• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controllable Synthesis of Mixed-Phase TiO2 with Small Anatase and Rutile Particle and Its Enhanced Photocatalytic Activity

    2018-04-24 06:08:59BaiYuLiKuanChenXuebingZhangJing
    中國煉油與石油化工 2018年1期

    Bai Yu; Li Kuan; Chen Xuebing; Zhang Jing

    (School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001)

    1 Introduction

    Significant volumes of wastewater with high concentration of aliphatic and aromatic hydrocarbons, generated in petroleum and petrochemical industries, are considered to be the one of the factors that pollutes the environment.The heterogeneous photocatalytic oxidation process using semiconductor photocatalysts for environmental remediation has been extensively studied[1-3]. In the past few decades, titanium dioxide (TiO2) has been a popular photocatalyst for the treatment of organic pollutants in water and air because of its unique advantages, such as nontoxicity, and chemical stability[4-6].

    However, the ef ficiency of TiO2is still low for practical application. It is reported that the low ef ficiency of TiO2is mainly attributed to the fast recombination of the photoinduced electrons and holes[7]. Many strategies have been performed to improve the rate for separation of the photoinduced electrons and holes and the photocatalytic performance of TiO2. For example, suitable morphology design[8], doping[9-11], forming a semiconductor heterojunction by combining TiO2with other metal oxide semiconductors[12-15], and other approaches could be used,respectively.

    Generally, TiO2exists mainly in three phases including rutile, anatase, and brookite. Moreover, anatase and brookite are usually transformed into rutile after calcination at high temperature. Our previous reports[16-18]have revealed that the formation of phase junction composed of anatase and rutile phases can significantly promote the spatial separation of photogenerated electrons and holes,which are capable of boosting the photocatalytic performance of TiO2.

    Tiwari A, et al.[19]prepared 1-D anatase and rutile TiO2heterojunction nanorods using the solvothermal method.The heterojunction formed between anatase and rutile is beneficial to fast interfacial electron transfer and better

    The sol–gel method[21-23], the chemical precipitation method[24], and many physical and chemical approaches[25-26]are usually used for the synthesis of the anatase TiO2.Moreover, the formation of pure rutile generally involves the transformation from anatase at a high calcination temperature of >700oC, which can result in sintering of the TiO2nanostructures. Thus, the obtained TiO2with mixed phases exhibits large rutile particles and anatase particles. We all know that the morphology, particle size,and surface area of TiO2have great in fluence on its photocatalytic activity. The large particle size and very low surface area usually induce a low photocatalytic activity.Therefore, synthesis of the mixed crystalline phases of TiO2with both small-particle-size anatase and rutile is an interesting topic of research.

    Additionally, our previous results[27]indicate that the anatase-rutile ratio is one of the main factors that can in fluence the photocatalytic activity of TiO2with phase junction. Thus, it is still of significance to develop an effective method to control the phase composition of anatase-rutile in TiO2. However, to our knowledge, the study about controlling the TiO2with adjustment of both the particle size and the phase composition of anatase and rutile is rare.

    The aim of this work is to develop an effective method toward the control over the crystalline phase and the particle size in TiO2by means of the hydrothermal approach.And the photocatalytic activity of TiO2samples is to be investigated by the photodegradation of Rhodamine B(RhB).

    2 Experimental

    2.1 Materials

    Tetrabutyl titanate (TBOT, Ti[O(CH2)3CH3]4), triethanolamine (TEOA, N(CH2CH2OH)3), and nitric acid (HNO3)were purchased from the Sinopharm Chemical Reagent Co., Ltd (China). All the above chemicals were of analytical reagent grade and were directly used without further purification. Deionized water was prepared in our own laboratory.

    2.2 Sample preparation

    Anatase/rutile TiO2nanoparticles were prepared via the hydrothermal method. TBOT was mixed with TEOA at the same volume ratio under magnetic stirring to form a transparent solution. After the above transparent solution was placed in water bath at a specified curing temperature(T) for several hours (t), the pH value was adjusted to 0.2 by adding 2.5 mol/L HNO3. Then, it was transferred into a Teflon lined autoclave and was subject to ageing at 140 °C for 72 h. The precipitate was collected and washed several times with deionized water, and then dried at 60oC overnight. The obtained samples were labeled as TiO2-T-t, with T representing the curing temperature and t representing the curing time, respectively.

    2.3 Characterization

    The crystalline structures of the as-synthesized samples were characterized by X-ray diffraction, using a Rigaku Rotaflex Ru-200B diffractometer with Cu Kα radiation(λ=0.15418 nm) at a speed of 5 (°)/min. The particle size and morphology of samples were obtained on a HITACHI HT7700 transmission electron microscope. The optical properties of samples were tested on the assembled surface photovoltage equipped with a SR830 DSP lock-in amplifier of Stanford Research Systems.

    2.4 Photocatalytic reaction

    The photocatalytic activity of the TiO2-T-t samples was investigated through photocatalytic degradation of Rhodamine B (RhB). Typically, 0.05 g of TiO2-T-t sample were dispersed into 60 mL of 10 mg/L RhB solution in a beaker. Prior to the light irradiation, the suspension was kept in dark for 30 min at room temperature under magnetic stirring for achieving the adsorption-desorption equilibrium. A 250-W Hg lamp (λ= 365 nm, made by the Shanghai Yaming Lighting Co., Ltd.) was used as the illumination source for the reaction system. Then 3 ml of the suspension liquid were collected every 30 min and centrifuged for obtaining the absorbance of RhB analyzed by a spectrophotometer (UV mini-1240 spectrophotometer,made by the Shimadzu (China) Co., Ltd.) at a wavelength of 553 nm. The blank study carried out with no radiation showed that a merely insignificant photolysis can be neglected for RhB.

    3 Results and Discussion

    3.1 Effect of curing temperature on the crystalline structure

    The influence of the curing temperature (20oC, 40oC,60oC, and 80oC) on the crystalline phase was investigated by XRD, with the results shown in Figure 1. At a curing temperature of 20oC, the broad peaks at 2θ=25.5°,37.9°, 48.2°, and 53.8° were observed. These peaks represent the indices of (101), (004), (200), and (105) planes of anatase phase, respectively. This indicates that the TiO2-20oC-48 h is in the anatase phase. When the curing temperature was increased to 40oC and 60oC, two tiny peaks at 2θ=27.4° and 36.1° were observed. These two peaks were ascribed to (110) and (101) planes of rutile phase.These results showed that the TiO2-40oC-48 h or TiO2-60oC-48 h was dominated by the anatase phase with a small amount of rutile phase.

    Figure 1 XRD patterns of TiO2-T-48 h

    The relative weight fractions of rutile phase, WR, are calculated using the integrated intensity of the (101) peak of anatase and the (110) peak of rutile according to the following formula[28]:

    where Aanaand Arutrepresent the X-ray integrated intensity of anatase (101) and rutile (110) diffraction peaks, respectively. According to the above method, the rutile content of the TiO2-40oC-48 h, and TiO2-60oC-48 h samples was calculated to be 2%, and 4%, respectively. As shown in Figure 1, the diffraction patterns of rutile phase became predominant with the increase of curing temperature to 80oC, and the rutile content increased to 83%. Thus, it can be concluded that the curing temperature has the influence on the crystalline structure and the crystalline composition. The high curing temperature is bene ficial to the formation of the rutile phase.

    Based on the XRD patterns, the crystallite sizes of TiO2-T-48 h samples are calculated by using the Scherrer formula. The crystallite sizes of the TiO2-T-48 h samples are shown in Table 1. It can be seen from Table 1 that the particle size of the TiO2-20oC-48 h with anatase phase is 5.1 nm. Interestingly, the anatase phase shows approximately the same size (~5 nm) as that of rutile phase in the TiO2-80oC-48 h sample containing the mixed phases.

    3.2 Effect of curing time on the crystalline phase

    We tried to change the curing time in order to control the phase composition in the TiO2-80oC-t sample. Figure 2 displays the XRD patterns of TiO2-80oC-t samples. Only the typical peaks of the anatase phase were observed in the TiO2-80oC-24 h sample. As the curing time was prolonged to 47 h, the typical peaks of rutile phase at 2θ=27.4° and 36.1° were observed, and the rutile mass ratio was calculated to be 18 %. When the curing temperature was further increased to 48 h, the rutile content was increased to 83 %. These results indicate that curing time plays a role in the formation of TiO2crystalline phase.Additionally, it was found that the particle size in the TiO2-80oC-t samples almost unchanged when the curing time increased from 24 h to 48 h as evidenced by the data listed in Table 1.

    Figure 2 XRD patterns of TiO2-80 oC-t

    Table 1 Crystallite size and rutile content identified by XRD data

    3.3 Morphology analysis

    TEM was used to investigate the morphology of the TiO2-80oC-48 h sample, with the TEM images shown in Figure 3. The TiO2-80oC-48 h sample showed agglomeration,and the TEM image indicated that the particle size of the TiO2-80oC-48 h sample was about 5 nm, which was in agreemeent with the results of XRD analysis. Moreover,the particle size of the TiO2-80oC-48 h sample was uniform, although anatase and rutile particles could not be distinguished clearly from Figure 3. Upon combining with the results of XRD analyses (Figure 1 and Figure 2),the small TiO2particles with mixed phases of anatase and rutile were successfully prepared by the simple method.

    Figure 3 TEM images of TiO2-80 oC-48 h

    3.4 Photocatalytic activity for the degradation of RhB

    RhB is an important chemical used widely in industrial production, which often causes environmental pollution[29].Generally, the semiconductor photocatalysis involves the generation of electrons in the conduction band and holes in the valence band within a semiconductor upon light irradiation at energies equal to or greater than the band gap of the semiconductor[30]. The photocatalytic reaction is initiated by the band gap excitation of TiO2, followed by generation of various reactive species (Eqs. 1-8)[31].

    The formed hydroxyl radical ?OH can oxidize organic pollutants, and the electrons in the CB can participate in the reduction process.

    The photocatalytic activity for the degradation of RhB on the various samples was evaluated under UV light irradiation, with the results presented in Figure 4. Only 36% of RhB were degraded by TiO2-20oC-48 h sample as shown in Figure 4a. The photocatalytic activity of TiO2-40oC-48 h sample and TiO2-60oC-48 h sample was comparable and increased to 57% and 60%, respectively. The maximum photocatalytic activity was observed for the TiO2-80oC-48 h sample (80%). The above-mentioned samples exhibited the similar particle size as depicted in Table 1. According to the XRD results (Figure 1), TiO2-20oC-48 h sample was mostly composed of the anatase phase, while TiO2-40oC-48 h,TiO2-60oC-48 h, and TiO2-80oC-48 h samples were dominated by the mixed phases of anatase and rutile. Therefore,the particle size might not the main reason leading to the difference in the photocatalytic activity, while the higher photocatalytic activity of the TiO2-40oC-48 h, TiO2-60oC-48 h, and TiO2-80oC-48 h samples could be attributed to the formation of the phase junction between anatase and rutile in these samples, which could effectively inhibit the recombination of photo-generated electron-hole pairs.

    The surface photovoltage (SPV) spectroscopy was applied to investigate the behavior of the photogenerated charges in TiO2-T-48 h and TiO2-80oC-t samples, with the results shown in Figure 5. The surface photovoltage method is a well-established technique for the characterization of the carrier separation and transfer behavior with the aid of light[32-33]. Generally, the higher the SPV signal,the higher the separation rate of photoinduced charge carriers would be[34-35].

    Figure 4 The photocatalytic activity for the degradation of RhB on (a) TiO2-T-48 h; and (b) TiO2-80 oC-t samples

    An apparent SPV response in the UV light range was observed for TiO2-20oC-48 h based on the data of Figure 5a.Obviously, the TiO2-40oC-48 h, TiO2-60oC-48 h, and TiO2-80oC-48 h samples with the mixed phases exhibited stronger SPV response than the TiO2-20oC-48 h sample containing the pure anatase phase. This result implies that the improved separation of photoinduced electron-hole pairs was achieved by the formation of the phase junction in these three samples. Thus, a high photocatalytic activity was reached in the TiO2-T-48 h sample with mixed phases (Figure 4a). Moreover, the TiO2-80oC-48 h sample showed a stronger SPV response, as compared with TiO2-40oC-48 h and TiO2-60oC-48 h samples, although they were dominated by mixed phases. This fact indicates that the phase composition in the phase junction is one of the main factors affecting the separation rate of photoinduced electron-hole pairs.

    Figure 5 Surface photovoltage (SPV) spectra of (a)TiO2-T-48 h sample; and (b) TiO2-80 oC-t samples

    The phenomenon confirming that the formation of the phase junction is beneficial to the improvement of the photocatalytic activity is also observed in the TiO2-80oC-t samples. Compared with the TiO2-80oC-24 h sample with anatase phase, the photocatalytic activity is significantly improved for the TiO2-80oC-47 h and TiO2-80oC-48 h samples with mixed phases. The improvement in the photocatalytic degradation of RhB can be ascribed to the improvement of the charge separation by phase junction(Figure 6), which is verified by Figure 5b. It can be seen that the observed SPV response intensity was significantly strengthened in the TiO2-80oC-47 h and TiO2-80oC-48 h samples with mixed phases. Moreover, it can be further observed that the optimal amount of rutile phase and anatase phase was found to be 18 % and 82 %, as shown in Figure 4b and Figure 5b, respectively.

    4 Conclusions

    Figure 6 Proposed mechanism of the photocatalytic degradation of RhB on TiO2

    A hydrothermal method was used to prepare TiO2nanoparticles with tunable crystalline phase. The influence of curing temperature and curing time before hydrothermal treatment on the crystalline phase, phase composition,morphology, and particle size of TiO2was studied in detail.It is observed that the curing temperature and the curing time have an obvious effect on the crystalline phase and phase composition of TiO2, albeit without obvious effect on the particle size of TiO2. Thus, the crystalline phase and phase composition of TiO2with small anatase particles (~5 nm) and rutile particles (~5 nm) were successfully tuned by changing the curing temperature and the curing time.Moreover, the photocatalytic properties of the synthesized TiO2nanostructures were evaluated in terms of the photodegradation of RhB. TiO2with the anatase and rutile phase junction exhibited the higher photocatalytic activity than the single-phase TiO2. This improvement of the photocatalytic activity might be mainly attributed to the efficient charge separation between anatase and rutile, which was verified by SPV results.

    [1] Lu Y, Liu G, Zhang J, et al. Fabrication of a monoclinic/hexagonal junction in WO3and its enhanced photocatalytic degradation of Rhodamine B[J]. Chinese Journal of Catalysis, 2016, 37(3): 349–358

    [2] Kaur J, Kumar V, Gupta K, et al. A facile strategy for the degradation of recalcitrant textile dyes using highly robust ZnO catalyst[J]. Journal of Chemical Technology &Biotechnology, 2016, 91(8): 2263–2275

    [3] Samadi M, Zirak M, Naseri A, et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis[J]. Thin Solid Films, 2016, 605(4): 2–19

    [4] Yang Z, Yan J, Lian J, et al. g-C3N4/TiO2nanocomposites for degradation of ciprofloxacin under visible light irradiation[J]. ChemistrySelect, 2016, 1(18): 5679–5685

    [5] Zhang W, Song N, Guan L, et al. Photocatalytic degradation of formaldehyde by nanostructured TiO2composite films[J]. Journal of Experimental Nanoscience,2016, 11(3): 185–196

    [6] Sotovázquez L, Cotto M, Ducongé J, et al. Synthesis and photocatalytic activity of TiO2nanowires in the degradation of p-aminobenzoic acid: A comparative study with a commercial catalyst[J]. Journal of Environmental Management, 2016, 167(1): 23–28

    [7] Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO2particles[J]. Journal of Physical Chemistry B, 2005, 109(13): 6061–6068

    [8] Xu H, Liu S Q, Zhou S, et al. Morphology and photocatalytic performance of nano-sized TiO2prepared by simple hydrothermal method with different pH values[J].Rare Metals, 2017, 9(72): 1–9

    [9] Zhang N, Liu S, Fu X, et al. A simple strategy for fabrication of “Plum-Pudding” type Pd@CeO2semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation[J]. Journal of Physical Chemistry C, 2017, 115(46): 22901–22909

    [10] Wang E, Yang W, Cao Y. Unique surface chemical species on indium doped TiO2and their effect on the visible light photocatalytic activity[J]. Journal of Physical Chemistry C,2017, 113(49): 20912–20917

    [11] Michalow K A, Vital A, Heel A, et al. Photocatalytic activity of W-doped TiO2nanopowders[J]. Journal of Advanced Oxidation Technologies, 2016, 11(1): 56–64

    [12] Li R, Jia Y, Wu J, et al. Photocatalytic degradation and pathway of oxytetracycline in aqueous solution by Fe2O3-TiO2nanopowder[J]. RSC Advances, 2015, 5(51): 40764–40771

    [13] Khojasteh H, Salavati-Niasari M, Abbasi A, et al. Synthesis,characterization and photocatalytic activity of PdO/TiO2, and Pd/TiO2, nanocomposites[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(2): 1261–1269

    [14] Bleta R, No?l S, Addad A, et al. Mesoporous RuO2/TiO2composites prepared by cyclodextrin-assisted colloidal self-assembly: towards ef ficient catalysts for the hydrogenation of methyl oleate[J]. RSC Advances, 2016,6(18): 14570–14579

    [15] Ravishankar T N, Vaz M D O, Khan S, et al. Enhanced photocatalytic hydrogen production from Y2O3/TiO2nano-composites: a comparative study on hydrothermal synthesis with and without an ionic liquid[J]. New Journal of Chemistry, 2016, 40(4): 3578–3587

    [16] Zhang J, Wu W, Yan S, et al. Enhanced photocatalytic activity for the degradation of Rhodamine B by TiO2modified with Gd2O3calcined at high temperature[J].Applied Surface Science, 2015, 344(7): 249–256

    [17] Zhang J, Yan S, Zhao S, et al. Photocatalytic activity for H2, evolution of TiO2, with tuned surface crystalline phase[J]. Applied Surface Science, 2013, 280(9): 304–311

    [18] Xu Q, Ma Y, Zhang J, et al. Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2, by optimizing anatase–rutile phase structure[J]. Journal of Catalysis, 2011, 278(2): 329–335

    [19] Tiwari A, Mondal I, Ghosh S, et al. Fabrication of mixed phase TiO2heterojunction nanorods and their enhanced photoactivities[J]. Physical Chemistry Chemical Physics,2016, 18(22): 15260–15268

    [20] El-Sheikh S M, Khedr T M, Zhang G, et al. Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light[J].Chemical Engineering Journal, 2016, 310(2): 428–436

    [21] Sabry R S, Al-Haidarie Y K, Kudhier M A. Synthesis and photocatalytic activity of TiO2nanoparticles prepared by sol–gel method[J]. Journal of Sol-Gel Science and Technology, 2016, 78(2): 299–306

    [22] EL-Mekkawi D M, Labib A A, Mousa H A, et al.Preparation and characterization of nano titanium dioxide photocatalysts via sol–gel method over narrow ranges of varying parameters[J]. Oriental Journal of Chemistry,2017, 33(1): 41–51

    [23] Wang Y, Xie Y, Yuan J, et al. Controlled synthesis and photocatalytic activity of TiO2nanoparticles by a novel gel-network precipitation method[J]. Asian Journal of Chemistry, 2013, 25(2): 739–744

    [24] Li J H, Hao J H, Wang W. Characterization and photocatalytic activity of TiO2nanoparticles with precipitation method synthesis[J]. Advanced Materials Research, 2013, 750–752(3): 315–318

    [25] Kawasaki H, Suda Y, Ohshima T, et al. Preparation of Er2O3and TiO2multilayer films as optical filter using magnetron sputtering deposition[J]. IEEE Transactions on Plasma Science, 2016, 44(12): 3066–3070

    [26] Yang B, Mahjourisamani M, Rouleau C M, et al. Low temperature synthesis of hierarchical TiO2nanostructures for high performance perovskite solar cells by pulsed laser deposition[J]. Physical Chemistry Chemical Physics, 2016,18(39): 27067–27072

    [27] Zhang Y, Zhang J, Xu Q, et al. Surface phase of TiO2modified with La2O3and its effect on the photocatalytic H2evolution[J]. Materials Research Bulletin, 2014, 53(1):107–115

    [28] Gribb A A, Banfield J F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2[J]. American Mineralogist, 1997,82(7/8): 717–728

    [29] Zhang J, Yan S, Lu F U, et al. Photocatalytic degradation of Rhodamine B on anatase, rutile, and brookite TiO2[J].Chinese Journal of Catalysis, 2011, 32(6): 983–991

    [30] Khan M M, Ansari S A, Pradhan D, et al. Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies[J]. Journal of Materials Chemistry A, 2014, 2(3): 637–644

    [31] Li Zhen, Cong Shan, Xu Yiming. Brookite vs anatase TiO2in the photocatalytic activity for organic degradation in water[J]. ACS Catalysis, 2014, 4(9): 3273–3280

    [32] Zhao J, Osterloh F E. Photochemical charge separation in nanocrystal photocatalyst films: Insights from surface photovoltage spectroscopy[J]. Journal of Physical Chemistry Letters, 2014, 5(5): 782–786

    [33] Gurudayal, Chee P M, Boix P P, et al. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2015,7(12): 6852–6875

    [34] Zhong J, Li J, Wang T, et al. Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism[J]. Applied Physics A, 2016, 122(1): 1–6

    [35] Yang Q, Zhong J, Li J, et al. Photo-induced charge separation properties of NiO/Bi2O3heterojuctions with efficient simulated solar-driven photocatalytic performance[J]. Current Applied Physics, 2017, 17(4):484–487

    99久久精品国产国产毛片| 久久毛片免费看一区二区三区| 色网站视频免费| 国产午夜精品久久久久久一区二区三区| 国产精品人妻久久久影院| 久久 成人 亚洲| 国产精品久久久久久精品古装| av在线老鸭窝| 亚洲国产日韩一区二区| 3wmmmm亚洲av在线观看| 青青草视频在线视频观看| a 毛片基地| 亚洲欧美色中文字幕在线| 免费av不卡在线播放| 哪个播放器可以免费观看大片| 狂野欧美激情性xxxx在线观看| 欧美日韩av久久| 久久久久久久亚洲中文字幕| 亚洲欧美一区二区三区黑人 | 不卡视频在线观看欧美| 哪个播放器可以免费观看大片| 99九九线精品视频在线观看视频| 超碰97精品在线观看| 亚洲欧美成人精品一区二区| 高清黄色对白视频在线免费看| 99久久中文字幕三级久久日本| 91精品伊人久久大香线蕉| 蜜桃国产av成人99| 伦理电影大哥的女人| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 婷婷色av中文字幕| 亚洲国产日韩一区二区| 亚洲怡红院男人天堂| 国精品久久久久久国模美| 国产在线视频一区二区| 老司机亚洲免费影院| 亚洲精品国产av成人精品| 日韩欧美精品免费久久| 亚洲欧美清纯卡通| 简卡轻食公司| 三级国产精品片| 国产精品久久久久久精品古装| videos熟女内射| 99久久精品一区二区三区| 国产成人一区二区在线| 久久久久久久久久久免费av| 免费观看av网站的网址| 久久久久久久久久久久大奶| 69精品国产乱码久久久| 大片电影免费在线观看免费| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 制服诱惑二区| 丰满迷人的少妇在线观看| 一边摸一边做爽爽视频免费| 欧美激情国产日韩精品一区| 又大又黄又爽视频免费| 婷婷色综合www| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 久久ye,这里只有精品| 国产成人aa在线观看| 精品人妻在线不人妻| 亚洲激情五月婷婷啪啪| 制服人妻中文乱码| 亚洲av不卡在线观看| 欧美激情极品国产一区二区三区 | 亚洲精品色激情综合| 亚洲综合精品二区| 精品人妻在线不人妻| 男女边摸边吃奶| 伦理电影免费视频| 亚洲av不卡在线观看| 成人免费观看视频高清| 亚洲av福利一区| 美女cb高潮喷水在线观看| 亚洲欧美色中文字幕在线| 高清黄色对白视频在线免费看| 国产男人的电影天堂91| 美女国产高潮福利片在线看| 人妻一区二区av| 国产精品一国产av| 亚洲成人手机| 男人添女人高潮全过程视频| 亚洲精品自拍成人| 黄色毛片三级朝国网站| 国产免费又黄又爽又色| 国产精品99久久久久久久久| 精品国产一区二区久久| 老司机亚洲免费影院| 精品一区二区三卡| 91国产中文字幕| 欧美日韩视频高清一区二区三区二| 日本黄色片子视频| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| av女优亚洲男人天堂| 99久久精品一区二区三区| freevideosex欧美| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美 | 老司机亚洲免费影院| 免费人成在线观看视频色| 久久免费观看电影| 亚洲,一卡二卡三卡| 999精品在线视频| 精品人妻熟女毛片av久久网站| 又大又黄又爽视频免费| 简卡轻食公司| 国产在线免费精品| 亚洲精品乱久久久久久| 99热这里只有是精品在线观看| 欧美人与善性xxx| 美女主播在线视频| 老司机亚洲免费影院| 欧美变态另类bdsm刘玥| 少妇丰满av| 午夜91福利影院| 免费少妇av软件| 纵有疾风起免费观看全集完整版| 一级二级三级毛片免费看| 亚洲精品456在线播放app| 国产在线免费精品| 国产精品免费大片| 超碰97精品在线观看| 看十八女毛片水多多多| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 久久久久久久久久成人| 亚洲av.av天堂| 中文乱码字字幕精品一区二区三区| 久久久欧美国产精品| 欧美精品一区二区免费开放| 午夜福利影视在线免费观看| 亚洲精品久久成人aⅴ小说 | 青春草国产在线视频| 91精品三级在线观看| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 大又大粗又爽又黄少妇毛片口| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 2022亚洲国产成人精品| 18禁在线无遮挡免费观看视频| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 日韩成人伦理影院| 色婷婷av一区二区三区视频| av女优亚洲男人天堂| 色5月婷婷丁香| 日韩中字成人| av国产久精品久网站免费入址| 国产色婷婷99| 只有这里有精品99| 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| 母亲3免费完整高清在线观看 | 国产 一区精品| 99久久综合免费| 亚洲国产毛片av蜜桃av| 中文天堂在线官网| 亚洲国产精品一区三区| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 少妇的逼好多水| 天堂俺去俺来也www色官网| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 精品人妻熟女av久视频| 国产成人精品在线电影| 青春草亚洲视频在线观看| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 国产老妇伦熟女老妇高清| 99国产精品免费福利视频| 国产一区二区在线观看av| 亚洲国产精品成人久久小说| 精品酒店卫生间| 欧美精品国产亚洲| 18禁观看日本| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 一区二区日韩欧美中文字幕 | 国产精品人妻久久久影院| 丰满饥渴人妻一区二区三| 国产精品.久久久| 欧美bdsm另类| 久久人人爽人人片av| 看十八女毛片水多多多| 美女xxoo啪啪120秒动态图| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 性色avwww在线观看| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 大片免费播放器 马上看| 午夜视频国产福利| av免费在线看不卡| 久热久热在线精品观看| 日韩一本色道免费dvd| 日日爽夜夜爽网站| 中国美白少妇内射xxxbb| 国产成人91sexporn| 最近2019中文字幕mv第一页| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 日韩视频在线欧美| 七月丁香在线播放| 亚洲国产成人一精品久久久| 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 久久av网站| 日韩中文字幕视频在线看片| 欧美 日韩 精品 国产| 免费观看在线日韩| 嫩草影院入口| 不卡视频在线观看欧美| 亚洲欧洲精品一区二区精品久久久 | 看十八女毛片水多多多| 久久久精品94久久精品| 亚洲图色成人| 国产黄频视频在线观看| 亚洲欧美中文字幕日韩二区| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人免费观看视频高清| 人人澡人人妻人| 又黄又爽又刺激的免费视频.| freevideosex欧美| 精品一区二区三区视频在线| 亚洲成人av在线免费| 亚洲情色 制服丝袜| 国产一区有黄有色的免费视频| 亚洲美女黄色视频免费看| 性色avwww在线观看| 高清视频免费观看一区二区| 伦理电影免费视频| 亚洲丝袜综合中文字幕| xxx大片免费视频| 晚上一个人看的免费电影| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 欧美人与性动交α欧美精品济南到 | 这个男人来自地球电影免费观看 | 欧美精品一区二区免费开放| 午夜激情福利司机影院| 亚洲精品美女久久av网站| 国产精品无大码| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 国产精品国产三级专区第一集| 春色校园在线视频观看| 女性生殖器流出的白浆| 91在线精品国自产拍蜜月| 日韩欧美一区视频在线观看| xxx大片免费视频| 自线自在国产av| 只有这里有精品99| 韩国av在线不卡| 精品熟女少妇av免费看| 人妻人人澡人人爽人人| 国产白丝娇喘喷水9色精品| 成人影院久久| 两个人免费观看高清视频| 亚洲国产精品专区欧美| 香蕉精品网在线| 亚洲精品亚洲一区二区| 简卡轻食公司| 我的老师免费观看完整版| 黄色毛片三级朝国网站| 黄色配什么色好看| 观看美女的网站| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| 亚洲图色成人| 国产欧美日韩综合在线一区二区| 美女视频免费永久观看网站| 国产精品一国产av| 亚洲成人一二三区av| 国产精品 国内视频| 2021少妇久久久久久久久久久| 看免费成人av毛片| 色视频在线一区二区三区| av视频免费观看在线观看| 大码成人一级视频| 国产精品麻豆人妻色哟哟久久| 观看av在线不卡| 久久精品国产亚洲网站| 男女边摸边吃奶| 在线 av 中文字幕| 两个人的视频大全免费| 五月天丁香电影| 亚洲成人av在线免费| 国产av国产精品国产| 97超碰精品成人国产| 亚洲内射少妇av| 久久久a久久爽久久v久久| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 亚洲国产精品成人久久小说| 交换朋友夫妻互换小说| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 国产精品 国内视频| 五月天丁香电影| 全区人妻精品视频| 一区二区三区乱码不卡18| 五月开心婷婷网| 18禁在线播放成人免费| kizo精华| 丰满乱子伦码专区| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 美女中出高潮动态图| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 美女主播在线视频| 国产爽快片一区二区三区| 国产精品无大码| 韩国高清视频一区二区三区| 欧美精品一区二区免费开放| 亚洲成人一二三区av| 免费高清在线观看视频在线观看| 建设人人有责人人尽责人人享有的| 国产永久视频网站| 国产精品99久久99久久久不卡 | 国产一级毛片在线| 91国产中文字幕| a级毛色黄片| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 性色avwww在线观看| 久久久久久久久久人人人人人人| 99九九在线精品视频| 成人亚洲精品一区在线观看| 王馨瑶露胸无遮挡在线观看| 99视频精品全部免费 在线| 亚洲色图综合在线观看| 欧美97在线视频| 亚洲av福利一区| 午夜影院在线不卡| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 国产成人精品婷婷| 一区二区日韩欧美中文字幕 | 午夜免费鲁丝| 看免费成人av毛片| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 中文字幕精品免费在线观看视频 | 成人国产av品久久久| 亚洲欧美成人综合另类久久久| 美女视频免费永久观看网站| 最新中文字幕久久久久| 97在线人人人人妻| 色吧在线观看| 日本欧美视频一区| 97在线视频观看| 少妇的逼水好多| 精品一区在线观看国产| 亚洲国产精品999| 18禁在线播放成人免费| 成年人免费黄色播放视频| 欧美日韩视频高清一区二区三区二| 伦精品一区二区三区| 日韩成人av中文字幕在线观看| 亚洲在久久综合| 国产黄片视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 国产成人a∨麻豆精品| 免费看光身美女| 精品少妇久久久久久888优播| 免费看光身美女| 国精品久久久久久国模美| 女性生殖器流出的白浆| 一区二区三区乱码不卡18| 狠狠婷婷综合久久久久久88av| 久久国内精品自在自线图片| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| a级毛色黄片| 日本av免费视频播放| 超碰97精品在线观看| 69精品国产乱码久久久| 伊人久久国产一区二区| 欧美精品国产亚洲| 亚洲在久久综合| 制服人妻中文乱码| 看免费成人av毛片| 午夜老司机福利剧场| 免费观看av网站的网址| 国产成人aa在线观看| 汤姆久久久久久久影院中文字幕| 超碰97精品在线观看| 少妇被粗大猛烈的视频| 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 日日啪夜夜爽| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久亚洲中文字幕| 国产精品免费大片| 国产毛片在线视频| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 国产精品嫩草影院av在线观看| 母亲3免费完整高清在线观看 | 国产综合精华液| 久久久久国产网址| 午夜91福利影院| 国产成人精品久久久久久| av国产久精品久网站免费入址| 狠狠婷婷综合久久久久久88av| 美女国产高潮福利片在线看| 大香蕉久久成人网| 中文字幕亚洲精品专区| 美女国产视频在线观看| 亚洲精品久久成人aⅴ小说 | av视频免费观看在线观看| 黑人欧美特级aaaaaa片| 国产精品一区二区在线观看99| 婷婷色综合www| 中文天堂在线官网| 免费看av在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人精品一区久久| 色哟哟·www| 国产毛片在线视频| 亚洲婷婷狠狠爱综合网| 亚洲精品aⅴ在线观看| a级毛色黄片| 99热国产这里只有精品6| 亚洲图色成人| 亚洲内射少妇av| 亚洲国产精品999| 91精品国产国语对白视频| 高清午夜精品一区二区三区| a 毛片基地| 中文欧美无线码| 久久精品国产亚洲av天美| 五月玫瑰六月丁香| 亚洲欧美成人精品一区二区| 毛片一级片免费看久久久久| 午夜福利网站1000一区二区三区| 久久99热6这里只有精品| 视频区图区小说| 精品熟女少妇av免费看| av女优亚洲男人天堂| 大香蕉久久成人网| 99热这里只有精品一区| 国产精品人妻久久久影院| 18+在线观看网站| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| 国产成人aa在线观看| 成人黄色视频免费在线看| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久影院| kizo精华| 好男人视频免费观看在线| 亚洲av日韩在线播放| 日韩一区二区三区影片| 亚洲天堂av无毛| 亚洲精品一区蜜桃| 免费av中文字幕在线| 免费看光身美女| 插阴视频在线观看视频| 最新的欧美精品一区二区| 中文字幕制服av| 亚洲一级一片aⅴ在线观看| 久久毛片免费看一区二区三区| 国产高清有码在线观看视频| 久久人妻熟女aⅴ| 亚洲精品成人av观看孕妇| 3wmmmm亚洲av在线观看| 国产色婷婷99| 久久99热这里只频精品6学生| 美女脱内裤让男人舔精品视频| 日韩 亚洲 欧美在线| av播播在线观看一区| 十八禁高潮呻吟视频| 多毛熟女@视频| 成年人免费黄色播放视频| 99久久精品国产国产毛片| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 免费久久久久久久精品成人欧美视频 | 在线观看人妻少妇| 青春草亚洲视频在线观看| 免费av不卡在线播放| 熟女人妻精品中文字幕| 免费播放大片免费观看视频在线观看| 男女无遮挡免费网站观看| 欧美日韩视频高清一区二区三区二| 99精国产麻豆久久婷婷| 国产日韩欧美视频二区| 九九久久精品国产亚洲av麻豆| 久热这里只有精品99| 久久青草综合色| 午夜福利在线观看免费完整高清在| 建设人人有责人人尽责人人享有的| 精品久久久久久电影网| 两个人免费观看高清视频| 91久久精品国产一区二区成人| 人妻夜夜爽99麻豆av| 嘟嘟电影网在线观看| 五月玫瑰六月丁香| 精品人妻熟女毛片av久久网站| 久久国内精品自在自线图片| 国产午夜精品久久久久久一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 成人影院久久| 九九在线视频观看精品| 丰满饥渴人妻一区二区三| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 亚洲av国产av综合av卡| 乱人伦中国视频| 狂野欧美激情性xxxx在线观看| 久久女婷五月综合色啪小说| 99热6这里只有精品| 亚洲伊人久久精品综合| 另类亚洲欧美激情| 美女内射精品一级片tv| 精品人妻偷拍中文字幕| 乱人伦中国视频| 成人影院久久| 一级毛片黄色毛片免费观看视频| 欧美3d第一页| 中文精品一卡2卡3卡4更新| 亚洲,欧美,日韩| 大香蕉97超碰在线| 观看av在线不卡| 亚洲丝袜综合中文字幕| 热re99久久国产66热| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 人人澡人人妻人| 日本黄大片高清| 久久久久久久大尺度免费视频| 日本猛色少妇xxxxx猛交久久| 久久久国产精品麻豆| 亚洲人与动物交配视频| 菩萨蛮人人尽说江南好唐韦庄| 97超碰精品成人国产| 婷婷色综合www| 一区在线观看完整版| 美女中出高潮动态图| 国产免费视频播放在线视频| 视频在线观看一区二区三区| 乱码一卡2卡4卡精品| 色视频在线一区二区三区| 成人毛片60女人毛片免费| 中文字幕制服av| 丰满乱子伦码专区| 插逼视频在线观看| 妹子高潮喷水视频| xxx大片免费视频| 少妇高潮的动态图| 秋霞在线观看毛片| 黑人高潮一二区| 日韩,欧美,国产一区二区三区| 国产老妇伦熟女老妇高清| 免费播放大片免费观看视频在线观看| 亚洲人成网站在线观看播放| 一本久久精品| 亚洲熟女精品中文字幕| 日韩一区二区视频免费看| 午夜91福利影院| 如日韩欧美国产精品一区二区三区 | 久久99一区二区三区| 成年av动漫网址| 男女国产视频网站| 99国产综合亚洲精品| 日本黄色片子视频| 一边亲一边摸免费视频| 欧美最新免费一区二区三区| 天堂俺去俺来也www色官网| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品.久久久| 国产视频内射| 日韩中文字幕视频在线看片| 女人久久www免费人成看片| 人妻系列 视频| 爱豆传媒免费全集在线观看| 中文字幕久久专区| 毛片一级片免费看久久久久| 国产黄频视频在线观看| 一级毛片aaaaaa免费看小| 午夜老司机福利剧场| 欧美人与性动交α欧美精品济南到 | 天堂8中文在线网| 国产成人精品无人区| 日日啪夜夜爽| 久久精品久久精品一区二区三区| 亚洲精品乱码久久久久久按摩| 又黄又爽又刺激的免费视频.| 久久国产亚洲av麻豆专区| 国产黄频视频在线观看| 久久婷婷青草| 亚洲综合精品二区|