• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thenewtypesofwavesolutionsofthe Burger’s equationandthe Benjamin–Bona–Mahonyequation

    2018-05-03 02:20:45MdAzmolHudAliAkrShewliShmimShnt
    關(guān)鍵詞:發(fā)展部微珠粘合劑

    Md. Azmol Hud M. Ali Akr Shewli Shmim Shnt

    a Mathematics Discipline, Khulna University, Bangladesh

    b Department of Applied Mathematics, University of Rajshahi, Bangladesh

    c Department of Mathematics, University of Rajshahi, Bangladesh

    1.Introduction

    Many of the principles of natural phenomena or underlying behavior of the natural world can be described by the statements or relations where rate of changes is involved.These rates can be expressed in mathematical relations that in turn emerge linear or nonlinear ordinary differential equations(ODEs) or partial differential equations (PDEs). For instance,in physics, the equation of heat fl ow and wave propagation model; in ecology, the population model; in chemistry dispersion reaction model and so on. These models are governed by linear or nonlinear ODE or PDE. Generally, most of the real incidents that appear in our daily life are inborn nonlinear. As a consequence, nonlinear partial differential equations(NPDEs) have been the subject of study and research interest in various branches of science and engineering. Building, solving and analyzing different mathematical models and derivation of its solutions are rich and important topics in the literature of NPDEs. Particularly, the analytical solutions are important to understand the mechanism and physical effects through the model problem. It provides the crucial qualitative and quantitative information about the underlying behavior of the model in a direct way. Moreover, it is useful to validate the numerical method. Thereby, it is important to be familiar with all existing, traditional and recently developed methods for constructing exact solutions and to extend or discover new methods for further research. But, due to human limitations involved in compiling computational algorithms for solving differential equations symbolically to fi nd an exact solution are not a straightforward work, and intrinsically a daunting task. However, the arrival of work-station or mainframe computer platforms with highly computational mathematical software with built in graphing utility packages like as Maple, Mathematica, Matlab etc. has paved the way to overcome these formidable obstacles and enhanced further develop, extension in the theory and applications of NLEEs and subsequently for searching different methods for extracting new exact solutions. Some of the references herein are mentioned.

    In the literature, many approaches for obtaining exact solutions of nonlinear equations have been presented, videlicet;Ma et al. [1] introduced the Frobenius integrable decomposition for solving a class of partial differential equations that possesses speci fi ed Frobenius integrable decompositions. The stated method is illustrated by the KdV and potential KdV equations. Explicit exact solutions of generalized KdV equation are also determined by Ma and Zhou [2] . Ma and You applied the variation of parameters method for solving nonhomogeneous partial differential equations that consist of system of linear partial differential equations whose Wronskian determinant solves the KdV equation in bilinear form [3] .Mohyud-Din et al. [4] , applied He’s polynomials method for investigating solitary wave solutions of seventh order generalized KdV equation and suggested that the solutions of nonlinear problems can be obtained without discretization,linearization or any boundary value problems [4] . They also used the variational iteration method [5] to investigate the partial differential equations. Noor et al. [6–9] , applied the expfunction method to construct the traveling wave-soliton type solutions of different nonlinear equations, such as, Fitzhugh Nagumo and Calogero–Degasperis–Fokas equations. Dehghan[10] applied the exp-function method to examine the partial differential equations. Ma [11] studied the exact solutions of the KdV equation introducing complexition solutions that is derived from the Wronskian determinants of eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues. The results showed that the solutions possess singularities of combinations of trigonometric function waves and exponential function waves with different traveling speeds. Toda lattice equation [12–14] is also studied in different forms, such as, complexiton and rational solutions in Casoratian form by Ma et al.

    Biswas et al. [15] studied extensively the Benjamin–Bona–Mahoney (BBM) equation by transforming into the combined KdV-mKdV equation with power law nonlinearity. They studied this combined equation from the point of view of Lie group theory and derived the Lie point symmetry generators of this combined equation. A number of exact group-invariant solutions of the BBM equation are obtained by using the Lie point symmetries of the equation by symmetry reduction.Biswas [16] found an exact 1-soliton solution of the BBM equation, with dual-power law nonlinearity where the solitary wave ansatz is used to carry to solve the equation. Dual power-law is applied in hybrid Benjamin–Bona–Mahoney–Burger’s equation by Biswas et al [17] . In Ref. [17] , three different techniques, the ansatz method, Lie-symmetry analysis and the (G′/G)-expansion method are used to fi nd shock wave solutions. The nature of the solutions is also discussed by them which are obtained in different methods. The perturbation theory is applied to the BBM equation by Biswas and Konar [18] . Wang et al. [19] applied Lie symmetry analysis of group theory to obtain the solution of (2 + 1) dimensional coupled Burger’s equations. By using the ansatz method they found many exact solutions of Burger’s equation. Moreover,Painleve truncated expansions are used to derive new exact bell-type solutions. The 1-Soliton solutions of the generalized Burger’s equation and extended to (2 + 1) dimensions with full nonlinearity have been studied by Biswas et al. [20] . Jawad et al. [21] studied the complex solutions of family of Burger’s equation by means of the tanh method. Biswas et al. [22] use the perturbation theory to obtain the solitary waves solutions and Jacobi elliptic function method to obtain the solutions of Bona–Chen equation. In Ref. [23,24] Biswas et al. obtain the two and three soliton solutions of the nonlocal Boussinesq equation by simplifying Hirota method. Biswas et al. [25] and Antonova and Biswas [26] implemented Jacobi’s elliptic function expansion method to obtain soliton and other periodic singular solutions of Benjamin–Bona–Mahony and Nizhnik–Novikov–Veselov equations. Bhrawy et al. [27] obtained the soliton solution of the Gear-Grimshaw model following with the power law nonlinearity and some interesting solutions of this model are extracted by the F-expansion method. Biswas and Ismail [28] also found the 1-Soliton solution of the coupled KdV equation and Gear-Grimshaw model by power law nonlinearity. Very recently, Biswas et al. [29] , studied shallow water waves that are described by the Boussinesq equation having logarithmic nonlinearity, where the traveling wave hypothesis is applied to obtain Gaussian solutions. Also in recent times [30–34] , much work on dispersive shallow water waves, dispersive long wave in fl uids have been done.

    Different numerical methods, such as, fi nite difference, finite element, meshless approach, homotopy perturbation technique have been studied by Mohyud-Din et al. [35–37] to solve the fi fth order KdV equation and improved Boussinesq equations. Dehghan et al. [38,39] , found the numerical solu-tion of nonlinear higher dimensional generalized Benjamin–Bona–Mahony–Burger’s equation via the meshless method of radial basis functions and interpolating the element free Galerkin technique. Sheikholeslami et al. [40–47] investigated numerical solution of nonlinear partial differential equations widely in the fi eld of fl uid dynamics. Also different numerical approaches as for example fi nite element method is also applied in the fi eld of nano fl uid intensively by them [48–57] .

    In 2008, Wang et al. [59] proposed a new approach to extract nonlinear PDEs called (G′/G)-extension method. After two years, in 2010 Li et al. [60] introduced the (G′/G, 1/G)-expansion method which is an extension of Wang et al.’s method to search the nonlinear Zakharov equation. Yet, this extended method has not been not used to search huge amount of other nonlinear evolution equations. In this article, our endeavor is to test the applicability of (G′/G, 1/G)-extension method to the Burger’s and BBM equations and searching new and further general wave solutions.

    The rest of this article is sorted out as follows: In Section 2 , the (G′/G, 1/G)-expansion method is described. In Section 3 , the Burger’s and the Benjamin–Bona–Mahony equations are chosen to illustrate the applicability of the introduced method. Results and discussion are given in Section 4 . Finally conclusion is given in Section 5 .

    2.Analysis of the two variable (G ′ /G , 1/G ) -expansion method

    Herein, the main steps of the (G′/G, 1/G)-expansion method are illustrated succinctly. Before discussing the main steps of this expansion method to dig up traveling wave solutions to NLEEs, some interpretations are required. Li et al. [60] have summarized this expansion method with the following remarks:

    Remark 1.At the beginning, we consider the second order liner ordinary differential equation (LODE)

    and for straightforwardness herein and after, we use

    By means of ( 2.1 ) and ( 2.2 ), we obtain

    The form of the general solutions of ODE ( 2.1 ) depend upon the parameter whetherλ<0,λ>0 orλ= 0.

    Remark 2.Ifλ<0, the general solution of the LODE ( 2.1 )is

    From which the following relationship can be established

    whereA1andA2are two arbitrary constants and

    Remark 3.Ifλ>0, the general, solution of Eq. (2.1) has the form

    and hence it can be easily found

    whereA1andA2are two arbitrary constants and

    Remark 4.Ifλ= 0,the general solution of Eq. (2.1) isG(ξ)

    and after some calculations, it can be deduced

    whereA1andA2are two arbitrary constants.

    At this phase, we consider a general NLEE involving two independent variables, videlicet the temporal variabletand spatial variablexof the form

    where in, the left-hand side of ( 2.7 ) is a polynomial inu(x,t) and its partial derivatives in which higher order derivatives and nonlinear terms are involved. In order to examine the Eq. (2.7) by using (G′/G, 1/G)-expansion method the following steps are to be considered.

    Step 1 :First, we introduce the wave variableξ=x-ct,so thatu(x,t)=u(ξ)and use the following relations

    and so on for other derivatives. These operators change ( 2.7 )into an ODE as follows:

    whereuξ,uξξ,uξξξand so on denote derivatives ofuwith respect toξ. Next, integrating Eq. (2.9) as many times as possible and set the arbitrary constants of integration to zero.

    Step 2:Suppose that the general solution of the Eq. (2.9) can be expressed by a polynomial inφandψin the formal form as

    whereφ=G′/G,ψ= 1/GandG=G(ξ)satis fi es the second order LODE ( 2.1 ),ai(i= 0,1,2,...,N),bi(i= 0,1,2,...,N),c,λandμare constants to be determined later on. Moreover, the positive integerNcan be determined by using the homogenous balance process between the highest order derivatives and the nonlinear terms appearing in ( 2.9 ).

    Step 3 :Asu(ξ) is a solution of Eq. (2.9) , substituting ( 2.10 ) into ( 2.9 ), using ( 2.3 ) and ( 2.4 ) (or using ( 2.3 ),( 2.5 ) and ( 2.3 ), ( 2.6 )) the left side of ( 2.9 ) transforms into a polynomial inφandψ, where in the degree ofψis not greater than one. Vanishing each coef fi cient of the polynomial inφ,ψto zero yields a system of algebraic equations inai(i= 0,1,2,...,N),bi(i= 0,1,2,...,N),c,λ(λ<0),μ,A1 andA2 .

    Step 4 :Solving the algebraic equations derived in Step 3 with the aid of software with symbolic computing facilities like, Maple or Mathematica and inserting the obtained values ofai(i= 0,1,2,...,N),bi(i= 0,1,2,...,N),c,λ,μ,A1andA2into ( 2.10 ), one can obtain the traveling wave solutions revealed by the hyperbolic functions of Eq. (2.9) (or can be expressed by trigonometric function ifλ>0 and rational function ifλ= 0).

    3.Formulation of the solutions

    3.1. The Burger’s equation

    In this section, we consider the Burger’s equation [19–21] ,in normal form which is de fi ned by

    The Burger’s equation describes one-dimensional internal waves in deep water. This equation arises in the propagation of internal waves in a strati fi ed fl uid of considerable depth,as for instance, a double layer fl uid in which a shallow upper layer sits on top of a deep lower layer.

    By means of the traveling wave variable

    wherecis the celerity of the traveling wave that is to be determined later, the NLEE ( 3.1.1 ), now converts into an ODE in the independent variableξ

    Integrating it with respect toξ, yields

    where the integration constant is taken zero.

    In accordance with to step 2, balancing the highest order derivatives and nonlinear terms, we attain

    Substituting the value ofNinto Eq. (2.10) , delivers

    Case1: Whenλ<0 (Hyperbolic function solutions)

    Substituting the value ofuand its derivatives into Eq.(3.1.4) along with( 2.3 )and ( 2.4 ), the left hand side of ( 3.1.4 )becomes a polynomial inφandψ. Setting each coef fi cient of this polynomial equal to zero, a system of algebraic equations is found as follows:

    Substituting the above values into ( 3.1.6 ), together withφ=(G′/G)andψ=(1/G), we obtain

    wherev=-andλ<0.

    In particular, whenA1= 0,A2/= 0 andμ= 0, we attain the solution of Eq. (3.1.1) as follows:

    On the other hand, whenA1/ = 0,A2= 0 andμ= 0, we attain the subsequent travelling wave solution of Eq. (3.1.1) :

    SinceA1andA2are arbitrary constants, the other selection of their values provide much new and further general solutions to the Burger’s equation, but to avoid the monotonous the rest of the solutions are not documented here.

    Case2: Whenλ>0 (Trigonometric solutions)

    Similar tocase1, substituting the value ofuand its derivatives into Eq. (3.1.4) , along with ( 2.3 ) and ( 2.5 ), the left hand side of ( 3.1.4 ) converts into a polynomial inφandψ. Equating each coef fi cient equal to zero, a system of algebraic equations can be found and solving them with the help of Maple,we obtain (for conciseness and simplicity the algebraic equations are not given)

    By means of these values from Eq. (3.1.6) , together withφ=(G′/G)andψ=(1/G), we achieve

    Computing the parallel course of algorithm of case 1, we obtain the solution of Eq. (3.1.1) whenA1= 0,A2/ = 0 andμ= 0,as

    2017年10月2日, 比利時向歐盟委員會通告全面禁止塑料微珠用于消費(fèi)品中的草案,通告中指出將自愿淘汰所有消費(fèi)品中的微塑料,其“部門禁令”最初將適用于化妝品和牙膏,以及后來的清潔和保養(yǎng)產(chǎn)品、粘合劑和膠粘劑[14]。目標(biāo)是到2019年實(shí)行在所有一次性化妝品和牙膏中使用塑料微珠的“全面禁令”。該計(jì)劃草案得到了聯(lián)邦能源,環(huán)境和可持續(xù)發(fā)展部等的贊同。

    For the particular case, whenA1/ = 0,A2/ = 0 andμ= 0, we achieve the travelling wave solution of Eq. (3.1.1) as

    Case3: Whenλ= 0(Rational function solutions)

    Similar to thecase1, by means of the value ofuand its derivatives from Eq. (3.1.4) , along with ( 2.3 ) and ( 2.6 ), can be obtained a polynomial inφandψ. Vanishing each coef fi cient of the polynomial yields a system of algebraic equations and solving them with the aid of Maple, we get (for brevity and simplicity algebraic equations are not given)

    where,A1andA2are two arbitrary constants. Inserting the values of the constants into Eq. (3.1.6) together withφ=(G′/G)andψ=(1/G), we attain

    where,A1andA2are arbitrary constants. It is important to note that the wave solutionsu1(x,t) tou5(x,t) of the Burger’s equation are resourceful and were not found in the earlier studies. The above solutions might be fruitful to scrutinize the one-dimensional internal waves in deep water.

    3.2. The Benjamin–Bona–Mahony equation

    The Benjamin–Bona–Mahony equation (BBM) [38,39]

    is derived from the regularized long-wave equation

    by considering the particular value of the constantsa= 1 andb= 1 . This equation was studied by Benjamin, Bona and Mahony as an improvement of the Korteweg–de Vries (KdV)equation

    ut+auux+uxxx= 0,

    by replacing the third order derivativeuxxxby a mixed derivativeuxxt, for modeling unidirectional propagation of weakly long dispersive waves in inviscid fl uids [33-34] . This change leads the BBM equation in a bounded dispersion relation,whereas the KdV equation results an unbounded dispersion relation. Prior to this, in 1966 it was introduced by Peregrine, in the study of undular bores. Nowadays, this equation is used to model the surface waves of long wavelength in liquids, acoustic waves in an harmonic crystals, acoustic-gravity waves in compressible fl uids, hydromagnetic waves in cold plasma and so on. Having been wide applicability of the BBM equation in different arena of physical science, it has attracted a considerable amount of attention to the researchers.

    The travelling wave variableu(x,t)=u(ξ),ξ=x-ct,allows us in converting Eq. (3.2.2) into an ODE foru=u(ξ):

    Integrating this equation with respect toξonce and setting up the arbitrary constant equal to zero, we obtain

    Balancing the nonlinear termu2and highest derivativeu′,occurring in ( 3.2.4 ), delivers

    Thus, for this value ofN, Eq. (2.10) becomes

    Now depending on the sign of the values ofλassorted solutions, videlicet the hyperbolic, trigonometric and rational function solutions can be found.

    Case 1 :Whenλ<0 (Hyperbolic function solutions)

    Substituting the value ofufrom ( 3.2.6 ) and its various derivatives into ( 3.2.4 ) along with ( 2.3 ) and ( 2.4 ) the left hand side of Eq.( 3.2.4 ) becomes a polynomial inφandψ. Equating each coef fi cient of this equation to zero yields a system of algebraic equations given below:

    Solving the above system of equations with the aid of Maple or Mathematica, we attain two sets of solution:

    Solutionset1:

    Inserting the values of the constants into solution ( 3.2.6 ),we achieve the subsequent wave solution

    wherev=-λ<0 andλ2v+μ2>0.

    In particular, if we setA1= 0,A2/= 0 andμ= 0 into the solution (3 .2.8) , we obtain following wave solution

    whereξ=x-ct.

    Again, if we setA1/ = 0,A2= 0 andμ= 0 into the solution ( 3.2.8 ), we obtain next wave solution

    Substituting these values into solution Eq. (3.2.6) , we obtain the solution in the following shape

    If we putA1= 0,A2/ = 0 andμ= 0 into ( 3.2.12 ), the subsequent wave solution is obtained

    Likewise, if we putA1/ = 0,A2= 0 andμ= 0 into ( 3.2.12 ), we extract the following wave solution

    Case 2 :Whenλ>0 (Trigonometric function solutions)

    Using the values ofu(ξ) and its different derivatives into Eq. (3.2.4) along with ( 2.3 ) and ( 2.5 ) the left hand side of Eq. (3.2.4) turns into a polynomial inφandψ. Setting the value of each coef fi cient of this polynomial equation to zero yields a system of over-determined set of algebraic equations(herein for conciseness and simplicity the algebraic equations are not given) and solving them the value of constants are found:

    Solutionset1:

    By means of these values, from ( 3.2.6 ) together with ( 2.2 )and ( 2.5 ), we obtain the succeeding wave solution

    Setting the de fi nite valuesA1= 0,A2/ = 0 andμ= 0 into( 3.2.16 ), we obtain the wave solution

    On the other hand, setting the de fi nite valuesA1/ = 0,A2=0 andμ= 0 into ( 3.2.16 ), we obtain the wave solution

    In the similar way, if we substitute the above values into( 3.2.16 ) along with the added conditionA1= 0,A2/ = 0 andμ= 0, we obtain another wave solution

    Alternatively, if we substitute the above values into ( 3.2.16 )along with the conditionA1/ = 0,A2= 0 andμ= 0, we obtain a further wave solution

    Case 3 :Whenλ= 0(Rational function solutions)

    In this case, substituting the value ofu(ξ) into Eq.( 3.2.6 )along with ( 2.3 ) and ( 2.6 ) the left hand side of ( 3.2.6 ) turns out to be a polynomial inφandψ. Vanishing each coef fi cient of this polynomial equation yields a system of equations that is solved by Maple result the following values:

    Inserting these values into ( 3.2.6 ) and using ( 2.2 ) and ( 2.6 ),we obtain the succeeding wave solution

    whereξ=x-ct.

    4.Results and discussion

    The (G′/G, 1/G)-expansion method has been delineated and executed to extract further general and new exact wave solutions to the Burger’s and the Benjamin–Bona–Mahony equations. The method is based on the direct treatment of the NLEEs with a certain substitution which leads to comparative easier ordinary differential equations. Additionally, it transforms a nonlinear equation to a simple algebraic equation. As the two parametersA1andA2are taken special values familiar type of solitary wave solutions are originated from the general solution. Whenμ= 0 in Eq. (2.1) , andbi= 0 in Eq. (2.9) ,the (G′/G, 1/G)expansion method turns into (G′/G)-expansion method. The key points of this method are that using the traveling wave variable the NLEEs transform into ODE. The ansatz presented here is that, the solution of this ODE is a polynomial in two variablesφ=(G′/G)andψ= 1/Gwhere,G=G(ξ)satis fi es a second order linear ordinary differential equationG′+λG=μ. Clearly, the solution of this ODE depends on values of different values onλ. Whenλis positive,we get the solution of this ODE in terms of hyperbolic functions and whenλis negative, the solution arises in terms of trigonometric functions and whenλis equal to zero, we get rational solutions.

    Fig. 1. Travelling wave solution of u1(x,t).

    Exact solutions of the BBM [15-18] and Burger’s [19–21,58] equations are derived by many authors. Herein, all of our derived solutions are quite different (Appendix) that are in the form of combination of hyperbolic or trigonometric functions or in the form of rational functions. In case of some particular values of different parameters,some of our solutions match with the previous obtained solutions.

    The traveling wave and behavior of the solutionsu1(x,t)of Eq. (3.1.9) andu2(x,t) of Eq. (3.1.10) are graphed in Figs. 1 and 2 , respectively for some fi xed values of the parametersλ= -1,c= 1 in the domain -10 ≤x,y≤ 10, -π/2 ≤x,y≤π/2 .

    There are several methods existing to derive analytical solutions of NLEEs and each of them has some advantages and disadvantages. Some methods also provide solutions in a series form. It naturally raises a burning question to investigate the convergence of approximation of series. For instance, the Adomian decomposition method or the variational iteration [5] method depends on the initial conditions and some time there arise convergence issues. Some methods need linearization or to convert the inhomogenous boundary conditions to homogeneous and so on. In addition to, all numerical methods e.g. the fi nite difference or the fi nite element method must have initial and boundary conditions. The main advantages of (G′/G, 1/G)-expansion method over other methods are that it hits the problems in a straight forward fashion without using linearization, perturbation or any other restrictive assumption that may change the physical behavior of the model under discussion. It is worth to refer that the disadvantage of this method is: if the order of the reduced ODE is higher comparatively, it is mostly not possible to fi nd out a useful solution. In spite of this limitation, this method is useful for fi nding new exact solutions that are important in different fi eld contexts and to validate the numerical solutions.

    Fig. 2. Travelling wave solution of u2(x,t).

    5.Conclusion

    In this article, we introduced (G′/G, 1/G)-expansion method and used it to establish exact wave solutions to the nonlinear Burger’s and Benjamin–Bona–Mahony equations.Three types of traveling wave solutions in the form of hyperbolic, trigonometric and rational functions have been derived by this method. The derived analytical solutions have not previously been reported in the literature of exact travelling wave solution. The computational techniques of this method are simple and straightforward. This method can change the given dif fi cult problems into simple one and solve easily. Having been computerized method; it is powerful, reliable and effective. It is worthy of further study and might have substantial interest for applications in mathematical physics and engineering.

    Funding

    Acknowledgement

    The authors would like to express their truthful thanks to the unidenti fi ed referees for their valuable comments and suggestions to improve the quality of this article. The authors also would like to convey their appreciation to Md. Nuruzzaman, Assistant Professor, English Discipline, Khulna University, Khulna, Bangladesh for his assistance in editing the English language.

    Appendix

    Wazwaz [58] investigated exact solutions of the BBM equation by two methods the sine-cosine method and the tanh-coth method. He derived the following four solutions by sine-cosine method.

    By using tanh-coth method, Wazwaz also derived the following more other four different solutions

    [1] W.X. Ma , W. Hongyou , H. Jingsong ,Phys. Lett. A 364 (1) (2007)29–32 .

    [2] W.X. Ma , D.T. Zhou , Acta Math. Sci. 17 (1997) 168–174 .

    [3] W.X. Ma , Y. You , Trans. Am. Math. Soc. 357 (5) (2004) 1753–1778 .

    [4] S.T. Mohyud-Din , M.A. Noor , K.I. Noor , Int. J. Nonlinear Sci. Numer.Simul. 10 (2) (2011) 223–229 .

    [5] S.T. Mohyud-Din , M.A. Noor , K.I. Noor , M.M. Hossaeini , Int. J. Nonlinear Sci. Numer. Simul. 11 (2) (2011) 87–92 .

    [6] M.A. Noor , S.T. Mohyud-Din , A. Waheed , E.A. Al-Said , Appl. Math.Comput. 216 (2) (2010) 477–483 .

    [7] M.A. Noor , S.T. Mohyud-Din , A. Waheed , Acta Appl. Math. 104 (2)(2008) 131–137 .

    [8] S.T. Mohyud-Din , Y. Khan , N. Faraz , A. Yildirim , Int. J. Numer. Methods Heat Fluid Flow 22 (3) (2012) 335–341 .

    [9] S.T. Mohyud-Din , M.A. Noor , A. Waheed , Zeitschrift für Naturforschung A 65 (2) (2014) 78–84 .

    [10] M. Dehghan , J. Mana fi an , A. Saadatmandi , Int. J. Mod. Phys. B 25 (22)(2011) 2965–2981 .

    [11] W.X. Ma , Phys. Lett. A 301 (1–2) (2002) 35–44 .

    [12] W.X. Ma , K.I. Maruno , Phys. A Stat. Mech. Appl. 343 (1) (2004)219–237 .

    [13] W.X. Ma , Y. You , Solitons Fractals 22 (2) (2004) 395–406 .

    [14] W.X. Ma , B. Fuchssteiner , Int. J. Non-Linear Mech. 31 (3) (1996)329–338 .

    [15] A.G. Johnpillai , A.H. Kara , A. Biswas , Appl. Math. Lett. 26 (3) (2013)376–381 .

    [16] A. Biswas , Commun. Nonlinear Sci. Numer. Simul. 15 (10) (2010)2744–2746 .

    [17] G.W. Wang , T.X. Xu , R. Abazari , Z. Jovanoski , A. Biswas , Acta Phys.Polonica A 126 (6) (2014) 1221–1225 .

    [18] A. Biswas , S. Konar , Commun. Nonlinear Sci. Numer. Simul. 13 (4)(2008) 703–706 .

    [19] G.W. Wang , T.Z. Zhou , A. Biswas , Roman. Rep. Phys. 66 (2) (2014)274–285 .

    [20] A. Biswas , H. Triki , T. Hayat , O.M. Aldossary , Appl. Math. Comput.217 (24) (2011) 10289–10294 .

    [21] A.J. Mohamad Jawad , M. Petkovi′c , A. Biswas , Appl. Math. Comput.216 (11) (2010) 3370–3377 .

    [22] M. Mirzazadeh , M. Ekici , A. Sonomezoglu , S. Ortakaya , M. Eslami ,A. Biswas, Eur. Phys. J. Plus 131 (6) (2016) 166–177 .

    [23] H.I. Abdel-Gawad , A. Biswas , Acta Phys. Polonica B 47 (4) (2016)1101–1112 .

    [24] M. Mirzazadeh , M.E. Zerrad , D. Milovic , A. Biswas , in: Proceedings of the Romanian Academy, Series A, Vol. 17, 2016, pp. 215–221 .

    [25] A. Biswas , E.V. Krishnan , P. Suarez , A.H. Kara , S. Kumar , Indian J.Phys. 87 (2) (2013) 169–175 .

    [26] M. Antonova , A. Biswas , Commun Nonlinear Sci. Numer. Simul. 14(3) (2009) 734–748 .

    [27] A.H. Bhrawy , K. Hasn Arak , A. Biswas , Acta Phys. Polonica A 125(5) (2014) 1099–1106 .

    [28] A. Biswas , M.S. Ismail , Appl. Math. Comput. 216 (12) (2010)3662–3670 .

    [29] A. Biswas , A.H. Kara , L. Moraru , H. Triki , S.P. Moshokoa , in: Proceedings of the Romanian Academy, Series A, Vol. 18, 2017, pp. 144–149 .

    [30] T. Collins , A.H. Kara , A.H. Bhrawy , H. Triki , A. Biswas , Roman. Rep.Phys. 68 (3) (2016) 943–961 .

    [31] A.H. Kara , A.H. Bhrawy , A. Biswas , Roman. J. Phys. 61 (3-4) (2016)367–377 .

    [32] S.O. Adesanya , M. Eslami , M. Mirzazadeh , A. Biswas , Eur. Phys. J.Plus 130 (6) (2015) .

    [33] P. Razborova , M. Luminita , A. Biswas , Roman. J. Phys. 59 (7–8) (2014)658–676 .

    [34] D. Chao-Qing , W. Yue-Yue , A.Biswas ,Ocean Eng.81(2014)77–88 .

    [35] S.T. Mohyud-Din , A. Yildirim , S. Sariaydin , Int. J. Numer. Methods Heat Fluid Flow 21 (3) (2011) 272–281 .

    [36] S.T. Mohyud-Din , A. Yildirim , S. Sariaydin , S.A. Sezer , Int. J. Numer.Methods Heat Fluid Flow 21 (7) (2011) 822–827 .

    [37] S.T. Mohyud-Din , E. Negahdary , M. Usman , Int. J. Numer. Methods Heat Fluid Flow 22 (5) (2012) 641–658 .

    [38] M. Dehghan , M. Abbaszadeh , A. Mohebbi , Comput. Math. Appl. 68(3) (2014) 212–237 .

    [39] M. Dehghan , M. Abbaszadeh , A. Mohebbi , J. Comput. Appl. Math. 286(2015) 211–231 .

    [40] M. Sheikholeslami , D.D. Ganji , Chem. Phys. Lett. 667 (2017) 307–316 .

    [41] M. Sheikholeslami , J. Mol. Liq. 234 (2017) 364–374 .

    [42] M. Sheikholeslami , D.D. Ganji , Chem. Phys. Lett. 669 (2017) 202–210 .

    [43] M. Sheikholeslami , D.D. Ganji , J. Mol. Liq. 229 (2017) 566–573 .

    [44] M. Sheikholeslami , D.D. Ganji , J. Mol. Liq. 229 (2017) 530–540 .

    [45] M. Sheikholeslami , M. Nimafar , D.D. Ganji , Alex. Eng. J. 56 (2) (2017)277–283 .

    [46] M. Sheikholeslami , D.D. Ganji , J. Mol. Liq. 233 (2017) 499–507 .

    [47] M. Sheikholeslami , D.D. Ganji , Mater. Des. 120 (2017) 382–393 .

    [48] M. Sheikholeslami , S. Soleimani , D.D. Ganji , J. Mol. Liq. 213 (2016)153–161 .

    [49] M. Sheikholeslami , D.D. Ganji , J. Mol. Liq. Part A, 224 (2016)526–537 .

    [50] M. Sheikholeslami , M.T. Mustafa , D.D. Ganji , Particuology 26 (2016)108–113 .

    [51] M. Sheikholeslami , D.D. Ganji , M.M. Rashidi , J. Magn. Magn. Mater.416 (2016) 164–173 .

    [52] M. Sheikholeslami , D.D. Ganji , J. Taiwan Inst. Chem. Eng. 65 (2016)43–77 .

    [53] M. Sheikholeslami , D.D. Ganji , Comput. Methods Appl. Mech. Eng.283 (2015) 651–663 .

    [54] M. Sheikholeslami , M.M. Rashidi , D.D. Ganji , Comput. Methods Appl.Mech. Eng. 294 (2015) 299–312 .

    [55] M. Sheikholeslami , M.M. Rashidi , D.D. Ganji , J. Mol. Liq. 212 (2015)117–126 .

    [56] M. Sheikholeslami , D.D. Ganji , M.M. Rashidi , J. Taiwan Inst. Chem.Eng. 47 (2015) 6–17 .

    [57] M. Hatami , M. Sheikholeslami , D.D. Ganji , Powder Technol. 253 (2014)769–779 .

    [58] A.M. Wazwaz , Partial Differential Equations and Solitary Waves Theory, Springer, New York, 2009 .

    [59] M.L. Wang , X.Z. Li , J.L. Zhang , Phys. Lett. A 372 (2008) 417–423 .

    [60] X.L. Li , Q.E. Li , L.M. Wang , Appl. Math. J. Chin. Univ. 25 (2010)454–462 .

    猜你喜歡
    發(fā)展部微珠粘合劑
    空心微珠負(fù)載鈰或氮摻雜氧化亞銅光催化劑的制備方法
    硅酸鋁微珠在人造花崗石中的應(yīng)用
    石材(2022年1期)2022-05-23 12:48:34
    沒有熟透的食物不可以吃
    國家知識產(chǎn)權(quán)局辦公室 中央軍委裝備發(fā)展部辦公廳就開展知識產(chǎn)權(quán)軍民融合試點(diǎn)工作下發(fā)通知
    建筑建材行業(yè)中粘合劑的應(yīng)用分析
    LA 型鋰離子電池專用水性粘合劑
    LA 型鋰離子電池專用水性粘合劑
    LA 型鋰離子電池專用水性粘合劑
    空心玻璃微珠對PMMA/SAN共混體系相分離的影響
    空心玻璃微珠/PNHMPA/PEG復(fù)配保溫蓄熱乳膠漆的制備與表征
    久久久亚洲精品成人影院| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 久热久热在线精品观看| 亚洲精华国产精华液的使用体验| 午夜福利高清视频| 国产黄a三级三级三级人| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 亚洲精品一二三| 国产精品一区二区性色av| 精品国产乱码久久久久久小说| 亚洲最大成人av| 五月天丁香电影| 欧美高清性xxxxhd video| 亚洲国产精品999| 日韩欧美 国产精品| 99久久精品热视频| 色播亚洲综合网| 韩国高清视频一区二区三区| 熟女av电影| 纵有疾风起免费观看全集完整版| 亚洲自偷自拍三级| 国产亚洲精品久久久com| 久久久久久久国产电影| 白带黄色成豆腐渣| 久久久久精品久久久久真实原创| 欧美激情在线99| 韩国高清视频一区二区三区| 伊人久久精品亚洲午夜| 黄片wwwwww| 久久人人爽av亚洲精品天堂 | 干丝袜人妻中文字幕| 美女被艹到高潮喷水动态| 欧美三级亚洲精品| 亚洲一级一片aⅴ在线观看| 丝袜美腿在线中文| 精品99又大又爽又粗少妇毛片| 熟女av电影| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图| 久久精品夜色国产| 国产伦在线观看视频一区| 日韩av在线免费看完整版不卡| 欧美精品国产亚洲| 国产精品久久久久久精品电影小说 | 日日啪夜夜爽| 看十八女毛片水多多多| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 久久久久性生活片| 少妇的逼水好多| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 国产亚洲av嫩草精品影院| 国产久久久一区二区三区| 内射极品少妇av片p| 亚洲真实伦在线观看| 少妇丰满av| 日日啪夜夜撸| 搡女人真爽免费视频火全软件| 一级毛片久久久久久久久女| 久久久久性生活片| 国产一区二区三区综合在线观看 | 日本爱情动作片www.在线观看| 国产乱来视频区| 小蜜桃在线观看免费完整版高清| 国产精品无大码| 午夜免费鲁丝| 九九爱精品视频在线观看| 久久久久久久久久久免费av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲性久久影院| 午夜福利在线在线| av国产精品久久久久影院| 嘟嘟电影网在线观看| 麻豆成人av视频| 亚洲欧美精品专区久久| 69人妻影院| 亚洲成人一二三区av| av专区在线播放| 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 亚洲国产高清在线一区二区三| 一级毛片 在线播放| 最近手机中文字幕大全| 久热这里只有精品99| 男的添女的下面高潮视频| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 成人一区二区视频在线观看| 中文字幕av成人在线电影| 男女边吃奶边做爰视频| a级毛色黄片| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 一级毛片我不卡| av黄色大香蕉| 国产精品一区二区性色av| 久久久国产一区二区| 亚洲国产精品成人久久小说| 日日摸夜夜添夜夜添av毛片| 成人黄色视频免费在线看| 久久久久久久精品精品| 久久精品国产a三级三级三级| 波野结衣二区三区在线| 欧美另类一区| 嘟嘟电影网在线观看| 国产成人精品福利久久| 中国三级夫妇交换| 熟女人妻精品中文字幕| av在线亚洲专区| 亚洲自拍偷在线| 国产综合精华液| 欧美3d第一页| 在线a可以看的网站| 久久99热这里只有精品18| 成人无遮挡网站| 老师上课跳d突然被开到最大视频| 全区人妻精品视频| xxx大片免费视频| 丝袜脚勾引网站| 免费人成在线观看视频色| 男的添女的下面高潮视频| 亚洲精品国产色婷婷电影| 日本黄色片子视频| 最近中文字幕2019免费版| 日韩三级伦理在线观看| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 有码 亚洲区| 三级国产精品片| 国产精品99久久久久久久久| 亚洲综合色惰| 日本欧美国产在线视频| 国产成人freesex在线| 亚洲av成人精品一二三区| 成人无遮挡网站| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区| 在线观看国产h片| 香蕉精品网在线| 黄色日韩在线| 亚洲av免费在线观看| 精品一区二区三区视频在线| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 国产 精品1| 搞女人的毛片| 亚洲国产欧美在线一区| 亚洲精品第二区| 国产精品99久久久久久久久| 国产男人的电影天堂91| 国产精品久久久久久久久免| 亚洲av日韩在线播放| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 男女国产视频网站| 亚洲美女搞黄在线观看| 91午夜精品亚洲一区二区三区| 综合色丁香网| 午夜精品一区二区三区免费看| 国产乱人视频| 性插视频无遮挡在线免费观看| 午夜精品一区二区三区免费看| freevideosex欧美| 精品久久久精品久久久| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 国产精品一二三区在线看| 国产欧美亚洲国产| 一级片'在线观看视频| 麻豆精品久久久久久蜜桃| 女人久久www免费人成看片| 亚州av有码| 99热全是精品| 高清午夜精品一区二区三区| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 国模一区二区三区四区视频| av专区在线播放| 国产 一区精品| av国产久精品久网站免费入址| 国产色婷婷99| 国产 一区精品| 春色校园在线视频观看| 99re6热这里在线精品视频| 精品久久久久久电影网| 天堂俺去俺来也www色官网| 免费av不卡在线播放| 夫妻午夜视频| 亚洲国产精品国产精品| 2021天堂中文幕一二区在线观| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 免费观看a级毛片全部| 能在线免费看毛片的网站| 亚洲国产成人一精品久久久| 另类亚洲欧美激情| 欧美区成人在线视频| av播播在线观看一区| 国产亚洲午夜精品一区二区久久 | 成年女人看的毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,一卡二卡三卡| 干丝袜人妻中文字幕| 中文资源天堂在线| 在线观看av片永久免费下载| 一边亲一边摸免费视频| 男人和女人高潮做爰伦理| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| 大片电影免费在线观看免费| 一级av片app| 成年女人看的毛片在线观看| 国产免费视频播放在线视频| 18+在线观看网站| 最新中文字幕久久久久| 成人鲁丝片一二三区免费| 在线a可以看的网站| 成人特级av手机在线观看| 内地一区二区视频在线| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 欧美+日韩+精品| 亚洲精品乱久久久久久| 别揉我奶头 嗯啊视频| 精品人妻偷拍中文字幕| 日本一二三区视频观看| 白带黄色成豆腐渣| 色视频在线一区二区三区| 国产成人a区在线观看| 少妇人妻一区二区三区视频| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 国产av国产精品国产| 男人添女人高潮全过程视频| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 美女内射精品一级片tv| 免费看光身美女| 国产亚洲91精品色在线| 别揉我奶头 嗯啊视频| 只有这里有精品99| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区| 亚洲精品影视一区二区三区av| 另类亚洲欧美激情| 一级a做视频免费观看| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| 午夜爱爱视频在线播放| 精品熟女少妇av免费看| 午夜福利视频精品| 精品少妇黑人巨大在线播放| 欧美少妇被猛烈插入视频| 直男gayav资源| 白带黄色成豆腐渣| 久久精品久久精品一区二区三区| 国产在线男女| 中文精品一卡2卡3卡4更新| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 欧美97在线视频| 成人国产麻豆网| 国产精品99久久99久久久不卡 | 简卡轻食公司| 欧美三级亚洲精品| 一区二区三区免费毛片| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 一级爰片在线观看| 久久久成人免费电影| 又爽又黄无遮挡网站| 精品国产露脸久久av麻豆| 视频中文字幕在线观看| 看黄色毛片网站| 777米奇影视久久| 亚洲精品乱码久久久v下载方式| 久久99精品国语久久久| 麻豆乱淫一区二区| 国产免费一级a男人的天堂| 毛片一级片免费看久久久久| 亚洲国产日韩一区二区| 日本av手机在线免费观看| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女啪啪激烈高潮av片| 久久久色成人| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 熟女av电影| 久久久国产一区二区| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 国产精品一区www在线观看| 九九在线视频观看精品| 插阴视频在线观看视频| 国产黄片美女视频| 国产免费视频播放在线视频| 少妇高潮的动态图| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 日韩强制内射视频| 久久这里有精品视频免费| 七月丁香在线播放| 最近最新中文字幕大全电影3| 99热国产这里只有精品6| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区黑人 | 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 麻豆国产97在线/欧美| 乱码一卡2卡4卡精品| 国内揄拍国产精品人妻在线| 中文字幕亚洲精品专区| av国产免费在线观看| 美女高潮的动态| 日韩av在线免费看完整版不卡| 日本欧美国产在线视频| 午夜福利在线观看免费完整高清在| 能在线免费看毛片的网站| 国产毛片a区久久久久| 深爱激情五月婷婷| 人妻一区二区av| 亚洲精品国产成人久久av| 中文字幕久久专区| 有码 亚洲区| 亚洲在线观看片| 亚洲av男天堂| 中文在线观看免费www的网站| 少妇丰满av| 男人狂女人下面高潮的视频| av国产免费在线观看| 美女高潮的动态| freevideosex欧美| 久久久久国产精品人妻一区二区| 国产免费一级a男人的天堂| 亚洲va在线va天堂va国产| 在线a可以看的网站| 美女内射精品一级片tv| 99视频精品全部免费 在线| 一区二区三区免费毛片| 在线天堂最新版资源| 最后的刺客免费高清国语| 免费av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放| 不卡视频在线观看欧美| 啦啦啦中文免费视频观看日本| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 内射极品少妇av片p| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验| 中国国产av一级| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 久久久精品免费免费高清| 亚州av有码| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| 国产成年人精品一区二区| a级毛色黄片| 亚洲一区二区三区欧美精品 | 少妇丰满av| 亚洲av不卡在线观看| 成人黄色视频免费在线看| 女人被狂操c到高潮| 久久99精品国语久久久| 国产精品伦人一区二区| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 久久久久久久大尺度免费视频| 亚洲成人中文字幕在线播放| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看日韩| 日日啪夜夜爽| 日韩三级伦理在线观看| 国产探花在线观看一区二区| 亚洲精品国产色婷婷电影| 久久久欧美国产精品| 亚洲精品国产成人久久av| 免费看不卡的av| 中国国产av一级| av在线亚洲专区| 精品少妇久久久久久888优播| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品成人久久小说| 日韩av在线免费看完整版不卡| 97精品久久久久久久久久精品| 亚洲一区二区三区欧美精品 | 亚洲国产av新网站| 免费黄频网站在线观看国产| 在线观看三级黄色| 久热这里只有精品99| 激情五月婷婷亚洲| 91狼人影院| av在线天堂中文字幕| 国产毛片在线视频| 国精品久久久久久国模美| 99久久九九国产精品国产免费| av在线播放精品| 看免费成人av毛片| 天天躁日日操中文字幕| 九九在线视频观看精品| 在现免费观看毛片| 人妻夜夜爽99麻豆av| av女优亚洲男人天堂| av网站免费在线观看视频| 国产成人aa在线观看| 91久久精品电影网| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 国产中年淑女户外野战色| 亚洲激情五月婷婷啪啪| 久久久久性生活片| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 高清日韩中文字幕在线| 日韩一区二区视频免费看| 久久久久久久午夜电影| 人妻一区二区av| 嫩草影院新地址| 色综合色国产| 亚洲综合精品二区| 边亲边吃奶的免费视频| 亚洲精品第二区| av在线观看视频网站免费| 女人被狂操c到高潮| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 草草在线视频免费看| 亚洲精品一区蜜桃| 久久精品久久精品一区二区三区| 亚洲欧美日韩东京热| 成人无遮挡网站| 成年女人看的毛片在线观看| 精品人妻熟女av久视频| 国产精品福利在线免费观看| 亚洲精品国产av蜜桃| 草草在线视频免费看| videos熟女内射| xxx大片免费视频| 人妻 亚洲 视频| 欧美一区二区亚洲| 色综合色国产| 久久久久网色| 亚洲av中文av极速乱| 成人一区二区视频在线观看| 高清av免费在线| 人人妻人人看人人澡| 青青草视频在线视频观看| 黄色配什么色好看| 国模一区二区三区四区视频| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 中国国产av一级| 国产一区二区三区综合在线观看 | 伊人久久国产一区二区| 亚洲精品色激情综合| 国产在线男女| 国产高清有码在线观看视频| 精品国产露脸久久av麻豆| 久久久久网色| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频 | 伊人久久精品亚洲午夜| videossex国产| 纵有疾风起免费观看全集完整版| 美女高潮的动态| 亚洲综合色惰| a级一级毛片免费在线观看| 欧美日韩视频高清一区二区三区二| 欧美人与善性xxx| 久久99热这里只频精品6学生| 亚洲成色77777| 2021少妇久久久久久久久久久| 在线观看av片永久免费下载| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 欧美变态另类bdsm刘玥| 女人十人毛片免费观看3o分钟| 日本免费在线观看一区| 亚洲精品成人av观看孕妇| 黄片wwwwww| tube8黄色片| 狂野欧美激情性xxxx在线观看| www.av在线官网国产| 男插女下体视频免费在线播放| 中文字幕av成人在线电影| 国产v大片淫在线免费观看| 亚洲av.av天堂| 免费人成在线观看视频色| 在线观看美女被高潮喷水网站| h日本视频在线播放| 日韩免费高清中文字幕av| 精品人妻偷拍中文字幕| 如何舔出高潮| 亚洲自偷自拍三级| 亚洲性久久影院| 丰满少妇做爰视频| 亚洲一区二区三区欧美精品 | 精品久久国产蜜桃| 国产成人freesex在线| 插阴视频在线观看视频| 日日啪夜夜撸| 高清在线视频一区二区三区| 国产高清国产精品国产三级 | 九九久久精品国产亚洲av麻豆| 成人一区二区视频在线观看| 免费观看性生交大片5| av.在线天堂| 最近的中文字幕免费完整| 日韩中字成人| 亚洲av成人精品一区久久| 听说在线观看完整版免费高清| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 欧美日韩在线观看h| av黄色大香蕉| 国产视频首页在线观看| 国产黄片美女视频| 简卡轻食公司| 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 久久综合国产亚洲精品| 人体艺术视频欧美日本| 久久精品夜色国产| 久久精品久久久久久噜噜老黄| 国产色婷婷99| 精品少妇久久久久久888优播| 亚洲第一区二区三区不卡| 啦啦啦啦在线视频资源| 亚洲精品乱久久久久久| 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| 精品人妻视频免费看| 国产日韩欧美在线精品| 午夜免费鲁丝| 欧美精品一区二区大全| 亚洲国产成人一精品久久久| 国产成人福利小说| www.av在线官网国产| 久久久久网色| 少妇丰满av| 日韩欧美一区视频在线观看 | 久久久精品94久久精品| 久久久久久久久久久免费av| 欧美xxxx性猛交bbbb| 少妇人妻 视频| 波多野结衣巨乳人妻| 毛片一级片免费看久久久久| 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 日韩伦理黄色片| 亚洲美女搞黄在线观看| 看非洲黑人一级黄片| 精品99又大又爽又粗少妇毛片| 丰满人妻一区二区三区视频av| 国产又色又爽无遮挡免| 国产免费一区二区三区四区乱码| 亚洲av中文av极速乱| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx在线观看| 国产男女超爽视频在线观看| 亚洲精品第二区| 亚洲综合色惰| 亚洲国产精品999| 春色校园在线视频观看| 欧美日韩在线观看h| 日韩视频在线欧美| 国产成人免费无遮挡视频| 久久热精品热| 亚洲av在线观看美女高潮| 狂野欧美激情性xxxx在线观看| 最近中文字幕2019免费版| 天堂俺去俺来也www色官网| 中国三级夫妇交换| 欧美激情国产日韩精品一区| 热99国产精品久久久久久7| 精品人妻视频免费看| 欧美97在线视频| 日日摸夜夜添夜夜爱| 国产乱人视频| 尤物成人国产欧美一区二区三区| av一本久久久久| 99精国产麻豆久久婷婷| 国产69精品久久久久777片| 国产精品国产三级国产av玫瑰| 欧美人与善性xxx| 成年人午夜在线观看视频| 国内揄拍国产精品人妻在线| 小蜜桃在线观看免费完整版高清| 成人无遮挡网站| 亚洲自拍偷在线| 中文字幕久久专区| 性插视频无遮挡在线免费观看| 国产精品国产三级专区第一集| 亚洲av成人精品一区久久|