• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    點缺陷引起中子輻照MgO(110)單晶的鐵磁性

    2018-05-04 01:42:35曹夢雄王興宇馬亞茹馬春林周衛(wèi)平王曉雄王海歐譚偉石
    物理化學學報 2018年4期
    關鍵詞:王曉雄點缺陷湖南

    曹夢雄,王興宇,馬亞茹,馬春林,周衛(wèi)平,*,王曉雄,王海歐,譚偉石,3,*

    1南京理工大學理學院應用物理系,軟化學與功能材料教育部重點實驗室,南京 210094

    2杭州電子科技大學材料物理研究所,杭州 310018 3湖南城市學院信息與電子工程學院,湖南 益陽 413002

    1 Introduction

    In recent years, the ferromagnetism (FM) has been reported in undoped oxides, such as HfO2, TiO2, In2O3, CeO2, Al2O3, SnO2and ZnO1-7. This observed ferromagnetism in materials, containing no intrinsic magnetic elements, is termed d0ferromagnetism8. The d0ferromagnetism can be explained by invoking the formation of point defects but the nature of defects is still debatable. MgO is one of the most attractive materials for investigating d0ferromagnetism because of its wide bandgap, which yields a spin-polarized p band9. Hu et al.10reported that MgO nanocrystalline powders, prepared by sol-gel method, exhibited room temperature ferromagnetism (RTFM). The vacuum annealing of MgO powders reduced FM. They attributed the RTFM in MgO to Mg vacancies at/near the surfaces of nanograins. The X-ray photoelectron spectroscopy (XPS) showed that MgO powders exhibited Mg-deficiency, indicating that the RTFM in MgO powders was related to Mg vacancies11. Li et al.12suggested that the observed RTFM in MgO thin films, which were prepared under various oxygen pressures, depended strongly on Mg vacancies concentration. On the basis of X-ray absorption near-edge fine structure spectroscopy (XANES), it could be contemplated that excitation to the localized bound state at surface state might be responsible for the FM in MgO, which was due to Mg vacancies at surface states13. These results were in accordance with some theoretical predictions14-16. Using ab initio calculations based on density functional theory, Kuang et al.14demonstrated that both neutral and singly charged Mg vacancy could introduce magnetic moment of MgO, and the magnetic moment mainly originated from the spin polarization of partially occupied 2p orbitals of the nearest O atoms surrounding Mg vacancies. By the full potential linearized augmented plane wave L/APW+lomethod, Merabet et al.16predicted that the cation vacancies caused the FM in MgO, with a spin magnetic moment of 0.21 μB·atom-1.

    However, some theoretical calculations indicated that oxygen vacancies played a key role in FM spin-order in MgO17,18. Using ab initio calculations based on density functional theory, Zhang et al.18showed that local magnetic moment in MgO could be induced by the composite defects around the oxygen vacancies, when the exchange split of the oxygen vacancies was enhanced. Experimentally, Kumar et al.19reported the correlation between defects and ferromagnetism in synthesized MgO nanocrystallite. Their study suggested that the oxygen vacancies, namely singly ionized anionic vacancies and dimers, induced the room temperature ferromagnetic spin-order. Maoz et al.20noticed that air annealing reduced magnetic spin-order in MgO nanosheets and suggested that the ferromagnetic spin-order was due to the unpaired electrons trapped at oxygen vacancies.Mishra et al.21reported that Al-doped MgO nanoparticles exhibited weak RTFM. Using XPS, they highlighted the dominant role of oxygen vacancies in the development of RTFM in MgO. The RTFM in Fe-doped MgO could be explained by oxygen vacancies interaction based on the bound magnetic polaron (BMP) model22.

    Although there are many theoretical and experimental studies regarding FM in MgO, the origin of FM in MgO is still controversial. The point defects can account for the FM in MgO, but it is still uncertain whether the defects should be anion defects or cation defects. Thus, a detailed insight into the role of point defects on ferromagnetism in MgO(110) single crystals is obtained in this paper. We study the point defects configuration in neutron irradiated MgO(110) single crystals by the X-ray diffuse scattering and UV-Vis absorption spectra. The magnetic properties in MgO are characterized by a superconducting quantum interference device (SQUID) magnetometer. The relevance between defects and ferromagnetism in MgO single crystals is discussed.

    2 Experimental

    Commercial MgO(110) single crystals with purity > 99.99% were purchased from Hefei Kejing Materials Technology Co., Ltd. (China) and then irradiated by slow neutron with different doses in the range from 1.0 × 1016to 1.0 × 1020cm-2. The neutron energy is continuous but lower than 20 eV. Based on Huang′s scattering theory, the isointensity profiles of cubic and double-force point defects induced X-ray diffuse scattering were calculated using MATLAB software. The measurement of X-ray diffuse scattering intensity distribution curves near the 220 reciprocal-lattice point of MgO single crystals was carried out at Beijing Synchrotron Radiation Facility (BSRF) diffuse scattering station at room temperature. The wave length was 0.15406 nm. The ω-2θ scans and rocking curves close to the symmetric (220) reflection were measured with a step width of 0.005°. The reciprocal space mappings (RSMs) around 220 reciprocal-lattice point were conducted with a step width of 0.01° at room temperature. The UV-Vis absorption spectra were obtained at room temperature using TU-1901 double beam spectrophotometer (Beijing Purkinje General Instrument Co., Ltd., China). The data were recorded in a wavelength range from 200 to 800 nm. The magnetization as a function of an applied magnetic field at different temperature and as a function of temperature (zero field cooled and field cooled) under an applied field of 500 Oe in the temperature range of 2-300 K were measured by a Quantum Design MPMS XL-5 SQUID magnetometer. All samples were cleaned with alcohol and acetone in an ultrasonic bath before measurements.

    3 Results and discussion

    As the Fourier transform of a defect-induced displacement field is given, the isointensity profile of X-ray diffuse scattering near the reciprocal-lattice point can be calculated23. The purpose of such a calculation is to compare calculated profiles with experimental results and, afterwards, to confirm the point defect configurations. To investigate the irradiation induced point defect configurations in MgO, the isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects are calculated based on Huang′s scattering formula23using MATLAB software.

    It is worth noting that the cubic defect along <100> direction induced diffuse scattering isointensity profiles are identical for the cubic crystal23. Therefore, the scattering isointensity profiles near 200, 020 and 002 are uniform for MgO. Thus, we just calculated the Huang′s scattering isointensity profiles near 200 and 220 reciprocal-lattice points for diffuse X-ray scattering induced by the cubic defect in MgO, as shown in Fig.1. Three independent elastic constants for MgO used for calculation are given as follows: C11 = 297.8 GPa, C12 = 95.8 GPa, C44 = 154.7 GPa. The profiles near 200 reciprocal-lattice point are almost of the lemniscate type, as seen in Fig.1a.

    In the same way, the isointensity profiles near 200, 020, 002 and 220 reciprocal-lattice points for a double-force defect in MgO are calculated, shown in Fig.2. The isointensity profiles near different reciprocal-lattice points for a double-force defect show various distribution types. Our results are similar with Flocken et al.′s results in cubic metals23.

    Obviously, the isointensity profiles near different reciprocal- lattice points for the double-force defect are different. Whatever, near the same reciprocal-lattice point, the isointensity profiles for cubic defects and double-force defects are diverse and distinguishable distinctly. Thus, we can confirm the point defects configuration by comparing the experimental RSMs with calculated diffuse scattering intensity curves.

    Fig.3 shows the X-ray diffraction patterns of irradiated MgO(110), which are recorded with 2θ in the range from 30° to 80°. It is worth noting that the patterns cannot reveal the diffuse scattering accurately. Evidently, only diffraction peak of (220) reflection at about 62.2° can be observed in Fig.3. It indicates that the samples are (110)-oriented MgO single crystals without any impurity phase. It is noteworthy that we cannot study the defects in MgO basing the X-ray diffraction patterns in Fig.3. It is necessary to measure the ω-2θ curves and rocking curves for studying the defects in MgO(110) single crystals.

    The radial scattering intensity distribution along [220] reciprocal vectors are measured at room temperature. Fig.4(a, b) represents the ω-2θ curves and rocking curves of (220) reflection for pristine and irradiated MgO(110) single crystals. As shown in Fig.4a, in comparison with the case for pristine MgO, the diffraction intensity of (220) reflection decreases dramatically for irradiated samples. The diffraction intensity is almost inversely proportional to the irradiation dose. Meanwhile, the diffraction peak moves obviously toward to the low angle for the irradiated MgO with higher dose (1.0 × 1019and 1.0 × 1020cm-2), implying the presence of lattice imperfection due to the neutron irradiation. Using Bragg equation, the lattice parameter a in bulk MgO has been calculated. The lattice parameter a in pristine MgO is 0.4211 nm, while the values of lattice parameter a in irradiated MgO with the doses of 1.0 × 1019and 1.0 × 1020cm-2are 0.4217 and 0.4222 nm, respectively. As shown in Fig.4b, the intensity of rocking curve decreases with increasing irradiation dose. It should be mentioned that the split of peak in rocking curve is distinct for the irradiated MgO with higher dose. The results obviously indicate that a number of point defects are introduced and hence result in lattice distortions in MgO(110) single crystals via neutron irradiation. The point defects-induced diffuse scattering was also observed in Au+ion irradiated MgO single crystals24. Using X-ray diffraction methods, Pillukat et al.25demonstrated that the electron irradiation could generate point defects and result in the increase of diffuse scattering intensity close to different reflections in GaAs. Karsten et al.26measured X-ray diffuse scattering close to different Bragg reflections in irradiated InP. They confirmed that electron irradiation generated Frenkel defect pairs in irradiated InP, leading to the diffuse scattering.

    Fig.1 Calculated isointensity profiles of X-ray diffuse scattering near (a) 200 and (b) 220 reciprocal-lattice points for the cubic point defect in MgO.

    Fig.2 Calculated isointensity profiles of X-ray diffuse scattering near reciprocal-lattice points (a) 200, (b) 020, (c) 002, and (d) 220 for the double-force point defect in MgO.

    Fig.3 X-ray diffraction patterns of neutron irradiated MgO(110) single crystals with different doses.

    Fig.4 ω-2θ curves (a) and rocking curves (b) in the vicinity of (220) reflection for MgO(110) single crystals. To adjust position of ω and 2θ axes accurately in our experiment, we fix one of these two axes and scan the other one repeatedly until the maximum of diffraction intensity appears. We do not change the zero point of ω and 2θ axes of goniometer during measurement and therefore, the ratio of 2θ/ω is not strictly twice in the measured results. The reason for this case is due to the angle of inclination between the surface and diffracting plane of MgO single crystals.

    Fig.5 RSMs around the (220) reflection for MgO(110) irradiated with different doses of (a) 1.0 × 1016 cm-2, (b) 1.0 × 1017 cm-2,(c) 1.0 × 1019 cm-2, and (d) 1.0 × 1020 cm-2.

    To further understand point defect configurations, the RSMs around 220 reciprocal-lattice point are measured at room temperature and shown in Fig.5. The RSMs in irradiated MgO are like rhombic and diffuse scattering can be observed clearly. It reveals that a certain number of point defects are introduced in all neutron irradiated MgO(110) single crystals. The RSMs in irradiated MgO with higher dose are more complex, indicating that the defects concentration is higher in irradiated MgO with higher dose. The result is in agreement with that of ω-2θ scans and rocking curves. The RSMs around 220 reciprocal-lattice point of irradiated MgO can be well compared with the calculated diffuse scattering intensity profile near 220 reciprocal-lattice point for double-force point defects, demonstrating that interstitial atoms or divacancies are introduced in irradiated MgO. It is well believed that the interstitial atom is more stable in face-center cubic crystal. It makes clear that lots of interstitial atoms rather than divacancies are introduced in irradiated MgO(110) single crystals. To keep neutral, equal amount of vacancies will be generated if interstitials are presented in materials without impurity. Thus, we conclude that the Frenkel defects are introduced in MgO(110) single crystals by means of neutron irradiation.

    It is still unknown that the introduced defects are cation or anion Frenkel defects. So, the UV-Vis absorption spectra of pristine and irradiated MgO(110) single crystals are recorded and shown in Fig.6. It can be seen that the absorption spectrum of pristine bulk MgO is a smooth curve without any absorption peak, implying that defects and impurities are absent in pristine MgO(110). However, the broad peak, centered at about 250 nm, can be observed for all irradiated samples. But the intensity is much lower for some samples. This absorption peak at about 250 nm is associated with single anion vacancies (F or F+centers)27,28. It indicates that O vacancies are presented in irradiated MgO(110) single crystals. Depending on the charge of anion vacancy, the F-type color centers in MgO are classified as F-centers (O vacancies with two electrons trapped), F+-centers (O vacancies with one electron trapped) or F2+-centers (O vacancies without electrons trapped). Notably, the absorption peak around 570 nm is obviously observed for irradiated samples with higher dose (1.0 × 1019and 1.0 × 1020cm-2). The absorption around 570 nm is due to the aggregation of F centers27. Once samples are irradiated with higher dose, the introduced single vacancies can acquire enough energy, resulting in migrating easily. As a consequence, the single vacancies will be aggregated. Thus, the single vacancies can be aggregated when the irradiation dose exceeds 1.0 × 1019cm-2.

    Fig.6 UV-Vis absorption spectra of neutron irradiated MgO(110) single crystals with different doses.

    The peak intensity is related to the defects concentration. It seems that the defects concentration is dependent on the neutron irradiation dose but not in directly proportion to it. The defects concentration in irradiated MgO with the dose of 1.0 × 1020cm-2is highest. The results of RSMs and UV-Vis spectra indicate clearly that neutron irradiation can introduce O Frenkel defects in MgO(110) single crystals and aggregation is formed in samples with higher dose. It is important to point out that the absorption peak around 350 nm does not appear, which is related to O divacancies28. It is confirmed that the O divacancies are not presented in irradiated bulk MgO, which is in agreement with the result of RSMs.

    Fig.7(a-d) displays the mass magnetization (M) versus magnetic field (H) curves of the neutron irradiated MgO(110) with doses of 1.0 × 1016, 1.0 × 1017, 1.0 × 1019and 1.0 × 1020cm-2. The curves are typical diamagnetic above 20 K, revealing the neutron irradiated MgO is still diamagnetism above 20 K. However, the curves show obvious ferromagnetic signal as the temperature is below 10 K, indicating the irradiated bulk MgO is ferromagnetism as the temperature is below 10 K. The low temperature ferromagnetism in all irradiated MgO(110) single crystals can be observed. Notably, the saturation field of all samples is about 2.5 T at 2 K. The saturation magnetization is different for irradiated MgO, which may be due to the defects concentration. The maximum saturation magnetization is about 0.058observed in irradiated MgO with the dose of 1.0 ×. And the defects concentration in this sample is highest. The low temperature ferromagnetism in irradiated MgO single crystals can be attributed to the neutron irradiation induced oxygen vacancies. The neutron irradiated MgO(110) single crystals exhibit rich population of oxygen defects, subsequently resulting in the low temperature ferromagnetism. The ferromagnetism in undoped MgO nanocrystallites and nanosheets could be also due to O vacancies19,20. Using the X-ray photoelectron spectroscopy (XPS), Mishra et al.21highlighted the dominant role of O vacancies in the development of RTFM in Al-doped MgO nanoparticles. Based on the BMP model, O vacancies could account for the RTFM in Fe-doped MgO22. Glinchuk et al.′s calculations showed that long-range ferromagnetic ordering in MgO films was induced by magnetic O vacancies17. The ab initio calculations also showed that O vacancies might induce local magnetic state, as long as exchange split of O vacancies was enhanced enough18.

    The d0ferromagnetism is closely related to the defects concentration. For the case of long-range ferromagnetic ordering in CaO or MgO, there exists a minimum concentration of vacancies to establish the percolation29,30. The vacancies tend to be presented at/near the surfaces of samples, but our irradiated bulk MgO(110) single crystals do not have high specific surface area. Thus, we conclude that the insufficient defects concentration should account for the unchanged diamagnetism in irradiated MgO(110) single crystals above 20 K. The defects concentration may be less than the threshold value for achieving long-range ferromagnetism at room temperature.

    Fig.7 M-H curves at different temperatures for irradiated MgO(110) of (a) 1.0 × 1016 cm-2, (b) 1.0 × 1017 cm-2, (c) 1.0 × 1019 cm-2, and (d) 1.0 × 1020 cm-2.

    Fig.8 Temperature dependence of ZFC and FC magnetization of irradiated MgO of 1.0 × 1020 cm-2.

    Fig.8 shows the field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves in the temperature range of 2 to 300 K at a magnetic field of 0.05 T for the irradiated MgO with the dose of 1.0 × 1020cm-2. The ZFC and FC processes are consistent and reversible for the irradiated sample, which is similar with the case of previously report on the magnetic properties of pristine MgO31. It indicates that neutron irradiated MgO(110) single crystals are not ferromagnetic at room temperature, which is consistent with the results of M-H curves. It also can be seen that there is no blocking temperature in the temperature range, indicating that the ferromagnetic contamination can be ruled out in irradiated samples5,32,33. The result confirms that low temperature d0ferromagnetism in irradiated MgO single crystals is surely intrinsic rather than from magnetic impurities.

    To account for the connection of O vacancies to the observed ferromagnetism in bulk MgO single crystals, we consider the F-center exchange mechanism. The F-center exchange mechanism, a subcategory of the BMP model, is very useful to explain O vacancies induced ferromagnetism in insulators34,35. The correlation between the origin of ferromagnetism and O vacancies in Al2O3, SnO2, TiO2and CeO2has been described using F-center exchange mechanism5,35-37.

    Previous report indicated that electrons in these singly charged oxygen vacancies (F+) are strongly localized34,37. The electron associated with a particular defect will be confined in a orbital of radius

    where ε is the high-frequency dielectric constant, m is the electron mass, m*is the effective mass of the donor electron and a0is the Bohr radius.

    The F+centers, basically the electrons in the singly occupied oxygen vacancies lying deep in the bandgap, will be able to favor a ferromagnetic state34. As the concentration of F+centers reaches the threshold value for magnetic percolation, the F+centers can overlap each other, leading to the long-range ferromagnetic ordering.

    The neutron irradiation can introduce anion defects in MgO(110) single crystals, as determined by the UV-Vis spectroscopic results. The electrons can be trapped by these vacancies, forming significant density of F+centers. To keep neutral, the trapped electrons can be bound with Mg in irradiated MgO, accordingly leading to the bound magnetic polarons.

    As the temperature is decreased, the lattice thermal vibration effect will be decreased, resulting in increasing the range of interaction of the polarons. The neighbouring polarons will overlap each other easily. Thus, the magnitude of ferromagnetism is larger at low temperature. The magnitude of ferromagnetism should be directly related with the concentration of O vacancies in irradiated bulk MgO. On the contrary, the magnitude of ferromagnetism is decreased or vanished even with increasing temperature. Thus, the neutron irradiated MgO(110) single crystals is ferromagnetic at low temperature, but diamagnetic at room temperature.

    4 Conclusions

    In summary, the defects and magnetic properties in neutron irradiated MgO(110) single crystals have been investigated. The ω-2θ curves and rocking curves demonstrated that neutron irradiation led to a lattice distortion in irradiated MgO. The experimental RSMs showed the significant scattering diffuse in irradiated samples. Both the RSMs and UV-Vis absorption spectra revealed that the O Frenkel defects were introduced in irradiated samples. The defects concentration was higher in irradiated MgO(110) single crystals with higher dose. The magnetic measurements showed that irradiated MgO(110) single crystals exhibited the d0ferromagnetism at low temperature. But, the saturation magnetization was different for irradiated MgO with different dose. The maximum saturation magnetization was about 0.058 emu·g-1, observed in irradiated MgO with the dose of 1.0 × 1020cm-2. The defects concentration determines the saturation magnetization. The neutron irradiated MgO(110) single crystals can obtain the low temperature d0ferromagnetism by introducing the oxygen vacancies through neutron irradiation. The ferromagnetism in oxygen-deficient MgO has been analyzed in terms of F+center exchange mechanism. Our results revealed a close correlation between d0ferromagnetism and oxygen vacancies in neutron irradiated MgO(110) single crystals.

    (1) Venkatesan, M.; Fitzgerald, C. B.; Coey, J. M. D. Nature 2004, 430, 630. doi: 10.1038/430630a

    (2) Wang, S.; Pan, L.; Song, J.; Mi, W.; Zou, J.; Wang, L.; Zhang, X. J. Am. Chem. Soc. 2015, 137, 2975. doi: 10.1021/ja512047k

    (3) Patel, S. K. S.; Dewangan, K.; Srivastav, S. K.; Gajbhiye, N. S. Curr.Appl. Phys. 2014, 14, 905. doi: 10.1016/j.cap.2014.04.007

    (4) Phokha, S.; Swatsitang, E.; Maensiri, S. Electron. Mater. Lett. 2015, 11, 1012. doi: 10.1007/s13391-015-4164-4

    (5) Yang, G.; Gao, D.; Zhang, J.; Zhang, J.; Shi, Z.; Xue, D. J. Phys.Chem. C 2011, 115, 16814. doi: 10.1021/jp2039338

    (6) Bhaumik, S.; Sinha, A. K.; Ray, S. K.; Das, A. K. IEEE Trans. Magn. 2014, 50, 2400206. doi: 10.1109/TMAG.2013.2292575

    (7) Das, A. K.; Srinivasan, A. J. Magn. Magn. Mater. 2016, 404, 190. doi: 10.1016/j.jmmm.2015.12.032

    (8) Coey, J. M. D. Solid State Sci. 2005, 7, 660. doi: 10.1016/j.solidstatesciences.2004.11.012

    (9) Seike, M.; Sato, K.; Katayama-Yoshida, H. Jpn. J. Appl. Phys. 2011, 50, 090204. doi: 10.1143/jjap.50.090204

    (10) Hu, J.; Zhang, Z.; Zhao, M.; Qin, H.; Jiang, M. Appl. Phys. Lett. 2008, 93, 192503. doi: 10.1063/1.3021085

    (11) Khamkongkaeo, A.; Mothaneeyachart, N.; Sriwattana, P.; Boonchuduang, T.; Phetrattanarangsi, T.; Thongchai, C.; Sakkomolsri, B.; Pimsawat, A.; Daengsakul, S.; Phumying, S.; Chanlek, N.; Kidkhunthod, P.; Lohwongwatana, B. J. Alloy. Compd. 2017, 705, 668. doi: 10.1016/j.jallcom.2017.02.170

    (12) Li, J.; Jiang, Y.; Bai, G.; Ma, T.; Yang, D.; Du, Y.; Yan, M. Appl.Phys. A 2014, 115, 997. doi: 10.1007/s00339-013-7922-x

    (13) Singh, J. P.; Chen, C. L.; Dong, C. L.; Prakash, J.; Kabiraj, D.; Kanjilal, D.; Pong, W. F.; Asokan, K.; Superlattices Microstruct. 2015, 77, 313. doi: 10.1016/j.spmi.2014.10.035

    (14) Kuang, F.; Kang, S.; Kuang, X.; Chen, Q.; RSC Adv. 2014, 4, 51366. doi: 10.1039/C4RA06340F

    (15) Uchino, T.; Yoko, T. Phys. Rev. B 2013, 87, 144414. doi: 10.1103/PhysRevB.87.144414

    (16) Merabet, B.; Kacimi, S.; Mir, A.; Azzouz, M.; Zaoui, A. Mod. Phys.Lett. B 2015, 29, 1550147. doi: 10.1142/S021798491550147X

    (17) Glinchuk, M. D.; Eliseev, E. A.; Khist, V. V.; Morozovska, A. N. Thin Solid Films 2013, 534, 685. doi: 10.1016/j.tsf.2013.02.135

    (18) Zhang, Y.; Feng, M.; Shao, B.; Lu, Y.; Liu, H.; Zuo, X. J. Appl. Phys. 2014, 115, 17A926. doi: 10.1063/1.4867228

    (19) Kumar, A.; Kumar, J.; Priya, S. Appl. Phys. Lett. 2012, 100, 192404. doi: 10.1063/1.4712058

    (20) Maoz, B. M.; Tirosh, E.; Sadan, M. B.; Markovich, G. Phys. Rev. B 2011, 83, 161201. doi: 10.1103/PhysRevB.83.161201

    (21) Mishra, D.; Mandal, B. P.; Mukherjee, R.; Naik, R.; Lawes, G.; Nadgorny, B. Appl. Phys. Lett. 2013, 103, 182204. doi: 10.1063/1.4804425

    (22) Phokha, S.; Klinkaewnarong, J.; Hunpratub, S.; Boonserm, K.; Swatsitang, E.; Maensiri, S. J. Mater. Sci.: Mater. Electron. 2016, 27, 33. doi: 10.1007/s10854-015-3713-9

    (23) Flocken, J. W.; Hardy, J. R. Phys. Rev. B 1970, 1, 2472. doi: 10.1103/PhysRevB.1.2472

    (24) Bachiller-Pere, D.; Debelle, A.; Thomé, L.; Crocombette, J. J. Mater.Sci. 2016, 51, 1456. doi: 10.1007/s10853-015-9465-3

    (25) Pillukat, A.; Karsten, K.; Ehrhart, P. Phys. Rev. B 1996, 53, 7823. doi: 10.1103/PhysRevB.53.7823

    (26) Karsten, K.; Ehrhart, P. Phys. Rev. B 1995, 51, 508. doi: 10.1103/PhysRevB.51.10508

    (27) Ruan, Y.; Ma, P.; Liu, J.; Li, W.; Liu, C. J. Rare Earths 2006, 24, 56.

    (28) Monge, M. A.; Popov, A. I.; Ballesteros, C.; González, R.; Chen, Y.; Kotomin, E. A. Phys. Rev. B 2000, 62, 9299. doi: 10.1103/PhysRevB.62.9299

    (29) Gao, F.; Hu, J.; Yang, C.; Zheng, Y.; Qin, H.; Sun, L.; Kong, X.; Jiang, M. Solid State Commun. 2009, 149, 855. doi: 10.1016/j.ssc.2009.03.010

    (30) Osorio-Guillén, J.; Lany, S.; Barabash, S. V.; Zunger, A. Phys. Rev.Lett. 2006, 96, 107203. doi: 10.1103/PhysRevLett.96.107203

    (31) Prucnal, A.; Shalimov, A.; Ozerov, M.; Potzger, K.; Skorupa, W. J. Cryst. Growth 2012, 339, 70. doi: 10.1016/j.jcrysgro.2011.11.067

    (32) Yang, G.; Gao, D.; Shi, Z.; Zhang, Z.; Zhang, J.; Zhang, J.; Xue, D. J. Phys. Chem. C 2010, 114, 21989. doi: 10.1021/jp106818p

    (33) Gao, D.; Li, J. Li, Z.; Zhang, Z.; Zhang, J.; Shi, H.; Xue, D. J. Phys.Chem. C 2010, 114, 11703. doi: 10.1021/jp911957j

    (34) Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B. Nature Mater. 2005, 4, 173. doi: 10.1038/nmat1310

    (35) Singhal, R. K.; Kumari, P.; Samariya, A.; Kumar, S.; Sharma, S. C.; Xing, Y. T.; Saitovitch, E. Appl. Phys. Lett. 2010, 97, 172503. doi: 10.1063/1.3507290

    (36) Singhal, R. K.; Kumar, S.; Kumari, P.; Xing, Y. T.; Saitovitch, E. Appl. Phys. Lett. 2011, 98, 092510. doi: 10.1063/1.3562328

    (37) Shah, L. R. Ali, B.; Zhu, H.; Wang, W. G.; Song, Y. Q.; Zhang, H. W.; Shah, S. I.; Xiao, J. Q. J. Phys.: Condens. Matter 2009, 21, 486004. doi: 10.1088/0953-8984/21/48/486004

    猜你喜歡
    王曉雄點缺陷湖南
    Indoor orchids take the spotlight
    金紅石型TiO2中四種點缺陷態(tài)研究
    Fe-Cr-Ni合金中點缺陷形成及相互作用的第一性原理研究
    GaN中質(zhì)子輻照損傷的分子動力學模擬研究
    三線建設在湖南
    湖南是我家
    奧地利男子稱警察“藍精靈”被罰款
    微軟262億美元收購領英
    國際油價跌至11年新低
    歲月
    海峽影藝(2012年1期)2012-11-30 08:16:56
    精品人妻熟女av久视频| 国产真实伦视频高清在线观看| 永久免费av网站大全| 久久亚洲国产成人精品v| 在线观看人妻少妇| 欧美成人一区二区免费高清观看| 久久av网站| 国产精品99久久99久久久不卡 | 各种免费的搞黄视频| 久久精品国产亚洲av涩爱| h视频一区二区三区| 亚洲国产成人一精品久久久| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜爱| 毛片女人毛片| 欧美成人一区二区免费高清观看| 高清不卡的av网站| 黑人高潮一二区| 日本色播在线视频| 亚洲成人av在线免费| 人体艺术视频欧美日本| 日本黄色日本黄色录像| .国产精品久久| 一个人看视频在线观看www免费| 亚洲av福利一区| 欧美精品人与动牲交sv欧美| 久久韩国三级中文字幕| 日韩制服骚丝袜av| 久久久午夜欧美精品| 男女啪啪激烈高潮av片| 国产爱豆传媒在线观看| av在线观看视频网站免费| 日韩中字成人| 午夜福利高清视频| 亚洲精品视频女| 汤姆久久久久久久影院中文字幕| 亚洲熟女精品中文字幕| 搡女人真爽免费视频火全软件| 一级毛片 在线播放| 国产男女内射视频| 成人18禁高潮啪啪吃奶动态图 | 一级毛片 在线播放| 日日啪夜夜撸| 国内揄拍国产精品人妻在线| 啦啦啦在线观看免费高清www| 国精品久久久久久国模美| 51国产日韩欧美| 亚洲成人一二三区av| 尤物成人国产欧美一区二区三区| 高清在线视频一区二区三区| 精品人妻一区二区三区麻豆| 干丝袜人妻中文字幕| 亚洲av福利一区| 国国产精品蜜臀av免费| 免费av中文字幕在线| 在线观看美女被高潮喷水网站| 91精品伊人久久大香线蕉| 国产精品久久久久成人av| 黄色视频在线播放观看不卡| 亚洲欧美日韩另类电影网站 | 麻豆成人av视频| 最近中文字幕2019免费版| 国产成人精品久久久久久| 国产黄色免费在线视频| 草草在线视频免费看| 一级a做视频免费观看| 亚洲,一卡二卡三卡| 久久久久久久精品精品| 秋霞伦理黄片| 99国产精品免费福利视频| 另类亚洲欧美激情| 精品酒店卫生间| 午夜日本视频在线| 午夜激情久久久久久久| 精品久久久精品久久久| 如何舔出高潮| 国产欧美日韩精品一区二区| 黑丝袜美女国产一区| 亚洲精品亚洲一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久久综合国产亚洲精品| 国产淫片久久久久久久久| 久久精品国产亚洲网站| 中文在线观看免费www的网站| 国产色婷婷99| 成年美女黄网站色视频大全免费 | 亚洲精品456在线播放app| 欧美变态另类bdsm刘玥| 91狼人影院| 亚洲一区二区三区欧美精品| 国产成人91sexporn| 色视频在线一区二区三区| 99久久精品国产国产毛片| 狂野欧美白嫩少妇大欣赏| 精品亚洲成a人片在线观看 | 亚洲精品乱久久久久久| 久久ye,这里只有精品| 男男h啪啪无遮挡| 高清欧美精品videossex| 久久精品久久久久久久性| 乱码一卡2卡4卡精品| 中国美白少妇内射xxxbb| 91精品一卡2卡3卡4卡| 国产av码专区亚洲av| 一区二区三区精品91| 国产男人的电影天堂91| 亚洲欧美日韩卡通动漫| 少妇熟女欧美另类| 亚洲av在线观看美女高潮| 欧美高清成人免费视频www| 99精国产麻豆久久婷婷| 少妇被粗大猛烈的视频| 激情 狠狠 欧美| 亚洲国产色片| 国产视频首页在线观看| 亚洲av.av天堂| 最新中文字幕久久久久| 一级片'在线观看视频| 校园人妻丝袜中文字幕| 国产精品女同一区二区软件| 成人特级av手机在线观看| 视频中文字幕在线观看| 久久久久久九九精品二区国产| 久久精品国产亚洲av天美| 高清欧美精品videossex| 精品人妻偷拍中文字幕| 久久人妻熟女aⅴ| 人体艺术视频欧美日本| 中文资源天堂在线| 80岁老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 免费人妻精品一区二区三区视频| 一级毛片 在线播放| 免费av中文字幕在线| 热99国产精品久久久久久7| 亚洲图色成人| 亚洲av在线观看美女高潮| av专区在线播放| 不卡视频在线观看欧美| 久久久久精品久久久久真实原创| 一级毛片电影观看| 在现免费观看毛片| 国产69精品久久久久777片| 国产成人a区在线观看| 99re6热这里在线精品视频| 欧美最新免费一区二区三区| 91久久精品电影网| 精品午夜福利在线看| 欧美xxxx黑人xx丫x性爽| 秋霞在线观看毛片| 十八禁网站网址无遮挡 | 欧美激情国产日韩精品一区| 欧美日韩综合久久久久久| 亚洲欧美精品专区久久| 国内揄拍国产精品人妻在线| 偷拍熟女少妇极品色| 天天躁日日操中文字幕| 精华霜和精华液先用哪个| 18禁裸乳无遮挡动漫免费视频| 亚洲一区二区三区欧美精品| 日韩人妻高清精品专区| 日本与韩国留学比较| 日本vs欧美在线观看视频 | 欧美bdsm另类| 亚洲精品日韩av片在线观看| 大香蕉久久网| 国产熟女欧美一区二区| 成人毛片60女人毛片免费| 只有这里有精品99| 黑人高潮一二区| 久久6这里有精品| 18禁动态无遮挡网站| 欧美人与善性xxx| 午夜福利网站1000一区二区三区| 99热网站在线观看| 日本av手机在线免费观看| 亚洲精品日本国产第一区| 老熟女久久久| 国产又色又爽无遮挡免| 国产探花极品一区二区| 日本-黄色视频高清免费观看| 国产精品不卡视频一区二区| 久久韩国三级中文字幕| 精品久久久噜噜| 99热全是精品| 水蜜桃什么品种好| 久久国产乱子免费精品| 这个男人来自地球电影免费观看 | 欧美成人精品欧美一级黄| 伊人久久国产一区二区| 99久久人妻综合| 99久久精品一区二区三区| 成人午夜精彩视频在线观看| 亚洲第一av免费看| 国产 一区 欧美 日韩| 精品亚洲成国产av| 男女无遮挡免费网站观看| 大又大粗又爽又黄少妇毛片口| 赤兔流量卡办理| 国产探花极品一区二区| 成人免费观看视频高清| 九九在线视频观看精品| 国产熟女欧美一区二区| 午夜福利网站1000一区二区三区| 日韩人妻高清精品专区| 街头女战士在线观看网站| 3wmmmm亚洲av在线观看| 亚洲综合色惰| 国产亚洲欧美精品永久| 多毛熟女@视频| 成人18禁高潮啪啪吃奶动态图 | 欧美一区二区亚洲| 久久97久久精品| 夜夜骑夜夜射夜夜干| 五月天丁香电影| 欧美丝袜亚洲另类| 少妇 在线观看| 如何舔出高潮| av在线老鸭窝| 日日摸夜夜添夜夜添av毛片| 五月开心婷婷网| 男女免费视频国产| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 亚洲成人一二三区av| 欧美成人午夜免费资源| 成人综合一区亚洲| 国产毛片在线视频| av天堂中文字幕网| 日韩人妻高清精品专区| 99热国产这里只有精品6| 啦啦啦在线观看免费高清www| 青青草视频在线视频观看| 精品久久久久久久末码| 丝袜脚勾引网站| 干丝袜人妻中文字幕| 尤物成人国产欧美一区二区三区| 亚洲丝袜综合中文字幕| 亚洲最大成人中文| 制服丝袜香蕉在线| 深夜a级毛片| 成人国产av品久久久| 人妻一区二区av| 亚洲成人av在线免费| 日产精品乱码卡一卡2卡三| 亚洲av男天堂| 18禁裸乳无遮挡免费网站照片| 热re99久久精品国产66热6| 直男gayav资源| 蜜桃在线观看..| 国产男女超爽视频在线观看| 亚洲精品亚洲一区二区| 国产精品av视频在线免费观看| 男女边吃奶边做爰视频| 久久国产亚洲av麻豆专区| 国产成人aa在线观看| 国产爽快片一区二区三区| 大又大粗又爽又黄少妇毛片口| 看免费成人av毛片| 国产成人精品福利久久| 色综合色国产| 1000部很黄的大片| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区黑人 | 卡戴珊不雅视频在线播放| 国产精品99久久99久久久不卡 | 男人添女人高潮全过程视频| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 26uuu在线亚洲综合色| 国产精品免费大片| 卡戴珊不雅视频在线播放| 久久精品夜色国产| 老女人水多毛片| 日韩,欧美,国产一区二区三区| 我的老师免费观看完整版| 99热国产这里只有精品6| 欧美另类一区| 日本一二三区视频观看| 国产精品一二三区在线看| 最近最新中文字幕大全电影3| 亚洲欧美成人精品一区二区| 亚洲欧美精品自产自拍| 国产亚洲欧美精品永久| 亚洲综合精品二区| tube8黄色片| 国产爱豆传媒在线观看| 久久综合国产亚洲精品| av在线app专区| 日韩欧美 国产精品| 国产精品一区二区在线不卡| 欧美成人精品欧美一级黄| 亚洲精品一二三| 波野结衣二区三区在线| 免费高清在线观看视频在线观看| 国产精品一及| 久久99热这里只频精品6学生| 国产成人aa在线观看| 国产 一区 欧美 日韩| 大香蕉久久网| 国产极品天堂在线| 自拍欧美九色日韩亚洲蝌蚪91 | 狂野欧美激情性xxxx在线观看| 99久久精品国产国产毛片| 国产爽快片一区二区三区| 人妻一区二区av| 日韩一本色道免费dvd| 日日撸夜夜添| 啦啦啦视频在线资源免费观看| 99热6这里只有精品| 亚洲av成人精品一区久久| 亚洲中文av在线| 国产精品成人在线| 国产男人的电影天堂91| 午夜老司机福利剧场| 赤兔流量卡办理| 国产精品av视频在线免费观看| 老司机影院成人| 91狼人影院| 亚洲电影在线观看av| av在线蜜桃| 亚洲精品国产色婷婷电影| 国产91av在线免费观看| 全区人妻精品视频| 我要看日韩黄色一级片| 97精品久久久久久久久久精品| 成人午夜精彩视频在线观看| 3wmmmm亚洲av在线观看| 国产淫片久久久久久久久| 国产午夜精品一二区理论片| 一区在线观看完整版| 97超碰精品成人国产| 国产精品一区二区性色av| 国产精品国产三级国产av玫瑰| 亚洲高清免费不卡视频| 久热久热在线精品观看| 欧美激情国产日韩精品一区| 久久久午夜欧美精品| 夫妻午夜视频| 在线免费十八禁| 夜夜爽夜夜爽视频| 日本黄大片高清| 亚洲自偷自拍三级| 免费观看的影片在线观看| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 日日摸夜夜添夜夜添av毛片| 这个男人来自地球电影免费观看 | 99热网站在线观看| 美女福利国产在线 | 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕| 精品一区在线观看国产| 久久精品夜色国产| 午夜免费男女啪啪视频观看| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美在线一区| 热99国产精品久久久久久7| 国产日韩欧美在线精品| 免费观看在线日韩| 大码成人一级视频| 春色校园在线视频观看| 一个人免费看片子| 国产精品久久久久久久电影| 久久久久久伊人网av| 国模一区二区三区四区视频| 又爽又黄a免费视频| 最近中文字幕2019免费版| 亚洲av.av天堂| 一区二区三区乱码不卡18| 久久久a久久爽久久v久久| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 一本一本综合久久| 久久国产精品男人的天堂亚洲 | 亚洲精品aⅴ在线观看| 国产精品免费大片| 国产中年淑女户外野战色| 日韩成人伦理影院| 精品人妻视频免费看| 黄色怎么调成土黄色| 中文字幕制服av| 黄色日韩在线| 亚洲精品乱久久久久久| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| 久久热精品热| 久久ye,这里只有精品| 美女高潮的动态| 免费大片黄手机在线观看| 久久久久精品久久久久真实原创| 国产免费一区二区三区四区乱码| 观看免费一级毛片| 国产精品一区二区性色av| 97在线视频观看| 免费在线观看成人毛片| 亚洲国产精品999| 一区在线观看完整版| 精品久久久久久久末码| tube8黄色片| 中文字幕av成人在线电影| 搡老乐熟女国产| 蜜桃久久精品国产亚洲av| 午夜日本视频在线| 男女边吃奶边做爰视频| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 街头女战士在线观看网站| 卡戴珊不雅视频在线播放| 一个人免费看片子| 久久久亚洲精品成人影院| 欧美日韩视频高清一区二区三区二| 久久精品国产鲁丝片午夜精品| 亚洲熟女精品中文字幕| 日韩亚洲欧美综合| 国产精品一区二区在线观看99| 久久影院123| 日韩电影二区| 亚洲怡红院男人天堂| 女性被躁到高潮视频| 国产精品国产av在线观看| 一区在线观看完整版| 一级毛片我不卡| 亚洲av中文字字幕乱码综合| 日本av免费视频播放| 丰满少妇做爰视频| 99久久精品一区二区三区| 亚洲美女黄色视频免费看| av卡一久久| 久久精品熟女亚洲av麻豆精品| 久久久午夜欧美精品| 国产免费视频播放在线视频| 一级爰片在线观看| 亚洲av国产av综合av卡| 天堂8中文在线网| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 欧美精品国产亚洲| 嫩草影院入口| 免费少妇av软件| 国产精品无大码| 一级毛片我不卡| 久久毛片免费看一区二区三区| av免费观看日本| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 亚洲欧美日韩另类电影网站 | 日本av免费视频播放| 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 99热全是精品| 精品国产一区二区三区久久久樱花 | www.av在线官网国产| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品古装| 精品熟女少妇av免费看| 免费大片18禁| av在线app专区| 亚洲精品,欧美精品| 婷婷色综合www| 99国产精品免费福利视频| 各种免费的搞黄视频| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 成人毛片a级毛片在线播放| 黄色怎么调成土黄色| 黄色欧美视频在线观看| 精品久久久久久久久亚洲| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 国产精品人妻久久久影院| 美女视频免费永久观看网站| 制服丝袜香蕉在线| 高清不卡的av网站| 日韩欧美一区视频在线观看 | 看非洲黑人一级黄片| 久久久久网色| 国产黄片美女视频| 成人18禁高潮啪啪吃奶动态图 | 人妻夜夜爽99麻豆av| 亚洲aⅴ乱码一区二区在线播放| 人妻 亚洲 视频| 国产成人免费观看mmmm| 干丝袜人妻中文字幕| 两个人的视频大全免费| 久久国产亚洲av麻豆专区| 久久久欧美国产精品| 最近最新中文字幕免费大全7| 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 欧美成人a在线观看| 亚洲国产精品999| 大码成人一级视频| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| a级毛色黄片| 亚洲欧美精品自产自拍| 大片电影免费在线观看免费| 久久99热6这里只有精品| 精品国产露脸久久av麻豆| 日韩三级伦理在线观看| 三级国产精品片| 我的老师免费观看完整版| 大片免费播放器 马上看| 国产毛片在线视频| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看 | 搡老乐熟女国产| 青春草视频在线免费观看| 色婷婷av一区二区三区视频| 久热久热在线精品观看| 亚洲精品日韩在线中文字幕| 日韩免费高清中文字幕av| 色综合色国产| 青青草视频在线视频观看| 成人午夜精彩视频在线观看| 亚洲精品乱久久久久久| 国产深夜福利视频在线观看| 少妇人妻一区二区三区视频| 久久精品夜色国产| 1000部很黄的大片| 最近手机中文字幕大全| 成人亚洲精品一区在线观看 | 三级国产精品片| 国产爱豆传媒在线观看| 大香蕉97超碰在线| 波野结衣二区三区在线| 97热精品久久久久久| 精品国产露脸久久av麻豆| av不卡在线播放| 在线观看av片永久免费下载| 水蜜桃什么品种好| 久久精品人妻少妇| 99久久精品国产国产毛片| 国产男女超爽视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片 | 欧美日韩视频精品一区| 三级国产精品片| 男人舔奶头视频| 精品人妻熟女av久视频| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 国产精品.久久久| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 欧美日韩视频高清一区二区三区二| kizo精华| 成人影院久久| 久久久欧美国产精品| 欧美国产精品一级二级三级 | 免费黄频网站在线观看国产| 亚洲综合色惰| 精品亚洲成a人片在线观看 | 18禁动态无遮挡网站| 街头女战士在线观看网站| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 久久热精品热| 久久精品夜色国产| 亚洲一区二区三区欧美精品| 嘟嘟电影网在线观看| 国产精品秋霞免费鲁丝片| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 在线观看人妻少妇| 一本色道久久久久久精品综合| 丝袜喷水一区| 国产一区亚洲一区在线观看| 国产成人a区在线观看| 免费不卡的大黄色大毛片视频在线观看| 最近最新中文字幕大全电影3| 我的女老师完整版在线观看| 最近最新中文字幕大全电影3| 一本—道久久a久久精品蜜桃钙片| 乱码一卡2卡4卡精品| 一本色道久久久久久精品综合| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 一级片'在线观看视频| 午夜免费观看性视频| av一本久久久久| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜 | 亚洲国产欧美人成| 人人妻人人看人人澡| 成人漫画全彩无遮挡| 在线精品无人区一区二区三 | 91精品一卡2卡3卡4卡| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 免费观看无遮挡的男女| 久久女婷五月综合色啪小说| 插阴视频在线观看视频| 亚洲欧美一区二区三区黑人 | 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源|