• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and SO2 Adsorption Behavior of Coconut Shell-Based Activated Carbon via Microwave-Assisted Oxidant Activation

    2018-04-24 06:09:02JiaFengruiLiZhouWangEngangHeJichengDongHuiLiuGuangxinJianWeiwei
    中國煉油與石油化工 2018年1期

    Jia Fengrui; Li Zhou; Wang Engang; He Jicheng; Dong Hui; Liu Guangxin; Jian Weiwei

    (1. School of Metallurgy, Northeastern University, Shenyang 110819;2. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001)

    1 Introduction

    Activated carbon (AC) has been widely used as SO2adsorbent owing to its highly porous structure and the oxygen functional groups on its surface[1-5]. The microwave radiation technology is a highly efficient energy-saving method for the preparation of AC, which has the characteristics of increasing the chemical bond activity on the surface[6-11].

    Recent studies have investigated the preparation of AC by microwave irradiation. Foo and Hameed conducted a series of experiments to study the SO2adsorption capacity of AC prepared via the microwave irradiation and activated by different alkaline reagents (i.e., KOH and K2CO3)[6,12-15]. Ania, et al. compared the effects of different heating mechanisms of single mode microwave and conventional electric furnace on the adsorptive capacities of regenerated AC[16-17]. Zhang, et al. studied the SO2adsorption characteristics of AC modified at different microwave power values[10]. Ge, et al. studied the ironmodified coal-based AC prepared through microwave irradiation and its capacity for adsorption of polycyclic aromatic hydrocarbons from aqueous solutions[18]. Liu,et al. studied the effects of microwave power, irradiation time, and other synthetic factors on the activation of microwave-prepared AC[19]. These studies made good exploratory contributions to our understanding of the adsorption behavior of AC. However, only a few studies have reported the effect of the oxidizability of oxidants on the SO2adsorption capacity of AC prepared with a certain microwave power.

    The purpose of this study is to explore the effect of oxidizability of specific oxidants on the SO2adsorption behavior of coconut shell-based activated carbon (CAC).The CAC prepared by microwave irradiation and three oxidants (K2Cr2O7, H2O2, and KMnO4) were characterized by scanning electron microscopy (SEM), N2adsorptiondesorption analysis, and X-ray photoelectron spectroscopy(XPS). Moreover, the trends of adsorption capacity of CAC at different temperatures and initial SO2concentrations

    2 Experimental

    2.1 Materials

    In this work, CAC was used as the adsorbent, and its synthetic procedure is as follows: CAC was ground into particles with a size range of 0.38–1.70 mm (10–40 mesh)and washed with the de-ionized water to remove any dirt adhering to it. The CAC was then irradiated with microwave at 600 W for 3 min while being blanketed with a high-purity nitrogen gas (99.99%). The microwave-modified CAC was divided into 4 groups: the group MW-CAC was not mixed with any oxidant, whereas the other three groups, MWK2Cr2O7-CAC, MW-H2O2-CAC, and MW-KMnO4-CAC,were soaked in 0.4 mol/L solutions of K2Cr2O7, H2O2, and KMnO4, respectively. According to the oxidation-reduction potential, the order of oxidation intensity decreases in the following order: K2Cr2O7> KMnO4> H2O2. The process was completed in a closed system to reduce the interference of atmospheric water vapor and sunlight. Finally, the adsorbents were dried at 105 °C for 12 h in a drying oven to avoid any moisture effect.

    2.2 Characterization

    The surface physical properties and pore size distribution of the samples were characterized by measuring the nitrogen adsorption/desorption isotherms at 77 K using an Autosorb-IQ2-MP gas sorption analyzer (Quantachrome Co., USA) capable of determining a minimum specific surface area of 0.0005 m2/g. The Brunauer-Emmett-Teller surface area (SBET) and the pore size distribution of the samples were determined by the nonlocal density functional theory (NLDFT), the quenched solid density functional theory (QSDFT)[20-22], and the Grand Canonical Monte Carlo (GCMC)[20,23]pore distribution model, while the micropore area (Smic) and the micropore volume (Vmic)were estimated from t-plot. The mean pore size (Dp) was determined from Dp= 4Vtot/SBET.

    The surface morphologies of the samples were observed using a field emission scanning electron microscope(FESEM, Hitachi, SU8000, Japan) with an accelerating voltage of 15 kV. Prior to analysis, the samples were dried at 105 °C and stored for more than 12 h, and were then fixed on conductive strips to prevent them from falling in the vacuum experiment environment.

    The XPS experiments were performed with a Multilab 2000 spectrometer (Thermo Fisher Scientific, U.S.) using a Mg KαX-ray source (1 253.6 eV), and the data were evaluated using the XPS Peak software (v. 4.1, Raymund W. M. Kwork)[24-27]. To compensate the charging effects,the spectra were calibrated with graphitic carbon as a reference with a binding energy (BE) of 284.8 eV.Background subtraction was performed according to the Shirley method.

    2.3 Adsorption experiments

    SO2adsorption experiments were performed on a custom fixed bed reactor to determine the adsorption capability of the samples. The test platform can be divided into three parts, viz.: the flue gas preparation, the activated carbon adsorption, and the gas composition testing and recovery.The simulated flue gas consisted of SO2(1700 μL/L),O2(10%), H2O (10%), and N2expressed as the balance.The packing layers of the samples were preheated to the experimental temperature using electric heaters.The composition of the tail gas was evaluated, and the adsorptive desulfurization capacity (q) of samples could be calculated.

    3 Results and Discussion

    3.1 Characterization

    3.1.1 Scanning electron microscopy (SEM)

    The SEM images of the four CAC samples before SO2adsorption are shown in Figure 1 (a)–(d). The surface of CAC-MW, which was only microwave activated,exhibited a squamose structure with a large number of micropores (Figure 1 (a)). In addition, many microporous structures existed within some macropores, as shown by Figure 1 (b) and (c). Moreover, the Dpof samples increased after soaking in different oxidants, with the maximum Dpexceeding 100 μm. The formation of macropores is conducive not only to the adsorption of SO2and H2O by the pores located inside the samples, but also to the adsorption of H2SO4and other macromolecules generated during the process, thus promoting the adsorption of SO2from flue gas[22,28].

    Figure 1 SEM images of external surfaces of samples

    3.1.2 BET surface area and pore size distribution

    Figure 2 (a) shows the N2adsorption-desorption isotherms for the four samples. According to the International Union of Pure and Applied Chemistry (IUPAC) classification,the adsorption isotherm of each sample belongs to type I adsorption isotherm. Each adsorption curve increased sharply for p/p0= 0—0.02, and showed a smooth in flection point when p/p0increased from 0.02 to 0.2, suggesting a wide micropore size distribution. The amount of N2adsorption increased slowly with the increase in relative pressure, and the isotherm exhibited a tailing phenomenon when the relative pressure increased to a certain value.The desorption curve has a significant hysteresis ring and gradually intersects the adsorption curve at p/p0= 1. It shows that the samples contained not only micropores, but also mesopores. The N2adsorption capacity of AC was determined by the SBETand Vtotvalues. The N2adsorption capacity of MW-CAC was the largest, which indicated that the microwave-modified CAC had considerably high SBETand Vtotvalues. However, the CAC samples co-modified with the oxidants demonstrated the reduced SBETand Vtotvalues. This is consistent with the calculated pore structure parameters listed in Table 1. Figure 2 (b) shows the DFT pore size distribution of the samples. It can be seen that the pore size distributions of all the samples were extensive,although they were mainly concentrated in the micropores and small mesopores (2—5 nm). This shows that the modifications by microwave and oxidants had little effect on the pore size distribution of AC.

    Table 1 presents the pore structure parameters of the microwave-modified CAC and the microwave and oxidant co-modified CACs. The SBET, Vtot, and DAof MW-CAC were 983.7 m2/g, 0.3902 cm3/g, and 1.726 nm, respectively.Compared to MW-CAC, the co-modified CACs exhibited lower SBETand Vtotvalues but higher DAvalues. The SBETand Vtotof MW-K2Cr2O7-CAC and MW-KMnO4-CAC showed obvious decrement. The SBETand Vtotdecreased with an increasing oxidizability, whereas Dpincreased with an increasing oxidizability. This is because the oxidants could corrode the surfaces of the samples and promote the formation of oxygen-containing functional groups.

    3.1.3 XPS analysis

    Figure 2 N2 adsorption-desorption isotherms (a) and pore size distribution (b) of samples

    Table 1 The effect of oxidants on BET surface area, pore volumes and average pore sizes of samples (with microwave power of 600 W)

    Figure 3 shows the C1s and O1s spectra of the samples prior to SO2adsorption. The C1S binding energies for C-C, C-O, C=O, and O=C-O are 284.7 eV, 286.1 eV,287.2 eV, and 288.6 eV, respectively. For all the samples,the absolute content of C-C was not affected by the oxidizability of the oxidants. However, the percentage ratios of oxygen-containing functional groups increased with an increasing oxidizability of the oxidants, in particular the alcohol and carboxyl groups. Compared to MW-CAC, the percentage ratios of alcohol and carboxyl groups for MW-K2Cr2O7-CAC increased by 11.07%and 3.99%, respectively. Therefore, the formation of alcohol and carboxyl groups is bene ficial to the chemical adsorption of SO2by the samples.

    3.2 Adsorption tests

    3.2.1 Effect of oxidants

    As seen in Figure 4, the saturated adsorption capacities for SO2per unit mass of samples decreased in the following order: MW-K2Cr2O7-CAC > MW-KMnO4-CAC> MW-H2O2-CAC > MW-CAC. Moreover, the saturated adsorption capacity of MW-K2Cr2O7-CAC for SO2was equal to around 40.09 mg/g, which was about 2.45 times that of MW-CAC. During the first 30 min, the adsorption rates of the four samples were nearly the same. However,after 30 min, the adsorption rates of MW-CAC and MWH2O2-CAC rapidly decreased, and these samples attained the saturated adsorption capacity in 180 min and 214 min, respectively. However, the adsorption rates of MWK2Cr2O7-CAC and MW-KMnO4-CAC started declining after 124 min and 130 min, and decreased to 0 at 280 min and 310 min, respectively.

    It should be noted that oxidation can improve the adsorption capacity of the samples since the corrosive effect of the oxidant extends to the internal adsorption regions of the samples[29], which is bene ficial to the flow of SO2and other reaction products into the internal micropores.

    3.2.2 Effect of initial SO2 concentration

    Figure 5 (a), (b), and (c) show the adsorption capacity and adsorption rate curves of MW-K2Cr2O7-CAC,MW-KMnO4-CAC, and MW-H2O2-CAC at different initial SO2concentrations, respectively. The saturated adsorption capacities and initial adsorption rates of the samples increased with an increasing initial SO2concentration. When the SO2concentration in the simulated flue gas was 2000 ppm, the saturated adsorption capacity and the initial adsorption rate were 42.7 mg/g (at about 275 min) and 0.23 mg/(g·min),respectively. However, as the adsorption reaction proceeded, the reaction product, H2SO4, could block the internal pores or surfaces of the sample, leading to a gradual decrease in its saturated adsorption rate.Therefore, a high initial SO2concentration could contribute to the increase in SO2adsorption capacity and adsorption rate of the sample.

    Figure 3 C 1s (left) and O 1s (right) spectra of the samples: MW-CAC; MW-K2CrO7-CAC; MW-KMnO4-CAC; and MWH2O2-CAC

    Figure 4 Effect of oxidizability on SO2 adsorption capacity and adsorption rate

    Figure 5 Effect of initial SO2 concentration on SO2 adsorption capacity and adsorption rate

    3.2.3 Effect of bed temperature

    The effect of bed temperature on SO2adsorption by MWK2Cr2O7-CAC is shown in Figure 6. The adsorption test was performed at 60 °C, 80 °C, 100 °C, and 120 °C,respectively, while maintaining the other experimental variables unchanged. The saturated adsorption capacity and the adsorption rate of the sample decreased with the increase in bed temperature. The saturated adsorption capacity and adsorption rate decreased by 6.48 mg/g and 0.01 mg/(g·min) for each 20 °C increment in bed temperature. At 60 °C, the sample maintained a maximum adsorption rate between 0 to 130 min, whereas at 120 °C the maximum adsorption rate could only be maintained for 40 min. Therefore, 60 °C is considered to be an ideal temperature, as compared with other bed temperatures employed in this experiment. The result suggests that a low bed temperature could contribute to the increase in SO2adsorption capacity and adsorption rate of the sample.

    Figure 6 Effect of bed temperature on SO2 adsorption capacity of MW-KCr2O7-CAC

    3.3 SO2 adsorption equilibrium

    The adsorption equilibrium of the gas on the surface of the AC is usually described by the Langmuir and Freundlich equations. The Langmuir adsorption isotherm model assumes that adsorption occurs on the homogeneous surface of the monolayer oriented adsorption and ignores the lateral interaction between the adsorbed molecules[30-32]. The Freundlich adsorption isotherm model assumes that the adsorption heat is logarithmically reduced on the non-uniform surfaces as the surface coverage increases[33-35].

    The Langmuir isotherm is expressed as:

    where qe(mg/g) is the amount of adsorbate on unit weight of adsorbent, qm(mg/g) is the Langmuir constant related to adsorption capacity, Ceis the initial concentration of the adsorbate (g/m3), and KLis the Langmuir constant related to the rate of adsorption (m3/g). Hence, the linearized plot of Ce/qevs. Cegives a slope of (1/qm) and intercept of (1/qmKL).The Freundlich isotherm is expressed as:

    where qeis the adsorption capacity of the adsorbent (mg/g), KFis the adsorption or distribution coefficient for the Freundlich isotherm ((mg·(m3)1/n)/(g·g1/n)), Ce(g/m3) is the initial adsorbate concentration, and n is a dimensionless constant associated with the temperature and the adsorption intensity. A plot of ln qevs. ln Ceenables the determination of constant KFand exponent 1/n. The magnitude of the exponent n indicates the favorability of adsorption,with n > 1 representing a favorable adsorption condition.

    Figure 7 Linear fitting of adsorption equilibrium of SO2 on the samples

    As shown in Table 2, the results of the Langmuir adsorption isotherm model are better than those of the Freundlich model, which means that the Langmuir modelcan better predict the adsorption equilibrium of SO2on the surfaces of the samples. According to this model,the samples mainly demonstrate the chemical surface adsorption behavior for SO2.

    Table 2 Parameters of linear fitting of adsorption equilibrium

    4 Conclusions

    The SO2adsorption capacity of the CAC samples was enhanced in the following order: MW-CAC < MWH2O2-CAC < MW-KMnO4-CAC < MW-K2Cr2O7-CAC.The formation of alcohol and carboxyl groups increased the adsorption capacity for SO2. The oxidant supported on CAC via microwave irradiation can significantly promote the SO2adsorption capacities and adsorption rates of the samples. K2Cr2O7was the main active phase in the prepared CAC sample and showed excellent SO2adsorption capacity at a bed temperature of 60 °C and an initial SO2concentration of 2000 ppm. However, it could maintain the maximum adsorption rate only for a short period. Furthermore, the Langmuir model could better predict the SO2adsorption equilibrium on the surfaces of the samples and could validate that SO2adsorbed on the sample surfaces was mainly realized via chemical adsorption.

    [1] Mathieu Y, Tzanis L, Soulard M, et al. Adsorption of SOx by oxide materials: A review[J]. Fuel Processing Technology, 2013, 114: 81–100

    [2] Przepiorski J, Czyzewski A, Pietrzak R, et al. Porous carbon material containing CaO for acidic gas capture:Preparation and properties[J]. J Hazard Mater, 2013, 263(2): 353–360

    [3] Mu?iz J, Herrero J E, Fuertes A B. Treatments to enhance the SO2capture by activated carbon fibres[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 171–179

    [4] Rezaei F, Rownaghi A A, Monjezi S, et al. SOx/NOx removal from flue gas streams by solid adsorbents: A review of current challenges and future directions[J].Energy & Fuels, 2015, 29(46): 5467?5486

    [5] Guo Deyong, Li Fei, Liu Wenge. Methane adsorption study using activated carbon fiber and coal based activated carbon[J]. China Petroleum Processing & Petrochemical Technology, 2013, 15(4): 20–25

    [6] Foo K Y, Hameed B H. Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance[J]. Chemical Engineering Journal, 2012, 184:57–65

    [7] Wang X C, Bi X Y, Sun P S, et al. Effects of oxygen content on the simultaneous microbial removal of SO2and NOx in biotrickling towers[J]. Biotechnology and Bioprocess Engineering, 2015, 20(5): 924–930

    [8] Wang X, Wang A, Wang X, et al. Microwave plasma enhanced reduction of SO2to sulfur with carbon[J]. Energy& Fuels, 2007, 21(2): 867–869

    [9] Zhang L Q, Jiang H T, Ma C Y, et al. Microwave regeneration characteristics of activated carbon for flue gas desulfurization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1366–1371

    [10] Zhang L, Cui L, Wang Z, et al. Modification of activated carbon using microwave radiation and its effects on the adsorption of SO2[J]. Journal of Chemical Engineering of Japan, 2016, 49(1): 52–59

    [11] Luo Ying, Zhang Zhongzhe, Qi Jibing, et al. Optimization of high-gravity chelated iron process for removing H2S based on response surface methodology[J]. China Petroleum Processing & Petrochemical Technology, 2015,17(3): 87–93

    [12] Foo K Y, Hameed B H. Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption[J]. Chemical Engineering Journal, 2011, 166(2):792–795

    [13] Foo K Y, Hameed B H. Preparation and characterization of activated carbon from pistachio nut shells via microwaveinduced chemical activation[J]. Biomass and Bioenergy,2011, 35(7): 3257–3261

    [14] Foo K Y, Hameed B H. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3activation[J]. Bioresour Technol, 2011, 102(20): 9794–9799

    [15] Foo K Y, Hameed B H. Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3activation[J]. Microporous and Mesoporous Materials,2012, 148(1): 191–195

    [16] Ania C O, Menéndez J A, Parra J B, et al. Microwaveinduced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration[J]. Carbon, 2004, 42(7): 1383–1387

    [17] Ania C O, Parra J B, Menendez J A, et al. Microwaveassisted regeneration of activated carbons loaded with pharmaceuticals[J]. Water Res, 2007, 41(15): 3299–3306

    [18] Ge X, Wu Z, Wu Z, et al. Enhanced paths adsorption using iron-modified coal-based activated carbon via microwave radiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 235–243

    [19] Liu Q S, Zheng T, Wang P, et al. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation[J].Industrial Crops and Products, 2010, 31(2): 233–238

    [20] Carrott P J M, Marques L M, Carrott M M L R.Characterisation of the porosity of polymer and carbon aerogels containing Fe, Ni or Cu prepared from 2,4-dihydroxybenzoic acid by n-nonane pre-adsorption and density functional theory[J]. Microporous and Mesoporous Materials, 2010, 131(1/3): 75–81

    [21] Neimark A V, Lin Y, Ravikovitch P I, et al. Quenched solid density functional theory and pore size analysis of micromesoporous carbons[J]. Carbon, 2009, 47(7): 1617–1628

    [22] Puziy A M, Poddubnaya O I, Kochkin Y N, et al. Acid properties of phosphoric acid activated carbons and their catalytic behavior in ethyl-tert-butyl ether synthesis[J].Carbon, 2010, 48(3): 706–713

    [23] Liu Y, Zhu Y, Li W, et al. Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution[J]. Journal of Natural Gas Science & Engineering, 2016, 30: 119–126

    [24] Zhang S, Li X Y, Chen J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J]. J Colloid Interface Sci, 2010, 343(1): 232–238

    [25] Chiang Y C, Lin W H, Chang Y C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3oxidation[J]. Applied Surface Science, 2011, 257(6): 2401–2410

    [26] Liu H, Li G, Hu C. Selective ring C-H bonds activation of toluene over Fe/activated carbon catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2013, 377: 143–153

    [27] Fu X, Yang H, Sun H, et al. The multiple roles of ethylenediamine modification at TiO2/activated carbon in determining adsorption and visible-light-driven photoreduction of aqueous Cr(VI) [J]. Journal of Alloys and Compounds, 2016, 662: 165–172

    [28] Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nano fibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785–796

    [29] Yang S, Li L, Xiao T, et al. Promoting effect of ammonia modification on activated carbon catalyzed peroxymonosulfate oxidation[J]. Separation and Purification Technology, 2016, 160: 81–88

    [30] Moreno-Castilla C, Ferro-Garcia M, Joly J, et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments[J].Langmuir, 1995, 11(11): 4386–4392

    [31] Suárez D, Menéndez JA, Fuente E, et al. Contribution of pyrone-type structures to carbon basicity: An ab initio study[J]. Langmuir, 1999, 15(11): 3897–3904

    [32] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society: 1916, 38(11): 2221–2295

    [33] Kong J, Yue Q, Huang L, et al. Preparation,characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation[J]. Chemical Engineering Journal,2013, 221: 62–71

    [34] Song X, Liu H, Cheng L, et al. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption[J]. Desalination,2010, 255(1-3): 78–83

    [35] Zhi Y, Liu J. Surface modification of activated carbon for enhanced adsorption of per fluoroalkyl acids from aqueous solutions[J]. Chemosphere, 2016, 144: 1224–1232

    在线观看免费日韩欧美大片 | 22中文网久久字幕| 亚洲欧美精品自产自拍| 1000部很黄的大片| 欧美精品一区二区大全| 亚洲精品日韩在线中文字幕| 成人黄色视频免费在线看| 黑人高潮一二区| 亚洲,一卡二卡三卡| 99热这里只有是精品在线观看| 99久久精品一区二区三区| 精品熟女少妇av免费看| 亚洲欧美成人综合另类久久久| 欧美日韩视频高清一区二区三区二| 久久久久精品性色| 老女人水多毛片| 免费av不卡在线播放| av国产免费在线观看| 中国国产av一级| 亚洲欧美一区二区三区国产| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 国产男女内射视频| 在线免费十八禁| 亚洲人成网站高清观看| 高清午夜精品一区二区三区| 午夜激情久久久久久久| 亚洲欧美清纯卡通| 国产色婷婷99| 国产黄色免费在线视频| 丰满迷人的少妇在线观看| 狂野欧美激情性bbbbbb| 人人妻人人看人人澡| 日韩av不卡免费在线播放| 日韩av免费高清视频| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 久久久久久久久久人人人人人人| 亚洲精品乱久久久久久| 国产淫片久久久久久久久| 免费黄频网站在线观看国产| 国产av码专区亚洲av| 亚洲综合色惰| 亚洲精品日本国产第一区| 久久国产精品男人的天堂亚洲 | 亚洲人与动物交配视频| 欧美日本视频| 久久99精品国语久久久| 深爱激情五月婷婷| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| 日韩不卡一区二区三区视频在线| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 国产成人精品福利久久| 亚洲av.av天堂| 王馨瑶露胸无遮挡在线观看| 亚洲图色成人| 成人毛片60女人毛片免费| 国产精品人妻久久久影院| 亚洲欧美清纯卡通| 少妇的逼水好多| 日韩人妻高清精品专区| 精品少妇久久久久久888优播| 美女视频免费永久观看网站| 波野结衣二区三区在线| 精品午夜福利在线看| 美女cb高潮喷水在线观看| 91精品一卡2卡3卡4卡| 国产精品精品国产色婷婷| 国产亚洲午夜精品一区二区久久| 18禁在线播放成人免费| 亚洲国产最新在线播放| 久久久久性生活片| 涩涩av久久男人的天堂| 欧美激情国产日韩精品一区| 国产免费福利视频在线观看| 少妇人妻一区二区三区视频| 777米奇影视久久| 嫩草影院新地址| 2021少妇久久久久久久久久久| 妹子高潮喷水视频| 久久婷婷青草| 成人亚洲欧美一区二区av| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 一级毛片我不卡| 涩涩av久久男人的天堂| 日韩人妻高清精品专区| 日本av手机在线免费观看| 中文字幕亚洲精品专区| 欧美日韩一区二区视频在线观看视频在线| 日本猛色少妇xxxxx猛交久久| 51国产日韩欧美| 午夜免费男女啪啪视频观看| 久久99蜜桃精品久久| 在线观看美女被高潮喷水网站| 男人狂女人下面高潮的视频| 99精国产麻豆久久婷婷| 一级毛片电影观看| 免费看av在线观看网站| 色综合色国产| 777米奇影视久久| 日韩 亚洲 欧美在线| 18+在线观看网站| 国产精品成人在线| 日韩欧美精品免费久久| 人人妻人人看人人澡| 国产精品无大码| 精品少妇久久久久久888优播| 成年av动漫网址| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| av不卡在线播放| 国产在视频线精品| 91久久精品电影网| 九九在线视频观看精品| 久久久午夜欧美精品| freevideosex欧美| 我的女老师完整版在线观看| 亚洲精品国产成人久久av| 一二三四中文在线观看免费高清| 亚洲精品第二区| 欧美丝袜亚洲另类| 少妇熟女欧美另类| 久久国产精品男人的天堂亚洲 | 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 国产精品三级大全| 亚洲四区av| 99热这里只有是精品在线观看| 免费看av在线观看网站| videos熟女内射| 青春草视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 街头女战士在线观看网站| 国产男女内射视频| 五月天丁香电影| 涩涩av久久男人的天堂| 亚洲真实伦在线观看| 国产av国产精品国产| 老女人水多毛片| 午夜福利高清视频| 国产成人a∨麻豆精品| 99热这里只有是精品50| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| 国产av一区二区精品久久 | 国产人妻一区二区三区在| 91精品一卡2卡3卡4卡| 99热国产这里只有精品6| 一本久久精品| 国产伦精品一区二区三区四那| 国产精品福利在线免费观看| 免费观看的影片在线观看| 国产又色又爽无遮挡免| 高清日韩中文字幕在线| 99热这里只有是精品在线观看| 成人免费观看视频高清| 黑人猛操日本美女一级片| 蜜桃亚洲精品一区二区三区| 亚洲av日韩在线播放| 激情 狠狠 欧美| 精品99又大又爽又粗少妇毛片| 高清午夜精品一区二区三区| 嫩草影院新地址| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 午夜免费鲁丝| 久久久久久久亚洲中文字幕| 观看av在线不卡| 最近手机中文字幕大全| 熟女av电影| 亚洲怡红院男人天堂| 亚洲国产精品成人久久小说| 免费av不卡在线播放| 有码 亚洲区| 欧美3d第一页| 午夜福利网站1000一区二区三区| 免费观看性生交大片5| 中文在线观看免费www的网站| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| 国产亚洲av片在线观看秒播厂| 久久精品人妻少妇| 性色avwww在线观看| 久热这里只有精品99| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 肉色欧美久久久久久久蜜桃| 日本爱情动作片www.在线观看| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说| 久久国产亚洲av麻豆专区| 精品久久久噜噜| 街头女战士在线观看网站| 中文在线观看免费www的网站| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 91狼人影院| www.色视频.com| 国产中年淑女户外野战色| h日本视频在线播放| 有码 亚洲区| 久久久久久人妻| 交换朋友夫妻互换小说| 美女内射精品一级片tv| 在线精品无人区一区二区三 | 免费看不卡的av| 精品久久久久久电影网| 久久精品夜色国产| av福利片在线观看| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 一区在线观看完整版| 丰满少妇做爰视频| 久久精品熟女亚洲av麻豆精品| 永久免费av网站大全| 少妇人妻 视频| 国产精品一区二区在线观看99| 中文欧美无线码| 男女国产视频网站| 国产淫片久久久久久久久| 在线播放无遮挡| 日韩一本色道免费dvd| 最近中文字幕高清免费大全6| 日日啪夜夜爽| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 亚洲av二区三区四区| 久久久成人免费电影| 一本久久精品| 亚洲丝袜综合中文字幕| 国产黄色免费在线视频| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 国产综合精华液| 成年免费大片在线观看| 亚洲欧美成人精品一区二区| 精品人妻偷拍中文字幕| 欧美少妇被猛烈插入视频| 少妇 在线观看| 久久av网站| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 精品一区二区三卡| 男人舔奶头视频| 一级二级三级毛片免费看| 欧美 日韩 精品 国产| h日本视频在线播放| av免费在线看不卡| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 亚洲美女黄色视频免费看| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 一个人看的www免费观看视频| 欧美另类一区| 联通29元200g的流量卡| 中国三级夫妇交换| 国产在线一区二区三区精| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 久久久久国产网址| 日韩强制内射视频| 亚洲丝袜综合中文字幕| 久久人人爽人人爽人人片va| 亚洲图色成人| 少妇人妻一区二区三区视频| 色视频www国产| 两个人的视频大全免费| 我要看黄色一级片免费的| 秋霞伦理黄片| 国产一区二区在线观看日韩| 最近2019中文字幕mv第一页| 欧美日韩综合久久久久久| 亚洲国产精品专区欧美| 纯流量卡能插随身wifi吗| 国产亚洲5aaaaa淫片| av女优亚洲男人天堂| 九九在线视频观看精品| 亚洲国产最新在线播放| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 欧美高清成人免费视频www| 97超视频在线观看视频| 久久久久久久大尺度免费视频| 九草在线视频观看| 国产成人a区在线观看| 久久亚洲国产成人精品v| 国产有黄有色有爽视频| 一区二区三区精品91| 欧美日韩亚洲高清精品| h视频一区二区三区| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久| 狠狠精品人妻久久久久久综合| 在线天堂最新版资源| 国国产精品蜜臀av免费| 妹子高潮喷水视频| 人体艺术视频欧美日本| 丰满乱子伦码专区| 亚洲精品456在线播放app| 99视频精品全部免费 在线| 日韩av免费高清视频| 超碰97精品在线观看| 色网站视频免费| 亚洲欧洲日产国产| 黄色欧美视频在线观看| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 亚洲国产精品国产精品| 少妇丰满av| 国产精品国产三级国产专区5o| 国内少妇人妻偷人精品xxx网站| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 一本久久精品| 免费观看在线日韩| 99久久精品国产国产毛片| 欧美日韩综合久久久久久| 美女福利国产在线 | 国产黄色免费在线视频| 韩国av在线不卡| 久久久亚洲精品成人影院| 久久久久网色| 精品熟女少妇av免费看| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 永久网站在线| 热99国产精品久久久久久7| 国产精品久久久久久久电影| 大香蕉97超碰在线| 亚洲欧美一区二区三区黑人 | 成人美女网站在线观看视频| 日韩三级伦理在线观看| 欧美97在线视频| 网址你懂的国产日韩在线| a级毛片免费高清观看在线播放| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 蜜桃在线观看..| 多毛熟女@视频| 日韩电影二区| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| 777米奇影视久久| 在线观看一区二区三区激情| 久久久国产一区二区| 久久国产精品男人的天堂亚洲 | 久久这里有精品视频免费| 国产精品免费大片| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 久久久精品免费免费高清| 有码 亚洲区| 人妻 亚洲 视频| 久久久精品94久久精品| 免费看不卡的av| 搡老乐熟女国产| 少妇的逼水好多| 国产视频首页在线观看| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 精品久久久久久久末码| 亚洲第一区二区三区不卡| 一本一本综合久久| 精品人妻偷拍中文字幕| 日本黄色片子视频| 久久精品国产自在天天线| 如何舔出高潮| 婷婷色综合大香蕉| 伊人久久国产一区二区| 丰满人妻一区二区三区视频av| 国产高清三级在线| 亚洲国产欧美人成| 色5月婷婷丁香| 久久久精品94久久精品| 中文在线观看免费www的网站| 国产精品国产三级专区第一集| 免费大片18禁| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 中文欧美无线码| 精品久久久精品久久久| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线| 久久影院123| av线在线观看网站| 亚洲精品乱码久久久久久按摩| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 亚洲av.av天堂| 成年免费大片在线观看| 身体一侧抽搐| 女人十人毛片免费观看3o分钟| 国产午夜精品一二区理论片| 色吧在线观看| 干丝袜人妻中文字幕| 国产高潮美女av| 国产黄片视频在线免费观看| 成年女人在线观看亚洲视频| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| 寂寞人妻少妇视频99o| 好男人视频免费观看在线| 亚洲国产日韩一区二区| 欧美日韩精品成人综合77777| 一区在线观看完整版| 一区二区三区乱码不卡18| 国产精品99久久久久久久久| 一级a做视频免费观看| 精品人妻熟女av久视频| 大陆偷拍与自拍| 久久97久久精品| 亚洲精品一二三| 一级毛片 在线播放| 精品一区二区三区视频在线| 一级毛片黄色毛片免费观看视频| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 九色成人免费人妻av| 国产无遮挡羞羞视频在线观看| 日韩av不卡免费在线播放| 亚洲精品国产av成人精品| 亚洲最大成人中文| 丰满迷人的少妇在线观看| 免费少妇av软件| 高清黄色对白视频在线免费看 | www.av在线官网国产| 日韩中文字幕视频在线看片 | av在线观看视频网站免费| 国产精品熟女久久久久浪| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 精品久久久噜噜| 久久99热这里只有精品18| 免费看日本二区| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 久久鲁丝午夜福利片| 搡老乐熟女国产| 国产欧美日韩精品一区二区| 成人国产麻豆网| 男人狂女人下面高潮的视频| 这个男人来自地球电影免费观看 | 亚洲av二区三区四区| 女性被躁到高潮视频| www.av在线官网国产| 综合色丁香网| 中国美白少妇内射xxxbb| 舔av片在线| 久久久欧美国产精品| 多毛熟女@视频| 97在线人人人人妻| 国产伦精品一区二区三区视频9| 久久久久久久大尺度免费视频| 美女主播在线视频| 女的被弄到高潮叫床怎么办| av在线蜜桃| 丰满少妇做爰视频| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频| 国产精品99久久久久久久久| 在线观看国产h片| 国产午夜精品一二区理论片| 国产国拍精品亚洲av在线观看| 亚洲人成网站高清观看| 美女国产视频在线观看| 99久久人妻综合| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 国产精品成人在线| 色视频www国产| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 欧美+日韩+精品| 我要看日韩黄色一级片| 中国美白少妇内射xxxbb| 亚洲国产精品一区三区| 中国美白少妇内射xxxbb| 一级二级三级毛片免费看| 亚洲精品一二三| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 久久精品国产鲁丝片午夜精品| 亚洲欧洲国产日韩| 久久久久久人妻| 又大又黄又爽视频免费| 18禁动态无遮挡网站| 日韩伦理黄色片| 久久精品国产亚洲av天美| 免费播放大片免费观看视频在线观看| 中文字幕免费在线视频6| 欧美bdsm另类| 纯流量卡能插随身wifi吗| 精品国产乱码久久久久久小说| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 日韩中字成人| 国产爽快片一区二区三区| 99久久精品热视频| 97在线人人人人妻| 各种免费的搞黄视频| 青春草视频在线免费观看| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 成人影院久久| 免费看光身美女| 国内精品宾馆在线| 一区在线观看完整版| 黄色欧美视频在线观看| 91在线精品国自产拍蜜月| av在线蜜桃| 女的被弄到高潮叫床怎么办| 国产精品免费大片| h日本视频在线播放| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄| 精品一品国产午夜福利视频| 91精品伊人久久大香线蕉| 久久精品人妻少妇| 又爽又黄a免费视频| 久久影院123| 一级毛片黄色毛片免费观看视频| 欧美3d第一页| 一级片'在线观看视频| 久久鲁丝午夜福利片| 在线免费十八禁| 国内揄拍国产精品人妻在线| 少妇的逼水好多| 97热精品久久久久久| 国产精品偷伦视频观看了| 老师上课跳d突然被开到最大视频| 一级二级三级毛片免费看| 肉色欧美久久久久久久蜜桃| 美女视频免费永久观看网站| 亚洲内射少妇av| 女性生殖器流出的白浆| 秋霞在线观看毛片| 99热网站在线观看| 国产色婷婷99| 亚洲av电影在线观看一区二区三区| 国产亚洲精品久久久com| 麻豆成人av视频| 一区二区三区四区激情视频| 十八禁网站网址无遮挡 | 亚洲av福利一区| 黄色欧美视频在线观看| 亚洲国产欧美人成| 国产精品99久久久久久久久| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 一级二级三级毛片免费看| 日韩国内少妇激情av| 久久 成人 亚洲| 在线天堂最新版资源| 日本欧美国产在线视频| 日韩人妻高清精品专区| 国产亚洲一区二区精品| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 国产在视频线精品| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 美女主播在线视频| 97在线人人人人妻| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 国精品久久久久久国模美| 国产av精品麻豆| 丝袜脚勾引网站| 街头女战士在线观看网站| 亚洲图色成人| 九色成人免费人妻av| 内射极品少妇av片p| 黄色视频在线播放观看不卡| 99热网站在线观看| 国产在线视频一区二区| 少妇 在线观看| 亚洲精品色激情综合| 女人久久www免费人成看片| 三级国产精品片| 啦啦啦在线观看免费高清www| .国产精品久久| 国产精品伦人一区二区| 欧美国产精品一级二级三级 | 黑人高潮一二区| 三级经典国产精品| 干丝袜人妻中文字幕| 97在线视频观看| 免费观看在线日韩| 欧美高清性xxxxhd video|