691-4 702.

    Di H J, Cameron K C, Shen J P, Winefield C S, O’Callaghan M, Bowatte S, He J Z. 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils.Nat.Geosci.,2(9): 621-624.

    Dollhopf S L, Hyun J H, Smith A C, Adams H J, O’Brien S,Kostka J E. 2005. Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments.Appl.Environ.Microbiol.,71(1): 240-246.

    Glaser K, Hackl E, Inselsbacher E, Strauss J, Wanek W,Zechmeister-Boltenstern S, Sessitsch A. 2010. Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment.FEMSMicrobiol.Ecol.,74(3): 575-591.

    Grommen R, Dauw L, Verstraete W. 2005. Elevated salinity selects for a less diverse ammonia-oxidizing population in aquarium biofilters.FEMSMicrobiol.Ecol.,52(1): 1-11.

    Haaijer S C M, Ji K, van Niftrik L, Hoischen A, Speth D, Jetten M S M, Damsté J S, Op den Camp H J M. 2013. A novel marine nitrite-oxidizingNitrospiraspecies from Dutch coastal North Sea water.Front.Microbiol.,4: 60.

    Head I M, Hiorns W D, Embley T M, McCarthy A J, Saunders J R. 1993. The phylogeny of autotrophic ammoniaoxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences.J.Gen.Microbiol.,139(6): 1 147-1 153.

    Hynes H M, Germida J J. 2012. Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta.SoilBiol.Biochem.,46: 18-25.

    Itoi S, Niki A, Sugita H. 2006. Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the puff erfishTakifugurubripes.Aquaculture,256(1-4): 287-295.

    Jangid K, Williams M A, Franzluebbers A J, Sanderlin J S,Reeves J H, Jenkins M B, Endale D M, Coleman D C,Whitman W B. 2008. Relative impacts of land-use,management intensity and fertilization upon soil microbial community structure in agricultural systems.SoilBiol.Biochem.,40(11): 2 843-2 853.

    Kastl E M, Schloter-Hai B, Buegger F, Schloter M. 2015.Impact of fertilization on the abundance of nitrifiers and denitrifiers at the root-soil interface of plants with different uptake strategies for nitrogen.Biol.Fertil.Soils,51(1):57-64.

    Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. 1997. Analysis of ammoniaoxidizing bacteria of the beta subdivision of the classProteobacteriain coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.Appl.Environ.Microbiol.,63(4): 1 489-1 497.

    Laanbroek H J, Keijzer R M, Verhoeven J T A, Whigham D F.2012. The distribution of ammonia-oxidizing betaproteobacteria in stands of Black mangroves(Avicenniagerminans).Front.Microbiol.,3: 153.

    Lage M D, Reed H E, Weihe C, Crain C M, Martiny J B H.2010. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments.ISMEJ.,4(7): 933-944.

    Long X E, Chen C R, Xu Z H, Oren R, He J Z. 2012. Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under tenyears elevated CO2.SoilBiol.Biochem.,46: 163-171.

    Magalh?es C, Bano N, Wiebe W J, Hollibaugh J T, Bordalo A A. 2007. Composition and activity of beta-Proteobacteria ammonia-oxidizing communities associated with intertidal rocky biofilms and sediments of the Douro River estuary, Portugal.J.Appl.Microbiol.,103(4):1 239-1 250.

    Marton J M, Roberts B J, Bernhard A E, Giblin A E. 2015.Spatial and temporal variability of nitrification potential and ammonia-oxidizer abundances in Louisiana salt marshes.Estuar.Coast,38(6): 1 824-1 837.

    McCaig A E, Embley T M, Prosser J I. 1994. Molecular analysis of enrichment cultures of marine ammonia oxidisers.FEMSMicrobiol.Lett.,120(3): 363-367.

    Moin N S, Nelson K A, Bush A, Bernhard A E. 2009.Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments.Appl.Environ.Microbiol.,75(23): 7 461-7 468.

    Nelson J L, Zavaleta E S. 2012. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.PloSOne,7(8): e38558.

    Nold S C, Zhou J Z, Devol A H, Tiedje J M. 2000. Pacific northwest marine sediments contain ammonia-oxidizing bacteria in the β subdivision of theProteobacteria.Appl.Environ.Microbiol.,66(10): 4 532-4 535.

    Peng X F, Yando E, Hildebrand E, Dwyer C, Kearney A,Waciega A, Valiela I, Bernhard A E. 2012. differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh.Front.Microbiol.,3: 445.

    Purkhold U, Pommerenin-R?ser A, Juretschko S, Schmid M C,Koops H P, Wagner M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA andamoAsequence analysis: implications for molecular diversity surveys.Appl.Environ.Microbiol.,66(12): 5 368-5 382.

    Purkhold U, Wagner M, Timmermann G, Pommerening-R?ser A, Koops H P. 2003. 16S rRNA andamoA-based phylogeny of 12 novel betaproteobacterial ammoniaoxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads.Int.J.Syst.Evol.Microbiol.,53(5): 1 485-1 494.

    Rotthauwe J H, Witzel K P, Liesack W. 1997. The ammonia monooxygenase structural geneamoAas a functional marker: molecular fine-scale analysis of natural ammoniaoxidizing populations.Appl.Environ.Microbiol.,63(12):4 704-4 712.

    Shen X Y, Zhang L M, Shen J P, Li L H, Yuan C L, He J Z.2011. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland.JSoilsSediments,11(7):1 243-1 252.

    Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA)software version 4.0.Mol.Biol.Evol.,24(8): 1 596-1 599.

    Tian X F, Hu H W, Ding Q, Song M H, Xu X L, Zheng Y, Guo L D. 2014. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow.Biol.Fertil.Soils,50(4): 703-713.

    Urakawa H, Garcia J C, Nielsen J L, Le V Q, Kozlowski J A,Stein L Y, Lim C K, Pommerening-R?ser A, Martens-Habbena W, Stahl D A, Klotz M G. 2015.Nitrosospira lacussp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment.Int.J.Syst.Evol.Microbiol.,65(1): 242-250.

    Urakawa H, Kurata S, Fujiwara T, Kuroiwa D, Maki H,Kawabata S, Hiwatari T, Ando H, Kawai T, Watanabe M,Kohata K. 2006. Characterization and quantification of ammonia-oxidizing bacteria in eutrophic coastal marine sediments using polyphasic molecular approaches and immunofluorescence staining.Environ.Microbiol.,8(5):787-803.

    Valiela I, Cole M L. 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads.Ecosystems,5(1): 92-102.

    Vitousek P M, Aber J D, Howarth R W, Likens G E, Matson P A, Schindler D W, Schlesinger W H, Tilman D G. 1997.Human alteration of the global nitrogen cycle: sources and consequences.Ecol.Appl.,7(3): 737-750.

    Vivanco L, Irvine I C, Martiny J B. 2015. Nonlinear responses in salt marsh functioning to increased nitrogen addition.Ecology,96(4): 936.

    Wang J, Li G, Lai X, Song X L, Zhao J N, Yang D L. 2015.differential responses of ammonia-oxidizers communities to nitrogen and water addition inStipabaicalensisSteppe,Inner Mongolia, northern China.J.Resour.Ecol.,6(1):1-11.

    Wertz S, Leigh A K K, Grayston S J. 2012. effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers.FEMSMicrobiol.Ecol.,79(1): 142-154.

    Xiao R, Chen B Z, Liu Y J, Wang C P, Gu J D, Feng H Y, Du G Z, Ma X J. 2014. Higher abundance of ammonia oxidizing archaea than ammonia oxidizing bacteria and their communities in Tibetan alpine meadow soils under long-term nitrogen fertilization.Geomicrobiol.J.,31(7):597-604.

    Xu Y G, Yu W T, Ma Q, Zhou H. 2012. Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years.Biol.Fertil.Soils,48(7): 827-837.

    Yi B L. 2013. The geochemistry of N, P in Shuangtaizi river estuary. Ocean University of China, Qingdao, China. (in Chinese)

    Zhong L H, Dong X, Bai J, Wang Y, Zhao Y G. 2013.Community structure of ammonia-oxidizing bacteria in soil at different salinities of Liaohe estuary reed wetland.Period.OceanUniv.China,43(4): 94-99. (in Chinese with English abstract)

    猜你喜歡
    長發(fā)
    鯨寶寶的殤歌
    柔順的長發(fā)
    萵苣姑娘,請放下長發(fā)來!等
    好孩子畫報(2021年2期)2021-03-15 05:57:30
    長發(fā)三千淚萬千
    青年歌聲(2020年11期)2020-11-24 06:57:04
    媽媽的長發(fā)
    少先隊活動(2020年6期)2020-07-27 01:35:06
    待我長發(fā)及腰
    長發(fā)公主
    童話世界(2019年29期)2019-11-23 09:05:32
    長發(fā)幻想曲
    誰的長發(fā)甩綠了春天
    剪長發(fā)攻守戰(zhàn)
    快樂語文(2016年7期)2016-11-07 09:43:51
    精品国产一区二区三区四区第35| 蜜桃在线观看..| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲欧美清纯卡通| 这个男人来自地球电影免费观看 | 高清黄色对白视频在线免费看| 国产淫语在线视频| 国产欧美日韩一区二区三区在线| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 男女午夜视频在线观看 | 老司机影院毛片| 久久久久久久久久久久大奶| 1024视频免费在线观看| 欧美人与性动交α欧美精品济南到 | 午夜福利视频精品| 国产片特级美女逼逼视频| 亚洲成人一二三区av| 如何舔出高潮| 免费黄网站久久成人精品| 久久久a久久爽久久v久久| 国产高清三级在线| 尾随美女入室| 免费高清在线观看日韩| 天天躁夜夜躁狠狠久久av| av免费观看日本| 一级片'在线观看视频| 国产日韩一区二区三区精品不卡| 99九九在线精品视频| 美女国产高潮福利片在线看| 亚洲国产成人一精品久久久| 久久精品aⅴ一区二区三区四区 | 99久国产av精品国产电影| 欧美精品亚洲一区二区| 男女午夜视频在线观看 | 国产精品久久久久成人av| 精品一区二区三区四区五区乱码 | www日本在线高清视频| 丁香六月天网| 日本黄大片高清| 少妇的丰满在线观看| 久久精品国产综合久久久 | 一边亲一边摸免费视频| 好男人视频免费观看在线| 最近中文字幕2019免费版| 国产熟女午夜一区二区三区| 午夜免费鲁丝| 熟妇人妻不卡中文字幕| 99精国产麻豆久久婷婷| 高清av免费在线| 在线 av 中文字幕| 午夜视频国产福利| 制服诱惑二区| 国产av国产精品国产| 99热全是精品| 久久久久久久久久成人| 五月伊人婷婷丁香| 久久精品国产综合久久久 | 精品一区在线观看国产| 99热6这里只有精品| 久久毛片免费看一区二区三区| av网站免费在线观看视频| 久久久国产一区二区| 曰老女人黄片| 成年动漫av网址| 大话2 男鬼变身卡| 亚洲av电影在线观看一区二区三区| 日韩一区二区三区影片| 看免费成人av毛片| 亚洲av.av天堂| 咕卡用的链子| 国产色婷婷99| 丝袜人妻中文字幕| 青青草视频在线视频观看| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 免费在线观看黄色视频的| 亚洲精品av麻豆狂野| 18禁动态无遮挡网站| 少妇高潮的动态图| 18禁裸乳无遮挡动漫免费视频| 亚洲四区av| 在线观看一区二区三区激情| 亚洲av中文av极速乱| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 18+在线观看网站| 国产精品偷伦视频观看了| 久久热在线av| 欧美成人午夜免费资源| 亚洲国产精品一区二区三区在线| www.熟女人妻精品国产 | 日本wwww免费看| 亚洲婷婷狠狠爱综合网| 久久狼人影院| 成人手机av| 综合色丁香网| 涩涩av久久男人的天堂| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 午夜精品国产一区二区电影| 国产成人精品在线电影| 国产男人的电影天堂91| a级毛色黄片| 欧美人与善性xxx| 日本色播在线视频| 春色校园在线视频观看| 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 中国三级夫妇交换| 啦啦啦中文免费视频观看日本| 久久综合国产亚洲精品| 亚洲欧洲日产国产| 亚洲色图综合在线观看| 欧美日韩av久久| a 毛片基地| 亚洲四区av| 一二三四在线观看免费中文在 | 久久狼人影院| 欧美日本中文国产一区发布| 亚洲久久久国产精品| 夫妻性生交免费视频一级片| 中文天堂在线官网| 国产精品无大码| 国产成人免费观看mmmm| 91久久精品国产一区二区三区| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 极品人妻少妇av视频| 国产精品久久久久成人av| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 国产精品 国内视频| 中国国产av一级| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 久久久久视频综合| 丰满饥渴人妻一区二区三| 黄色配什么色好看| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| 少妇高潮的动态图| 夫妻午夜视频| 三级国产精品片| kizo精华| 日日撸夜夜添| 黄色视频在线播放观看不卡| 国产成人精品福利久久| 亚洲内射少妇av| 人妻少妇偷人精品九色| 91精品三级在线观看| 日韩不卡一区二区三区视频在线| 人妻少妇偷人精品九色| 亚洲成色77777| xxx大片免费视频| 亚洲精品成人av观看孕妇| 欧美激情极品国产一区二区三区 | 亚洲人成网站在线观看播放| 少妇人妻 视频| av不卡在线播放| 少妇的逼水好多| 哪个播放器可以免费观看大片| 嫩草影院入口| 国产成人午夜福利电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| 在现免费观看毛片| 国产成人一区二区在线| 精品久久蜜臀av无| 欧美亚洲日本最大视频资源| 日本黄大片高清| 黄片播放在线免费| 国产日韩欧美在线精品| 国产黄色免费在线视频| 咕卡用的链子| 久久久久精品人妻al黑| 九色成人免费人妻av| 国产69精品久久久久777片| 久久精品人人爽人人爽视色| 少妇的逼好多水| 亚洲成人av在线免费| 极品人妻少妇av视频| 国产 精品1| 十八禁网站网址无遮挡| 国产精品欧美亚洲77777| 欧美成人精品欧美一级黄| 大陆偷拍与自拍| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| 最近中文字幕高清免费大全6| 丁香六月天网| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免| 成人国产麻豆网| 精品一区二区三区视频在线| 五月开心婷婷网| 大码成人一级视频| 国产精品99久久99久久久不卡 | 在线观看免费视频网站a站| 制服诱惑二区| 一二三四在线观看免费中文在 | 免费大片18禁| 亚洲国产看品久久| 少妇人妻 视频| 最近的中文字幕免费完整| 久久精品人人爽人人爽视色| 一级毛片电影观看| 高清毛片免费看| 国产精品 国内视频| 午夜福利视频精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人免费观看mmmm| 国产无遮挡羞羞视频在线观看| 99视频精品全部免费 在线| 国产片内射在线| av线在线观看网站| 制服诱惑二区| 欧美成人午夜精品| 满18在线观看网站| 王馨瑶露胸无遮挡在线观看| 国产探花极品一区二区| 黑人猛操日本美女一级片| 18禁观看日本| 91国产中文字幕| 一本大道久久a久久精品| 亚洲,欧美精品.| av免费在线看不卡| 九九爱精品视频在线观看| 男的添女的下面高潮视频| 热re99久久国产66热| av视频免费观看在线观看| 少妇人妻 视频| 99热全是精品| 国产精品 国内视频| av国产久精品久网站免费入址| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 美女视频免费永久观看网站| 男女边摸边吃奶| av电影中文网址| 99国产精品免费福利视频| 精品午夜福利在线看| 丝袜在线中文字幕| 久久免费观看电影| 亚洲av免费高清在线观看| 免费看光身美女| 高清av免费在线| 国产在线一区二区三区精| 2022亚洲国产成人精品| 婷婷色综合www| 在线天堂中文资源库| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 另类精品久久| 成人毛片a级毛片在线播放| 卡戴珊不雅视频在线播放| 18+在线观看网站| 一级毛片 在线播放| 热re99久久精品国产66热6| 国产在线视频一区二区| 99香蕉大伊视频| 日韩大片免费观看网站| 亚洲国产色片| 久久精品熟女亚洲av麻豆精品| 天天操日日干夜夜撸| 一边亲一边摸免费视频| a级毛片黄视频| 另类亚洲欧美激情| 欧美最新免费一区二区三区| av福利片在线| 男女国产视频网站| 国产片特级美女逼逼视频| 中文字幕制服av| 看免费成人av毛片| 哪个播放器可以免费观看大片| 久久ye,这里只有精品| 五月天丁香电影| 老女人水多毛片| 男女下面插进去视频免费观看 | 两个人免费观看高清视频| 一区二区av电影网| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 一区二区三区四区激情视频| 亚洲,欧美,日韩| www.熟女人妻精品国产 | xxx大片免费视频| 伊人久久国产一区二区| 成人国产麻豆网| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 97精品久久久久久久久久精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 国产国拍精品亚洲av在线观看| av线在线观看网站| 国产一区二区在线观看av| 婷婷成人精品国产| 91国产中文字幕| 一二三四在线观看免费中文在 | 热re99久久国产66热| 伦精品一区二区三区| 中文精品一卡2卡3卡4更新| 精品99又大又爽又粗少妇毛片| 日本av免费视频播放| 最近2019中文字幕mv第一页| 人成视频在线观看免费观看| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 免费观看性生交大片5| 老熟女久久久| 大香蕉久久成人网| 9热在线视频观看99| 亚洲人成网站在线观看播放| 亚洲精品乱久久久久久| 高清毛片免费看| 久久99蜜桃精品久久| 亚洲精品第二区| 伊人亚洲综合成人网| 老司机影院成人| 久久人妻熟女aⅴ| 国产免费一区二区三区四区乱码| 久久久国产精品麻豆| 成人漫画全彩无遮挡| 亚洲丝袜综合中文字幕| 久久人人爽人人爽人人片va| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 欧美变态另类bdsm刘玥| xxx大片免费视频| av在线老鸭窝| 亚洲成国产人片在线观看| 国产深夜福利视频在线观看| 亚洲国产精品专区欧美| 亚洲少妇的诱惑av| 七月丁香在线播放| 丁香六月天网| 五月玫瑰六月丁香| 国产又爽黄色视频| 啦啦啦在线观看免费高清www| 又黄又爽又刺激的免费视频.| 色吧在线观看| 高清在线视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 97在线人人人人妻| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 国产极品粉嫩免费观看在线| 自线自在国产av| 视频区图区小说| 建设人人有责人人尽责人人享有的| 天天躁夜夜躁狠狠久久av| 国产 精品1| 母亲3免费完整高清在线观看 | 国产一级毛片在线| 一区在线观看完整版| 亚洲精品成人av观看孕妇| 精品人妻偷拍中文字幕| 97精品久久久久久久久久精品| 日韩av不卡免费在线播放| 狂野欧美激情性bbbbbb| 亚洲精品,欧美精品| 久久精品夜色国产| 汤姆久久久久久久影院中文字幕| 欧美丝袜亚洲另类| 亚洲天堂av无毛| 国产69精品久久久久777片| 两性夫妻黄色片 | 22中文网久久字幕| 久久久久国产精品人妻一区二区| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 国产黄色免费在线视频| 婷婷成人精品国产| 日本av免费视频播放| 美女视频免费永久观看网站| 亚洲欧美成人综合另类久久久| 成年av动漫网址| 又大又黄又爽视频免费| 三上悠亚av全集在线观看| 免费播放大片免费观看视频在线观看| 极品少妇高潮喷水抽搐| 成人国语在线视频| 日本欧美视频一区| 免费久久久久久久精品成人欧美视频 | 黑丝袜美女国产一区| 丝袜美足系列| 国产精品久久久久久久电影| 欧美日韩av久久| 日韩av在线免费看完整版不卡| 亚洲精品第二区| av在线观看视频网站免费| 久久99热6这里只有精品| 男人操女人黄网站| 九九爱精品视频在线观看| 色婷婷av一区二区三区视频| 精品国产一区二区三区四区第35| 亚洲精品国产色婷婷电影| 日韩在线高清观看一区二区三区| 亚洲精品乱久久久久久| 成年av动漫网址| 赤兔流量卡办理| 伦理电影大哥的女人| 五月玫瑰六月丁香| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 最近2019中文字幕mv第一页| 男女下面插进去视频免费观看 | 免费人成在线观看视频色| 亚洲色图 男人天堂 中文字幕 | 午夜影院在线不卡| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 国产精品成人在线| 曰老女人黄片| 亚洲欧美一区二区三区黑人 | 午夜激情av网站| 亚洲av日韩在线播放| 精品国产国语对白av| 不卡视频在线观看欧美| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 久久久精品区二区三区| 男的添女的下面高潮视频| 春色校园在线视频观看| 国产免费现黄频在线看| 视频中文字幕在线观看| 久热这里只有精品99| 少妇的丰满在线观看| 国产深夜福利视频在线观看| 日本午夜av视频| 三级国产精品片| 亚洲精品日韩在线中文字幕| 亚洲四区av| 国产av精品麻豆| 久久97久久精品| 亚洲,欧美精品.| 91久久精品国产一区二区三区| 久久狼人影院| 国产精品人妻久久久影院| 91成人精品电影| 极品人妻少妇av视频| 久热久热在线精品观看| 视频在线观看一区二区三区| www日本在线高清视频| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美xxⅹ黑人| 午夜91福利影院| 亚洲精品美女久久av网站| 成人漫画全彩无遮挡| 热99久久久久精品小说推荐| 国产精品免费大片| tube8黄色片| 亚洲国产av新网站| 飞空精品影院首页| 黄片无遮挡物在线观看| 久久久久国产精品人妻一区二区| 国产熟女欧美一区二区| 久久精品国产综合久久久 | 日韩成人av中文字幕在线观看| 青春草视频在线免费观看| 亚洲成人一二三区av| 亚洲丝袜综合中文字幕| 亚洲av男天堂| 亚洲美女搞黄在线观看| 草草在线视频免费看| 纯流量卡能插随身wifi吗| 国产黄频视频在线观看| 51国产日韩欧美| 久久99一区二区三区| 另类亚洲欧美激情| 中文精品一卡2卡3卡4更新| 少妇精品久久久久久久| 久久久久视频综合| 久久久a久久爽久久v久久| 国产成人91sexporn| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| 久热久热在线精品观看| 国产 一区精品| 欧美亚洲日本最大视频资源| 黄片无遮挡物在线观看| 青春草国产在线视频| 精品人妻偷拍中文字幕| a 毛片基地| 美女大奶头黄色视频| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av涩爱| 精品少妇久久久久久888优播| 午夜福利,免费看| 两个人看的免费小视频| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | videosex国产| 国产1区2区3区精品| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 午夜免费鲁丝| 十八禁网站网址无遮挡| 日本av手机在线免费观看| 99re6热这里在线精品视频| 在线观看美女被高潮喷水网站| 91精品三级在线观看| 午夜免费鲁丝| 黄色配什么色好看| 午夜福利视频精品| 国产高清不卡午夜福利| 精品卡一卡二卡四卡免费| 亚洲经典国产精华液单| videossex国产| 插逼视频在线观看| 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 久久国内精品自在自线图片| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频 | 婷婷色综合www| 欧美日韩一区二区视频在线观看视频在线| 咕卡用的链子| 欧美日韩一区二区视频在线观看视频在线| 欧美人与性动交α欧美软件 | 美女国产高潮福利片在线看| 天天操日日干夜夜撸| 九色亚洲精品在线播放| 高清黄色对白视频在线免费看| 水蜜桃什么品种好| 日韩一本色道免费dvd| 少妇 在线观看| 18在线观看网站| 国产精品一二三区在线看| 欧美日韩视频精品一区| 久久久久久久国产电影| 国产一区二区在线观看av| 在线观看人妻少妇| 少妇被粗大猛烈的视频| 国产成人欧美| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 精品国产一区二区久久| 国产亚洲精品第一综合不卡 | 国产免费又黄又爽又色| 国产亚洲欧美精品永久| 美女中出高潮动态图| 激情五月婷婷亚洲| 高清视频免费观看一区二区| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 老司机亚洲免费影院| 日韩一本色道免费dvd| 国产69精品久久久久777片| 观看av在线不卡| 老熟女久久久| 精品久久蜜臀av无| 久久久精品免费免费高清| 精品久久国产蜜桃| 熟女av电影| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 2021少妇久久久久久久久久久| 亚洲av欧美aⅴ国产| 免费黄色在线免费观看| 成人黄色视频免费在线看| 久久久国产欧美日韩av| 成人亚洲精品一区在线观看| 久久精品国产综合久久久 | 99九九在线精品视频| 成人毛片60女人毛片免费| www日本在线高清视频| 一级,二级,三级黄色视频| 超碰97精品在线观看| 精品国产一区二区久久| 日韩视频在线欧美| 午夜久久久在线观看| 免费在线观看完整版高清| 一二三四中文在线观看免费高清| 欧美人与善性xxx| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区黑人 | 久久久久久久大尺度免费视频| av片东京热男人的天堂| 成年动漫av网址| 国产视频首页在线观看| 亚洲在久久综合| 性色avwww在线观看| 国产精品 国内视频| 国产一级毛片在线| 久久久久久伊人网av| 久久这里有精品视频免费| 国产成人av激情在线播放| 夫妻性生交免费视频一级片| 男人爽女人下面视频在线观看| 久久99精品国语久久久| 晚上一个人看的免费电影| 99久久中文字幕三级久久日本| 久久精品aⅴ一区二区三区四区 | 亚洲av福利一区| 色5月婷婷丁香| 久久午夜福利片|