• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer

    2018-04-24 00:55:27HamedMousaviMohammedGabrRoyBorden

    S.Hamed Mousavi,Mohammed A.Gabr,Roy H.Borden

    Department of Civil,Construction,and Environmental Engineering,North Carolina State University,Raleigh,NC 27695-7908,USA

    1.Introduction

    The resilient modulus of subgrade soils is a fundamental parameter in the design of pavement structures,as recommended in the mechanical-empirical pavement design guide,MEPDG(NCHRP,2004).The resilient modulus is defined as the ratio of the applied cyclic axial stress to the recoverable axial strain(NCHRP,2003):

    whereMris the resilient modulus,σcyclicis the cyclic axial stress 0.9σd,and3ris the resilient axial strain.

    While the resilient modulus can be determined from laboratory testing,performing the test requires a well-trained operator and substantial time,as well as advanced apparatus.An alternative to laboratory testing is the use of empirical correlations developed on the basis of statistical analyses and utilizing the physical and engineering properties of soils.Carmichael and Stuart(1985),Elliott et al.(1988),Drumm et al.(1990),Farrar and Turner(1991),and Hudson et al.(1994)all proposed models to estimate the resilient modulus of subgrade soils on the basis of material index properties.

    As an alternative,Hasan(1996),Rahim and George(2004),Herath et al.(2005),and Mohammad et al.(2008)have proposed correlations to predictMrfrom in situ dynamic cone penetrometer(DCP)data.The advantage of using DCP is that of testing the soil in its natural density and moisture content state.These correlations,however,provide theMrat only one specific stress state,i.e.at a confining pressure of 13.8 kPa(2 psi)and a deviatoric stress of 41.7 kPa(6 psi).These values represent the stress level at the top of the subgrade layer under standard single axle loading of 80 kN(18 kips)and tire pressure of 689 kPa(100 psi)with a 50 mm asphalt wearing course,a 100 mm asphalt binder course and a 200 mm aggregate base course(Asphalt Institute,1989;Rahim and George,2004;Mohammad et al.,2008).Since the resilient modulus depends on the confining pressure and applied deviatoric stress,any change in the pavement structure,axle load and tire pressure will lead to a change in the stress state at the surface of the subgrade.Accordingly,the predictedMrby existing correlations may not be representative of the field stress conditions.

    On the other hand,many studies have been performed over the past two decades to model the stress dependency of the resilient modulus by predicting the coefficients of a general constitutive model(e.g.Dunlap,1963;Seed et al.,1967;Witczak and Uzan,1988;Pezo,1993;NCHRP,2003)on the basis of soil index properties.These properties included water content,w,plastic limit,PL,liquid limit,LL,percentage passing the No.4 sieve,P4,and percentage passing the No.200 sieve,P200,etc.Yau and Von Quintus(2002),Elias and Titi(2006),Nazzal and Mohammad(2010),and Titi and English(2011)have each proposed different models to estimate the NCHRP(2004)constitutive model coefficients(k1,k2andk3),expressed in Eq.(2);however,these models have been developed based on the compacted specimens and do not consider the properties of the undisturbed soil in its natural state.

    In the MEPDG recommended model,Mris linearly influenced byk1,while the exponentsk2andk3respectively define the rate of increase and decrease of stiffness hardening and soil softening(Yau and Von Quintus,2002)with respect to the confining and deviatoric stresses.However,as currently formulated,all three coefficients are independent of the stress state.

    This paper includes a review of models that are based on correlatingk1,k2andk3to basic soil properties.This is the context of the proposed approach,albeit using dynamic cone penetration index(DCPI)instead of basic soil properties.A model is proposed in this paper to calculate the resilient modulus of the low-plasticity Piedmont residual subgrade soils from the DCP data.Piedmont residual soils are in-place weathered soils from igneous and metamorphic rock,as opposed to transported or compacted soils.Hence the existing empirical correlation might not be applicable for these soils(Borden et al.,1996).The model is developed based on the in situ DCP measurements and laboratory resilient modulus on the undisturbed specimens retrieved from Shelby tubes.The model is based on calculatingMrto predict the constitutive model coefficients(k1,k2andk3)from the in situ DCP data.By utilizing in situ measured DCP data in predicting the constitutive model coefficients,the proposed approach allows for taking into account the stress dependency of the resilient modulus,as well as properties of the soil in its natural state.The validity of the proposed model is examined with the portion of data set not used in the model development,as well as reported data in the literature.

    2.Background

    Fig. 1.DCP sketch(after ASTM D6951-09,2009).

    DCP is a portable instrument widely used in geotechnical and pavement design for estimating the shear strength and stiffness properties of soils(Gabr et al.,2000,2001;Chen et al.,2005).As shown in Fig. 1,and presented in ASTM D6951-09(2009),DCP consists of an 8 kg sliding hammer,with a 57.5 cm(22.6 in)drop height,a 111 cm(44 in)driving shaft and a 60?angle cone tip.During the DCP test,the sliding hammer falls 57.5 cm vertically and drives the cone tip attached to the bottom of the DCP rod into the ground.The penetration depth is recorded after each drop(blow)on avertical stake positioned next to the DCP rod.DCPI is expressed in inch or mm per blow.

    Several correlations have been proposed in the literature between DCPI,soil shear strength and stiffness properties,such as those for the California bearing ratio(CBR)(NCDOT,1998;Gabr et al.,2000),the undrained shear strength(Su)(Ayres,1997),the elastic modulus(E)(Chai and Roslie,1998;Abu-Farsakh et al.,2004;Chen et al.,2005),and the resilient modulus(Mr)(Hasan,1996;Herath et al.,2005).

    Existing empirical correlations,which correlate DCPI toMr,are summarized in Table 1.These models are capable of providing an estimate of stiffness properties of soils;however,theyare restricted to a confining pressure of 13.79 kPa(2 psi)and a deviatoric stress of 41.37 kPa(6 psi).

    3.Experimental program

    The experimental program included a series of laboratory resilient modulus and in situ DCP tests.The sampling and field testing programs were performed at four 4.88-m(16-ft)wide by 15.24-m(50-ft)long test sections located in the Piedmont area,North of Greensboro,North Carolina.The DCP tests were performed at four locations in each test section,as shown in Fig. 2.The laboratory testing,including the resilient modulus and index properties,was performed on undisturbed soil specimens retrieved from Shelby tubes.These tubes were taken from boreholes located between each pair of DCP tests,as indicated in Fig. 2.More details onexperimental program and results can be found in Mousavi et al.(2016).

    Table 1Previous direct DCP models.

    Fig. 2.Locations of DCP tests and resilient modulus test specimens(dimensions in cm).Here OWP indicates the outer wheel path and IWP indicates the inner wheel path.

    3.1.Materials tested

    The physical property tests included specific gravity,grain size distribution,Atterberg limits and standard compaction by following ASTM D422-63(2007),ASTM D6913-09(2009),ASTM D1557-09(2009),ASTM D854-10(2010),ASTM D2216-10(2010),and ASTM D4318-10(2010).These tests were conducted on the specimens after the resilient modulus tests were completed.The grain size distributions and properties of soil specimens are summarized in Fig. 3 and Table 2.The site soils were classified as A-4.From the standard compaction tests,the optimum water contents(wopt)and maximum dry densities (γdmax)were determined as 11%and 20 kN/m3,respectively.

    3.2.Laboratory testing

    Fig. 3.Range of grain size distributions of materials tested.

    Table 2Engineering properties of resilient modulus test specimens.

    Fig. 4.(a)Undisturbed resilient modulus specimen and(b)Resilient modulus test apparatus.

    The resilient modulus tests were performed following the AASHTO T-307-99 protocol(AASHTO,1999)on twelve 15.24-cm(6-in)tall and 6.3-cm(2.5 in)in diameter,undisturbed specimens retrieved from Shelby tubes at their natural water content,as shown in Fig. 4a.The resilient modulus tests were performed at 15 stress combinations that included five deviatoric stress levels of 13.79 kPa,27.58 kPa,41.37 kPa,55.16 kPa and 68.95 kPa(2 psi,4 psi,6 psi,8 psi and 10 psi)at each of three applied confining pressures of 41.37 kPa,57.58 kPa and 13.79 kPa(6 psi,4 psi and 2 psi)at resilient modulus test apparatus(see Fig. 4b).

    Fig. 5a and b shows the laboratory resilient modulus test results for two specimens H4-1 and H2-1,which are representation of the upper and lower ranges of the grain size distribution.As shown in Fig. 5,hardening and softening effects of confining pressure and deviatoric stress can be observed.Fig. 6 shows the range of the resilient modulus values at different deviatoric stress levels.From Figs.5 and 6,it can be seen that the hardening effect of the confining pressure on the resilient modulus is more pronounced at the smaller magnitude of the deviatoric stresses(e.g.deviatoric stresses:13.8 kPa).As shown in Fig. 6,the resilient modulus values can vary from 15 MPa to 80 MPa depending on the confining and deviatoric stress levels.

    The laboratory-measured resilient modulus values were analyzed in the context of the NCHRP 1-28A(NCHRP,2003)constitutive model as described in Eq.(2).Fig. 7a and b shows the performance of Eq.(2)in back-calculating the laboratory-measuredMrusing curve-fittedk1,k2andk3for specimens H4-1 and H2-1.As shown in Fig. 7 and Table 3,the laboratory resilient modulus test results can befitted in MEPDG correlation with a coefficient of determination(R2)higher than 0.94.Thek1,k2andk3coefficients vary from 500 to 800,0.673 to 0.97,and 2.11 to 4.58,respectively,which are compatible with reported data by Yau and Von Quintus(2002),and Titi and English(2011)for A-4 soils.

    Fig. 8 shows the laboratory measured resilient modulus at a confining pressure of 13.8 kPa(2 psi)and a deviatoric stress of 41.4 kPa(6 psi)for all specimens,versus their degree of saturation(S%).It can be seen that the resilient modulus generally decreases with an increase in the degree of saturation,which is consistent with the observation of Duong et al.(2016).In order to estimate the resilient modulus precisely,the effect of the degree of saturation needs to be taken into account.With the use of the DCP to estimateMr,this aspect of level of soil saturation is reflected in the in situ measured data,and consequently in the estimatedMrvalue.

    Fig. 5.Laboratory resilient modulus test results.(a)Specimen H4-1 and(b)specimen H2-1.

    3.3.In situ DCP testing

    The DCP tests were performed at four locations on the centerline of each test section,as shown in Fig. 2.To establish the interfaces between the soil layers using the DCP data,ASTM D6951-09(2009)specif i es plotting the cumulative blow counts versus the penetration depth,and then defining the intersection at sharp changes in the direction of the cumulative blow counts versus penetration depth curve.After locating the interfaces of the layers,the weighted average DCPI value of each soil layer was calculated using Eq.(3).

    wherezis the depth of penetration per blow(mm or in),His the total depth of the soil layer(mm or in)andNis the number of data points per layer.

    The DCPI values,corresponding to the location of resilient modulus specimens and the MEPDG coefficients(k1,k2andk3)calculated from resilient modulus laboratory results are summarized in Table 3.

    Fig. 6.Range of resilient modulus values.

    4.Applicability of previous models

    Empirical correlations for estimating the resilient modulus are grouped into two categories:(1)correlations which directly predict theMrfrom DCPI and(2)correlations that predict the resilient modulus indirectly from the universal constitutive model coefficients(k1,k2andk3),where these coefficients are estimated on the basis of basic physical properties of soils.

    4.1.Empirical DCP models

    In order to evaluate the ability of the existing models to predict theMrvalues measured in the current study,the models in Table 1 were used with the testing site measured DCPI data.The results are plotted in Fig. 9,and it shows that the existing models have generally over-predicted the laboratory-measured resilient modulus values,at a confining pressure of 13.79 kPa(2 psi)and a deviatoric stress of 41.37 kPa(6 psi),with the exception of the correlation from Mohammad et al.(2008),which consistently underestimated the resilient modulus.As mentioned previously,the variation in the degree of saturation of the tested specimens is reflected in the variability of the laboratory-measured resilient modulus,as shown in Fig. 8.Fig. 10 shows the performance of these empirical models in predicting the resilient modulus of the laboratory-measured resilient modulus data set presented by Cowell et al.(2012).No consistent trend is observed in performance of these models.A summary of the coefficient of determination(R2)and root mean squared error(RMSE)of the performance of the existing models in estimating the laboratory-measured resilient modulus values of both data sets is presented in Table 4.The inconsistency in predicting the measuredMrvalues might be attributed to the fact that these correlations are empirical in nature,and they are most applicable to soil types similar to those for which the models were developed.

    Fig. 7.Laboratory-measured versus curve fitted Mrfrom MEPDG correlation.(a)Specimen H4-1 and(b)specimen H2-1.

    4.2.Models that account for stress level

    In order to develop a model to predictMrat any stress level,several studies have been undertaken to develop correlations that estimate the fitting coefficients(k1,k2andk3)of universalconstitutive model from basic physical properties of soils.Yau and Von Quintus(2002)and Elias and Titi(2006)proposed different correlations to predictk1,k2andk3to calculateMrfor cohesive and cohesionless subgrade soils.Nazzal and Mohammad(2010)proposed a correlation for predictingk1,k2andk3from index properties of A-4,A-6,A-7-5 and A-7-6 soils.These models are summarized in Table 5.Fig. 11a-c shows the generally unsatisfactory performance of these models in predicting the fitting coefficients.Negativek1andk2values were predicted from correlations of Nazzal and Mohammad(2010),which are not shown in Fig. 11a-b.The better performance of the other models can be explained by noting that these researchers proposed separate equations for high-plasticity soils and cohesionless soils,which resulted in different and more appropriateMrpredictions for a givenDCPIvalue.

    Fig. 8.Laboratory-measured Mratσ3of 13.79 kPa(2 psi)and σdof 41.37 kPa(6 psi)versus degree of saturation(S%).

    Fig. 9.Laboratory-measured Mr(this study)versus that predicted from the existing direct DCP models.

    Fig. 10.Laboratory-measured Mr(Cowell et al.,2012)versus that predicted from the empirical DCP models.

    Table 4Performance of the existing empirical DCP models.

    The predictedMrvalues by Yau and Von Quintus(2002)and Elias and Titi(2006)models are presented in Fig. 12a and b.As shown in Fig. 12a,the resilient modulus values predicted by the equation from Elias and Titi(2006)are significantly greater than the laboratory-measuredMrvalues.Fig. 12b shows that the model from Yau and Von Quintus(2002)on average overestimated theMrvalues by 34%withR2=0.56.Due to the model from Nazzal and Mohammad(2010)predicting negativek1andk2values,the resilient modulus values were not able to be predicted.

    5.Proposed DCP model and its validation

    5.1.Proposed DCP correlation

    Multilinear statistical analyses were performed to develop an approach to calculate the resilient modulus by predictingk1,k2andk3values from the in situ DCP test data.The multilinear regression analyses were performed on three quarters of the data set to develop a model that indirectly computes the resilient modulus at any desired stress state.For the practical purposes,the coefficients are directly correlated to the DCPI value.

    The proposed model is presented in Eq.(4),with the model constants presented in Table 6.As shown in Fig. 13,the calculatedMrvalues by the proposed model and laboratory-measured resilient modulus are correlated withR2equal to 0.7.

    5.2.Proposed model validation

    The validity of the proposed model was examined using the quarter of the data set which was not used in the statistical analyses and was selected arbitrarily,as well as additional data from the literature.The performance of the proposed model in predicting the resilient modulus of the quarter of the data is shown in Fig. 14.The line of equality is added for clarity.It can be seen that the proposed model slightly underestimates the resilient modulus by 4%and the data are correlated withR2equal to 0.73.

    The data set from Cowell et al.(2012)was also used to test the proposed model.The subgrade soil for this project consisted of low-plasticity SM and SC(A-4).The data set by Cowell et al.(2012)includedMrvalues from tests on undisturbed specimens collected from the Coastal Plain of North Carolina,and in situ DCP measurements,summarized in Table 7.As shown in Fig. 15,the predictedMrvalues by the proposed model show reasonably good agreement with the laboratory-measuredMrvalues.

    The performance of the proposed model was also investigated through the use of data presented by Mohammad et al.(2007,2008).The reported data included laboratory and field DCP measurements,summarized in Table 7,and laboratoryMrdata of the low-plasticity soil specimens tested at a confining pressure of 13.8 kPa(2 psi)and a deviatoric stress of 41.4 kPa(6 psi).

    Table 5Published models for predicting k1,k2and k3from material properties.

    Fig. 11.Computed versus predicted constitutive model coefficients by previous models:(a)k1,(b)k2and(c)k3.

    Fig. 12.Laboratory-measured versus predicted Mrfrom equations of(a)Elias and Titi(2006)and(b)Yau and Von Quintus(2002).Here Mr-pindicates the predicated resilient modulus.

    Table 6Model constants used in the text.

    Fig. 13.Laboratory-measured versus calculated Mrby the proposed model.

    Fig. 14.Laboratory-measured versus predicted Mrby the proposed model for the quarter of the data set.

    The data plotted in Fig. 15 show that the proposed model underestimatesMrof this data set by 8%withR2of 0.53.By comparing the performance of the proposed model to that of existingMrpredicting correlations,presented in Table 4 and Fig. 12,it can be seen that the proposed model provides significantly improved predictive capability,with values slightly less than laboratory measured values and with higher coefficients of determination.

    Table 7DCP data in the literature with corresponding predicted coefficients by proposed model.

    Fig. 15.Laboratory-measured versus predicted Mrby the proposed model for data presented in the literature.

    6.Conclusion

    A laboratory testing program,including resilient modulus and index property tests,and in situ DCP tests were performed to establish a model for estimatingMrparameters.Comprehensive statistical analyses were conducted and a new model was proposed for calculatingMrof subgrade soil at any desired stress level.This model uses in situ DCP data indirectly,by predicting the fitting coefficients(k1,k2andk3)of the MEPDG recommended universal constitutive model.Based on the results presented in this paper,the following conclusions are drawn:

    (1)Good agreement was obtained between the calculatedMrvalues from the proposed model and the laboratory measured resilient modulus data,with a coefficient of determination of 0.7.

    (2)The evaluation of existing models which directly estimate theMrvalues of soils from the DCP measurements showed that they overestimated measuredMrvalues.In addition,the validity of these models only at one determined stress level limits their applicability to one particular pavement structure.

    (3)The assessment of existing empirical models that predict the fitting coefficients of the universal constitutive model from basic physical properties of soils yielded poor predictions ofMrfor the soils tested in this study.

    (4)The proposed model is capable of predicting the resilient modulus of low-plasticity Piedmont residual soils(A-4),with PI<5,and 40% <P200<55%,at any stress state.Further work will need to evaluate its applicability to other soils.

    Conflicts of interest

    The authors wish to confirm that there are no known Conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Abu-Farsakh MY,Alshibli K,Nazzal M,Seyman E.Assessment of in situ test technology for construction control of base courses and embankments.Report no.FHWA/LA 4.2004.

    American Association of State Highway and Transportation Off i cials(AASHTO).Standard method of test for determining the resilient modulus of soils and aggregate materials.AASHTO T307-T399.Washington,DC:AASHTO;1999.

    Asphalt Institute.The asphalt handbook.Manual Series No.4(MS-4).1989.p.435-7.

    ASTM D1557-09.Standard test methods for laboratory compaction characteristics of soil using modified effort.Annual book of ASTM standards.West Conshohocken,PA:ASTM International;2009.

    ASTM D2216-10.Standard test methods for laboratory determination of water(moisture)content of soil and rock by mass.Annual book of American Society for Testing Materials(ASTM)standards.West Conshohocken,PA:ASTM International;2010.

    ASTM D422-63.Standard test method for particle-size analysis of soils.Annual book of ASTM standards.West Conshohocken,PA:ASTM International;2007.

    ASTM D4318-10.Standard test methods for liquid limit,plastic limit,and plasticity index of soils.Annual book of ASTM standards.West Conshohocken,PA:ASTM International;2010.

    ASTM D6913-09.Standard test methods for particle-size distribution(gradation)of soils using sieve analysis.Annual book of ASTM standards.West Conshohocken,PA:ASTM International;2009.

    ASTM D6951-09.Standard test method for use of the dynamic cone penetrometer in shallow pavement applications.Annual book of ASTM standards.West Conshohocken,PA:ASTM International;2009.

    ASTM D854-10.Standard test methods for specific gravity of soil solids by water pycnometer.Annual book of ASTM standards.West Conshohocken,PA:ASTM International;2010.

    Ayres M.Development of a rational probabilistic approach for flexible pavement analysis(Ph.D.Thesis).College Park:University of Maryland;1997.

    Borden RH,Shao L,Gupta A.Dynamic properties of piedmont residual soils.Journal of Geotechnical Engineering 1996;122(10).https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(813).

    Carmichael RF,Stuart E.Predicting resilient modulus:a study to determine the mechanical properties of subgrade soils.Transportation Research Record:Journal of the Transportation Research Board 1985;1043:145-8.

    Chai G,Roslie N.The structural response and behaviour prediction of subgrade soils using the falling weight def l ectometer in pavement construction.In:Proceedings of the third international conference on road and airfield pavement technology.Transport Research Centre(CDV);1998.p.1481-9.

    Chen DH,Lin DF,Liau PH,Bilyeu J.A correlation between dynamic cone penetrometer values and pavement layer moduli.Geotechnical Testing Journal 2005;28(1):42-9.

    Cowell TD,Pyo SC,Gabr MA,Borden RH.Field verification of undercut criteria and alternatives for subgrade stabilization-coastal plain.Report no.FHWA/NC/2008-13.Federal Highway Administration(FHWA),US Department of Transportation;2012.

    Drumm EC,Boateng-Poku Y,Johnson Pierce T.Estimation of subgrade resilient modulus from standard tests.Journal of Geotechnical Engineering 1990;116(5):774-89.

    Dunlap WA.A report on a mathematical model describing the deformation characteristics of granular materials.Technical report no.1,Project 2-8-62-27.Texas:Texas Transportation Institute,Texas A&M University College Station;1963.

    Duong TV,Cui YJ,Tang AM,Dupla JC,Canou J,Calon N,Robinet A.Effects of water and fines contents on the resilient modulus of the interlayer soil of railway substructure.Acta Geotechnica 2016;11:51-9.

    EliasMB,TitiHH.Evaluation of resilient modulus model parameters for mechanistic-empirical pavement design.Transportation Research Record:Journal of the Transportation Research Board 2006;1967:89-100.

    Elliott RP,Thornton SI,Foo KY,Siew KW,Wood bridge R.Resilient properties of Arkansas subgrades.Reportno.FHWA/AR-89/004.Fayetteville:Arkansas Highway and Transportation Research Center,University of Arkansas;1988.

    Farrar MJ,Turner JP.Resilient modulus of Wyoming subgrade soils.MPC report no.91-1.Fargo,ND:Mountain-Plains Consortium;1991.

    Gabr MA,Hopkins K,Coonse J,Hearne T.DCP criteria for performance evaluation of pavement layers.Journal of Performance of Constructed Facilities 2000;14(4):141-8.

    Gabr MA,Coonse J,Lambe PC.A potential model for compaction evaluation of piedmont soils using dynamic cone penetrometer(DCP).Geotechnical Testing Journal 2001;24(3):308-13.

    George KP,Uddin W.Subgrade characterization for highway pavement design.Final report FHWA/MS-DOT-RD-00-131.Mississippi Department of Transportation;2000.

    Hasan A.The effect of material parameters on dynamic cone penetrometer results for fine-grained soils and granular base materials[PhD Thesis].Oklahoma State University;1996.

    Herath A,Mohammad LN,Gaspard K,Gudishala R,Abu-Farsakh MY.The use of dynamic cone penetrometer to predict resilient modulus of subgrade soils.Geofrontiers congress 2005 American Society of Civil Engineers 2005.https://doi.org/10.1061/40776(155)2.

    Hudson JM,Drumm EC,Madgett M.Design handbook for the estimation of resilient response of fine-grained subgrades.In:Proceedings of the 4th international conference on the bearing capacity of roads and airfields.Minneapolis,MN:University of Minnesota;1994.p.917-31.

    Mohammad LN,Gaspard K,Herath A,Nazzal M.Comparative evaluation of subgrade resilient modulus from non-destructive,in situ,and laboratory methods.No.FHWA/LA.06/417.2007.

    Mohammad LN,Herath A,Gudishala R,Nazzal MD,Abu-Farsakh MY,Alshibli K.Development of models to estimate the subgrade and subbase layers’resilient modulus from in situ devices test results for construction control.Report no.FHW-LA-406.FHWA,US Department of Transportation;2008.

    Mousavi SH,Gabr MA,Borden RH.Filed verification of undercut criteria and alternatives for subgrade stabilization in the Piedmont area of North Carolina.FHWA/NC/2011-05.2016.

    National Cooperative Highway Research Program(NCHRP).Harmonized test methods for laboratory determination of resilient modulus for flexible pavement design.NCHRP 1-28A.Washington,DC:NCHRP;2003.

    Nazzal MD,Mohammad LN.Estimation of resilient modulus of subgrade soils for design of pavement structures.J Mater Civil Eng 2010;22(7):726-34.

    North Carolina Department of Transportation(NCDOT).Pavement condition survey manual.Raleigh,NC:NCDOT;1998.

    NCHRP.Part 2,Design inputs.Guide for mechanistic-empirical design of new and rehabilitated pavement structures.NCHRP 1-37A,final report.2004.

    Pezo RF.A general method of reporting resilient modulus tests of soils:a pavement engineer’s point of view.In:Proceedings of the 72nd annual meeting of the transportation research board.Washington,DC;1993.

    Rahim AM,George KP.Subgrade soil index properties to estimate resilient modulus.Washington,DC:Transportation Research Board of the National Academies;2004.

    Seed HB,Mitry FG,Monismith CL,Chan CK.Prediction of fl exible pavement deflections from laboratory repeated-load tests.NCHRP report 35.Washington,DC:Transportation Research Board;1967.

    Titi HH,English R.Determination of resilient modulus values for typical plastic soils in Wisconsin.WHRP 11-04.2011.

    Webster SL,Brown RW,Porter JR.Force projection site evaluation using the electric cone penetrometer(ECP)and the dynamic cone penetrometer(DCP).Report GL-94-17.US Waterways Experimental Station;1994.

    Witczak MW,Uzan J.The universal airport pavement design system.Granular material characterization.College Park:University of Maryland;1988.

    Yau A,Von Quintus H.Study of LTPP laboratory resilient modulus test data and response characteristics.Report no.FHWA-RD-02-051.Washington,DC:FHWA,US Department of Transportation;2002.

    精品久久久久久久久av| 亚洲av中文av极速乱| 国产欧美日韩一区二区精品| 国产一区二区在线观看日韩| 少妇的逼水好多| 一级黄片播放器| av卡一久久| 99国产精品一区二区蜜桃av| 麻豆国产97在线/欧美| 草草在线视频免费看| 不卡一级毛片| 你懂的网址亚洲精品在线观看 | 九色成人免费人妻av| 亚洲第一区二区三区不卡| 老女人水多毛片| 在线免费观看不下载黄p国产| 一区二区三区免费毛片| 国产成年人精品一区二区| 国产精品综合久久久久久久免费| 亚洲色图av天堂| 亚洲av二区三区四区| 国产伦精品一区二区三区四那| 国产伦一二天堂av在线观看| 欧美不卡视频在线免费观看| 自拍偷自拍亚洲精品老妇| 国产成人精品久久久久久| 欧美一区二区精品小视频在线| 国产精品综合久久久久久久免费| 一进一出好大好爽视频| 午夜亚洲福利在线播放| 亚洲欧美清纯卡通| 久久久国产成人免费| 免费人成视频x8x8入口观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品国产av成人精品 | 欧美3d第一页| 97碰自拍视频| 国产久久久一区二区三区| 国产视频内射| 欧美另类亚洲清纯唯美| 女人被狂操c到高潮| 亚洲一区高清亚洲精品| 欧美成人精品欧美一级黄| 免费黄网站久久成人精品| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| av天堂在线播放| 国产极品精品免费视频能看的| 变态另类成人亚洲欧美熟女| 熟女电影av网| 国产免费一级a男人的天堂| 日韩中字成人| 黄色视频,在线免费观看| 乱人视频在线观看| 久久久精品欧美日韩精品| 国产精品久久久久久精品电影| 久久精品国产清高在天天线| 一级毛片电影观看 | 久久99热6这里只有精品| 色视频www国产| 亚洲精品456在线播放app| 国产久久久一区二区三区| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 免费在线观看成人毛片| 精品99又大又爽又粗少妇毛片| 一本精品99久久精品77| 乱系列少妇在线播放| 国模一区二区三区四区视频| 综合色丁香网| 综合色丁香网| 好男人在线观看高清免费视频| 亚洲中文字幕日韩| 国产午夜精品论理片| 亚洲无线观看免费| 免费观看精品视频网站| 精品久久久噜噜| 欧美日韩乱码在线| 中文字幕精品亚洲无线码一区| 色综合色国产| 99久国产av精品| 欧美另类亚洲清纯唯美| 亚洲欧美中文字幕日韩二区| 国产成人影院久久av| 嫩草影院精品99| a级毛片a级免费在线| 久久久久久大精品| 可以在线观看毛片的网站| 国产一区二区激情短视频| 少妇人妻一区二区三区视频| 人人妻,人人澡人人爽秒播| 欧美激情国产日韩精品一区| 国产av麻豆久久久久久久| 欧美色欧美亚洲另类二区| 免费人成视频x8x8入口观看| 国产成人福利小说| av在线天堂中文字幕| 精品免费久久久久久久清纯| 俄罗斯特黄特色一大片| 日本一二三区视频观看| 亚洲成人久久爱视频| 看黄色毛片网站| 日本黄大片高清| 国产真实伦视频高清在线观看| 日本精品一区二区三区蜜桃| 最近在线观看免费完整版| 99热精品在线国产| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 老女人水多毛片| 身体一侧抽搐| 综合色丁香网| 丝袜喷水一区| 成年女人看的毛片在线观看| 五月伊人婷婷丁香| 深夜a级毛片| 中文资源天堂在线| 97碰自拍视频| 精品久久久久久久久av| 91久久精品国产一区二区成人| 舔av片在线| 久久6这里有精品| 亚洲精品456在线播放app| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实伦视频高清在线观看| 观看美女的网站| 极品教师在线视频| 人妻制服诱惑在线中文字幕| 一a级毛片在线观看| 日日摸夜夜添夜夜爱| 欧美色欧美亚洲另类二区| 国产色爽女视频免费观看| 黄色日韩在线| 国产熟女欧美一区二区| 国产精品久久久久久久电影| 搡女人真爽免费视频火全软件 | 国产精品一区二区性色av| 一级a爱片免费观看的视频| av在线播放精品| 欧美中文日本在线观看视频| 十八禁国产超污无遮挡网站| 精品一区二区三区av网在线观看| 又黄又爽又免费观看的视频| 日韩一本色道免费dvd| 亚州av有码| 毛片一级片免费看久久久久| 又爽又黄无遮挡网站| 看免费成人av毛片| 免费观看在线日韩| 深夜a级毛片| 精品一区二区免费观看| 国产精品久久久久久av不卡| 日韩欧美国产在线观看| 精品国内亚洲2022精品成人| av在线老鸭窝| 亚洲精品一卡2卡三卡4卡5卡| 亚洲乱码一区二区免费版| 国产真实伦视频高清在线观看| 免费av毛片视频| 少妇人妻一区二区三区视频| 在线观看一区二区三区| 国产一区二区亚洲精品在线观看| 最近手机中文字幕大全| 亚洲av电影不卡..在线观看| 99热这里只有是精品50| 成人亚洲欧美一区二区av| 中文字幕久久专区| 一个人看的www免费观看视频| 一区二区三区高清视频在线| 91麻豆精品激情在线观看国产| 日韩欧美免费精品| 在线免费观看不下载黄p国产| 日韩大尺度精品在线看网址| 精品福利观看| 亚洲国产精品sss在线观看| 有码 亚洲区| 日日摸夜夜添夜夜爱| 一级av片app| 极品教师在线视频| 99久久精品一区二区三区| 亚洲经典国产精华液单| av中文乱码字幕在线| 久久精品国产亚洲av香蕉五月| 天堂动漫精品| 亚洲成人久久爱视频| 青春草视频在线免费观看| 看十八女毛片水多多多| 蜜臀久久99精品久久宅男| 亚洲av成人av| 国产成人影院久久av| 尤物成人国产欧美一区二区三区| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 99久久精品国产国产毛片| 内地一区二区视频在线| 亚洲图色成人| 国产成人一区二区在线| 日本黄色视频三级网站网址| 岛国在线免费视频观看| 亚洲三级黄色毛片| 男女做爰动态图高潮gif福利片| 国产精品美女特级片免费视频播放器| 变态另类成人亚洲欧美熟女| 国产黄色小视频在线观看| 国产综合懂色| 一a级毛片在线观看| 亚洲国产色片| 老熟妇乱子伦视频在线观看| 欧美性猛交╳xxx乱大交人| 国产乱人偷精品视频| 欧美+亚洲+日韩+国产| 国产精品久久久久久av不卡| 国产成人一区二区在线| 成年女人永久免费观看视频| 精品人妻一区二区三区麻豆 | 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 在线免费观看的www视频| 韩国av在线不卡| av天堂中文字幕网| 午夜亚洲福利在线播放| 联通29元200g的流量卡| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 简卡轻食公司| 成人美女网站在线观看视频| 一本精品99久久精品77| 国产欧美日韩精品一区二区| 日产精品乱码卡一卡2卡三| 九九热线精品视视频播放| 日韩欧美三级三区| 在线a可以看的网站| 久久欧美精品欧美久久欧美| 国产精品三级大全| 舔av片在线| 国产真实乱freesex| 欧美极品一区二区三区四区| av在线老鸭窝| 午夜精品在线福利| 日本在线视频免费播放| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 成年女人永久免费观看视频| 国产人妻一区二区三区在| 国产大屁股一区二区在线视频| 免费观看在线日韩| 一个人免费在线观看电影| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 国产老妇女一区| 色吧在线观看| 国产黄片美女视频| 白带黄色成豆腐渣| 婷婷精品国产亚洲av在线| 18禁黄网站禁片免费观看直播| 91在线精品国自产拍蜜月| 午夜免费激情av| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 嫩草影院入口| 国产私拍福利视频在线观看| 日本a在线网址| 欧美丝袜亚洲另类| 亚洲av成人精品一区久久| 一级黄色大片毛片| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清激情床上av| 久久人人爽人人片av| 精品熟女少妇av免费看| 男女视频在线观看网站免费| 国产免费男女视频| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品| 精品人妻视频免费看| 成人av在线播放网站| 国产高清不卡午夜福利| 亚洲七黄色美女视频| 久久久欧美国产精品| 天堂动漫精品| 久久精品国产亚洲av天美| 最好的美女福利视频网| 最近的中文字幕免费完整| 国产亚洲精品久久久久久毛片| 欧美激情在线99| 日韩欧美在线乱码| 久久久久久国产a免费观看| 中文字幕人妻熟人妻熟丝袜美| www日本黄色视频网| 在线看三级毛片| 一区二区三区高清视频在线| 麻豆国产av国片精品| 一级黄色大片毛片| 在线观看午夜福利视频| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 欧美日本视频| 国产亚洲91精品色在线| 久久久精品大字幕| 国产高清视频在线观看网站| 成人美女网站在线观看视频| 午夜a级毛片| videossex国产| 18+在线观看网站| 成人国产麻豆网| 俄罗斯特黄特色一大片| 深爱激情五月婷婷| 亚洲美女搞黄在线观看 | 亚洲最大成人av| 午夜激情欧美在线| 国产探花极品一区二区| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 久久欧美精品欧美久久欧美| 99热6这里只有精品| 免费在线观看影片大全网站| 久久九九热精品免费| 精品不卡国产一区二区三区| 一区二区三区免费毛片| 变态另类成人亚洲欧美熟女| 中国美女看黄片| 又黄又爽又免费观看的视频| 99国产精品一区二区蜜桃av| 伦理电影大哥的女人| 我要看日韩黄色一级片| 亚洲无线观看免费| 我要搜黄色片| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区久久| 成人综合一区亚洲| 国产欧美日韩精品亚洲av| 日本一本二区三区精品| 波多野结衣高清作品| 级片在线观看| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 色综合站精品国产| 麻豆成人午夜福利视频| 免费av观看视频| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频| 一区福利在线观看| 亚洲美女搞黄在线观看 | 精品一区二区三区av网在线观看| 深夜精品福利| 午夜精品一区二区三区免费看| 免费不卡的大黄色大毛片视频在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲七黄色美女视频| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| 久久国内精品自在自线图片| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 丰满乱子伦码专区| 欧美最黄视频在线播放免费| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| 最近的中文字幕免费完整| 国产高潮美女av| 国产欧美日韩一区二区精品| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 精品一区二区三区人妻视频| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 久久6这里有精品| 午夜日韩欧美国产| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 亚洲精品亚洲一区二区| 久久久久性生活片| 无遮挡黄片免费观看| 干丝袜人妻中文字幕| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 深夜a级毛片| 国产精品久久久久久久久免| 国产不卡一卡二| 中出人妻视频一区二区| 色噜噜av男人的天堂激情| 欧美高清性xxxxhd video| 久久精品夜夜夜夜夜久久蜜豆| 欧洲精品卡2卡3卡4卡5卡区| av免费在线看不卡| 久久久精品大字幕| 久久久精品94久久精品| 久久亚洲国产成人精品v| 日韩欧美免费精品| 成年版毛片免费区| 国产成人影院久久av| 国产午夜福利久久久久久| 久久午夜亚洲精品久久| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 欧美潮喷喷水| 中文字幕熟女人妻在线| 人妻制服诱惑在线中文字幕| 成人无遮挡网站| 日本-黄色视频高清免费观看| 亚洲四区av| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 人人妻人人澡欧美一区二区| 91精品国产九色| 神马国产精品三级电影在线观看| 成人性生交大片免费视频hd| 成年女人看的毛片在线观看| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 有码 亚洲区| 欧美国产日韩亚洲一区| 精华霜和精华液先用哪个| 久久人人爽人人片av| 欧美日韩在线观看h| 成熟少妇高潮喷水视频| 我的女老师完整版在线观看| 联通29元200g的流量卡| 99九九线精品视频在线观看视频| 少妇高潮的动态图| 国产成人影院久久av| 国产免费一级a男人的天堂| 久久精品夜色国产| av国产免费在线观看| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 午夜日韩欧美国产| 女人十人毛片免费观看3o分钟| 久久国内精品自在自线图片| 午夜久久久久精精品| 色在线成人网| 亚洲久久久久久中文字幕| 国产精品一及| 在线播放国产精品三级| 国产不卡一卡二| 亚洲人成网站在线播| 色吧在线观看| 成人精品一区二区免费| 日本免费a在线| h日本视频在线播放| 一本久久中文字幕| 日韩一本色道免费dvd| 干丝袜人妻中文字幕| 热99在线观看视频| 精品久久久久久久久久免费视频| 狂野欧美激情性xxxx在线观看| 国产伦在线观看视频一区| 久久韩国三级中文字幕| 不卡一级毛片| 久久99热6这里只有精品| 日韩精品青青久久久久久| 国产精品一区www在线观看| 国产熟女欧美一区二区| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡人人爽人人夜夜 | 女人十人毛片免费观看3o分钟| 欧美日韩国产亚洲二区| 我要看日韩黄色一级片| 看片在线看免费视频| 免费电影在线观看免费观看| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| 久久99热这里只有精品18| 别揉我奶头 嗯啊视频| 黄片wwwwww| 99久国产av精品| 亚洲自拍偷在线| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 国产精品伦人一区二区| 亚洲一级一片aⅴ在线观看| 国产激情偷乱视频一区二区| а√天堂www在线а√下载| 中文亚洲av片在线观看爽| 熟女人妻精品中文字幕| 91av网一区二区| 久久久a久久爽久久v久久| 久久久久久大精品| 网址你懂的国产日韩在线| 久久九九热精品免费| 蜜臀久久99精品久久宅男| 高清毛片免费看| 九色成人免费人妻av| 国产免费男女视频| 免费观看的影片在线观看| av天堂在线播放| 亚洲图色成人| 色综合站精品国产| 三级经典国产精品| 在线免费十八禁| 搡老岳熟女国产| 亚洲人成网站高清观看| 俄罗斯特黄特色一大片| 九九在线视频观看精品| 热99re8久久精品国产| eeuss影院久久| 黄色欧美视频在线观看| 亚洲av第一区精品v没综合| 九九在线视频观看精品| a级毛色黄片| 日韩制服骚丝袜av| 午夜视频国产福利| 免费搜索国产男女视频| 日本免费一区二区三区高清不卡| 亚洲人成网站在线播| 亚洲内射少妇av| 久久久久国产网址| 老司机影院成人| 亚洲欧美日韩无卡精品| av在线老鸭窝| 午夜亚洲福利在线播放| 不卡一级毛片| 女的被弄到高潮叫床怎么办| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 又黄又爽又免费观看的视频| 成人午夜高清在线视频| 国产三级在线视频| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 一个人看的www免费观看视频| 国产精品美女特级片免费视频播放器| 一区福利在线观看| 国产在线男女| 97热精品久久久久久| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 久久久精品94久久精品| 一级黄色大片毛片| 麻豆精品久久久久久蜜桃| 日日撸夜夜添| 国产成人一区二区在线| 午夜精品在线福利| 黄片wwwwww| 国产精品野战在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲国产欧洲综合997久久,| 欧美绝顶高潮抽搐喷水| 麻豆国产av国片精品| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜添小说| 嫩草影院入口| 国产av在哪里看| 国产色爽女视频免费观看| 男女之事视频高清在线观看| 12—13女人毛片做爰片一| 99热这里只有精品一区| 丰满乱子伦码专区| 亚洲成人av在线免费| 国产视频内射| 国产精品一区二区三区四区久久| 久久久久国产精品人妻aⅴ院| 能在线免费观看的黄片| 国产蜜桃级精品一区二区三区| 亚洲欧美成人精品一区二区| 成人无遮挡网站| 国产午夜精品久久久久久一区二区三区 | 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 久久这里只有精品中国| 日日摸夜夜添夜夜添av毛片| 久久久久国内视频| 国产高潮美女av| 美女高潮的动态| 国产伦精品一区二区三区视频9| 久久久a久久爽久久v久久| 97在线视频观看| 伊人久久精品亚洲午夜| 99riav亚洲国产免费| 悠悠久久av| 成人鲁丝片一二三区免费| 搡女人真爽免费视频火全软件 | 精品人妻偷拍中文字幕| 亚洲一区高清亚洲精品| 色综合亚洲欧美另类图片| 成人一区二区视频在线观看| 免费观看人在逋| 变态另类成人亚洲欧美熟女| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品久久久久久一区二区三区 | or卡值多少钱| 午夜日韩欧美国产| 色综合站精品国产| 日韩大尺度精品在线看网址| 99热只有精品国产| 中文字幕人妻熟人妻熟丝袜美| 日本 av在线|