• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ZSM-5/MAPO Composite Catalyst for Converting Methanol to Ole fins in a Two-Stage Unit with a Dimethyl Ether Pre-Reactor

    2018-04-24 06:08:56WangLinWangZhengJiaoHongqiaoYongXiaojingLuoChuntaoLiuDianhua
    中國煉油與石油化工 2018年1期

    Wang Lin; Wang Zheng; Jiao Hongqiao; Yong Xiaojing; Luo Chuntao; Liu Dianhua

    (1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237; 2. State Key Laboratory of High-ef ficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021; 3. Coal to Liquids Chemical Research and Development Center, Shenhua Ningxia Coal Industry Group, Yinchuan 750411)

    1 Introduction

    The conversion of methanol to ole fins (MTO) has been the focus of many studies over the years because this method can produce the important base chemicals ethylene and propylene from carbon resources other than crude oil, such as natural gas, coal, or biomass[1-4]. SAPO-34 and ZSM-5 are the only catalysts applied in the industry.The former is used in the fluidized bed reactors designed by the Dalian Institute of Chemical Physics[4]and UOP/Hydro[5], and the latter is used in fixed-bed reactors designed by Lurgi[6]and ExxonMobil[7].

    In Lurgi’s process, methanol is converted to hydrocarbons by using two fixed-bed reactors and two catalysts.Methanol is placed in an adiabatic dimethyl ether (DME)pre-reactor, where it is converted to DME and water over the Al2O3-type catalysts. The methanol–water–DME stream is routed to the main reactor with steam and recycled olefins. The conversion of methanol and DME over the ZSM-5-type catalysts reaches more than 99%. The design of a two-stage unit with DME pre-reactor not only can reduce the load of a single catalyst and improve the conversion of methanol but can also decrease the amount of heat released by the catalyst during the reaction. In addition, the catalysts exhibit low single-pass yield for light ole fins and high yield for C5+ hydrocarbons. Hence,several ole fin-containing streams can be sent back to the main synthesis loop for conversion of recycled stream to produce additional light ole fins, which requires high energy consumption and increased operating costs. An eco-

    The narrow size of zeolite micropores restricts the mass transfer and diffusion of large molecules in the reaction,leading to low target product yield and even rapid deactivation. To overcome the mass transfer problem, scholars have proposed to decrease the diffusion length and the number of bulky molecules[8-10]by synthesizing stable nanosheets, zeolite nanocrystals, hierarchical zeolites, or composite zeolites.

    In heterogeneous catalysis, composite zeolites have attracted an increasing attention because of their compensation for lack of a single catalyst. As one of the most wellknown catalysts for the MTO reaction, the ZSM-5 zeolite exhibits high propylene yield and long catalyst life but has low yield of total light ole fins and high yield of C5+hydrocarbons due to their acidity and pore properties.Moreover, molecular sieves with AEI and AFI framework topology (MAPO molecular sieve, such as SAPO-5 and SAPO-18) exhibit excellent performance for catalytic cracking of heavy olefins to light olefins[11-14]. Thus, the combination of ZSM-5 zeolite and MAPO molecular sieve might compensate for the limitations of ZSM-5 and could form an optimal catalyst to satisfy the increasing market demand for ethylene, propylene, and butadiene.

    Composite catalysts have been widely investigated[15-23].Bashyam, et al.[17]reported a new class of low-cost(non-precious metal)/(heteroatomic polymer) nanocomposite catalysts for fabricating a PEFC cathode with high oxygen-reduction activity and good performance durability. Razavian, et al.[20]synthesized two types of zeolitic composite systems with binary hierarchical structures comprising ZSM-5 and SAPO-34 molecular sieves;these systems were used as catalytic carriers for propane dehydrogenation reaction to promote the physicochemical properties of ZSM-5 support, increase the propylene yield, and reduce the formation of light compounds.Dagle, et al.[22]evaluated the Pd/ZnO/Al2O3–HZSM-5 catalytic system for direct synthesis of the gasoline-range hydrocarbons from syngas, and the results showed that the bifunctional catalyst comprising PdZn and zeolitic acid sites could provide the required catalytically active sites. Chae, et al.[23]also developed the combination of ZSM-5 and SAPO-34, and the composites exhibited high catalytic performance for the MTO reaction.

    In this study, we combined the ZSM-5 zeolite and the molecular sieve with AEI and AFI framework topology to produce a desired catalyst with high selectivity to olefins, as a result of the adjusted acid properties of ZSM-5 and the cracking properties of MAPO molecular sieve.In order to improve the catalytic activity and stability for MTP, the composite zeolite was also loaded with 3%of P. Moreover, the catalytic property of the catalysts was evaluated in a two-stage unit provided with a DME pre-reactor operating under conditions similar to those in an industrial fixed-bed unit.

    2 Experimental

    2.1 Preparation of catalysts

    MAPO molecular sieve was synthesized according to the method described in literature[23]. The molar composition of the synthesis mixture was composed of 1.0Al2O3:1.3P2O5: 1.2TEA : 300H2O.

    The template-free commercial HZSM-5 powder (SiO2/Al2O3= 120, supplied by the Catalyst Plant of Nankai University, China) was added to the synthetic gel of MAPO molecular sieve (with the mass ratio of ZSM-5 and the synthetic gel of MAPO equating to 1:10) to prepare the ZSM-5/MAPO composite zeolite (with the mass ratio of ZSM-5/MAPO being equal to 90:10).

    2.2 Characterization

    The X-ray diffraction (XRD) patterns of the samples were recorded on a Rigaku D/MAX 2200PC diffractometer using Cu Kα radiation at an accelerating voltage of 40 kV and a current of 40 mA with a scanning rate of 4°/min.The scanning electron microscopy (SEM) images of the samples were obtained using a KYKY-2800B microscope for analyzing the crystal morphology. The IR spectra were recorded on a Tensor 27 FTIR spectrometer (Brooke,Germany) with a resolution of 4 cm?1. The acid amount and acid strength of the samples were determined by temperature-programmed desorption of ammonia (NH3–TPD,Quantachrome, USA) with an on-line thermal conductivity detector. The BET specific surface area and pore struc-ture of the samples were determined by nitrogen adsorption–desorption analysis at liquid nitrogen temperature(77 K) by using an automatic Micromeritics ASAP 2420 apparatus.

    2.3 Catalyst activity test

    The MTO reaction was conducted in an automatic fixedbed microreactor equipped with two reaction tubes (L =500 mm, Di=19 mm) operating at 480 °C and under atmospheric pressure. The first reaction tube was filled with 2 g of the Al2O3-type catalysts and used as a pre-reactor for converting methanol to DME at a constant reaction temperature of 300 °C. The equilibrium between MeOH and DME was rapidly obtained in this reactor. The second reaction tube, namely the MTO reactor, converted the mixture of methanol and DME to mainly light ole fins, along with some paraf fins and aromatics, at a constant reaction temperature of 480 °C. The weight hourly space velocity(WHSV) of methanol was 1 h?1, the catalyst loading was 2 g, and the introduced water/methanol molar ratio was 0.7. The total products formed thereby were analyzed using an on-line gas chromatograph equipped with a flame ionization detector and an HP PLOT-Q capillary column(30 m × 0.32 mm × 0.5 μm). The conversion and product selectivity can be calculated as follows:

    where Con. and xirepresent the methanol conversion and product selectivity, respectively. I0(mol) is the initial amount of methanol, I (mol) is the amount of methanol in the mixture of the reactor ef fluents, and Ii(mol) is the amount of methanol transformed into component i.

    3 Results and Discussion

    3.1 XRD analysis

    The phase transformation was investigated by XRD and IR analyses. Figure 1 shows the XRD patterns of the samples. The XRD patterns of ZSM-5/MAPO composite catalyst showed that the composite catalyst exclusively consisted of the characteristic diffraction peaks for MFI,AEI and AFI. This finding indicated that the composite zeolites were made up of ZSM-5, AlPO-18 or SAPO-18,AlPO-5 or SAPO-5, which were consistent with previously published results[24-25].

    And silicon may come from the framework of ZSM-5 zeolite. Hence, further increase in the heating time could lead to a decreased formation of AFI molecular sieve and an enhanced formation of AEI molecular sieve[26]. In contrast to those of MAPO molecular sieve, the XRD patterns of the composites exhibited the weak intensity peaks,which were characteristic of the AFI molecular sieve, and the high-intensity peaks, which were characteristics of the AEI molecular sieve. This finding might explain that the addition of ZSM-5 was conducive to the formation of AEI molecular sieve. The mass of AFI molecular sieve,AEI molecular sieve, and ZSM-5 zeolite incorporated in the composites was 4%, 6%, and 90%, respectively, and could be calculated according to Eqs. (3) and (4). After the composites were modified by NH4H2PO4, the XRD patterns of the samples showed no obvious changes. No peak of impurities was detected, and the intensity of the diffraction peaks decreased. This phenomenon is mainly attributed to the framework defects caused by dealumination during P modification[27].

    where w is the component content in the composites; F is the integral intensity of the highest characteristic peaks for various samples; K is the ratio of the highest characteristic peaks for samples and Al2O3when they are mixed at a mass ratio of 1:1; and a and b represent the a and b phases, respectively.

    Figure 1 X-ray diffraction patterns of samples a—ZSM-5; b—MAPO; c—ZSM-5/MAPO; d—3%P-ZSM-5/MAPO

    3.2 SEM analysis

    The SEM images (Figure 2) indicated that the commercial ZSM-5 catalyst was composed of fine ZSM-5 particles,with a crystal size of 1–3 μm. The MAPO molecular sieve exhibited clavate, square prism, and hexagonal-prism-like morphologies, which were characteristic of the AFI and AEI molecular sieves[28-29]. The morphology of ZSM-5 was not significantly altered. However, the particle size increased, and the morphology of the MAPO molecular sieve significantly changed from clavate and hexagonal prism to square prism in the ZSM-5/MAPO composite catalyst. This observation was in agreement with the XRD results of the composites showing weak peaks characteristic of the AFI molecular sieve and intense peaks characteristic of the AEI molecular sieve.

    Figure 2 SEM images of ZSM-5 (a), MAPO (b), and ZSM-5/MAPO (c)

    3.3 IR analysis

    Figure 3 shows the IR spectra of ZSM-5, MAPO molecular sieve, and the composites. In addition to the most characteristic IR bands of ZSM-5 zeolite, the AFI and AEI molecular sieves, the composites exhibited two new IR bands at 732 cm?1and 786 cm?1. The former was attributed to the change in the oxygen symmetric stretching vibration of phosphoric (aluminum) bonds in the AFI molecular sieve, and the latter is attributed to the shift in the wavenumber from 795 cm?1to 786 cm?1[30]. This finding was also consistent with the XRD results.

    Figure 3 IR spectra of ZSM-5 (a), MAPO (b) and ZSM-5/MAPO (c)

    3.4 NH3-TPD analysis

    Figure 4 illustrates the temperature-programmed desorption of ammonia (NH3-TPD) of the samples. All samples exhibited a typical NH3-TPD spectrum with two temperature peaks within 150―350 °C and 350―550 °C, corresponding to weak and strong acid sites, respectively. The peak areas represented the amount of NH3eluted from the weak and strong acid sites or the number of weak and strong acid sites, respectively. The acid strength and amount of acid sites for ZSM-5 exceeded those of other samples. However, to our surprise, the MAPO molecular sieve also showed some acidity possibly due to the modification of the MAPO molecular sieve by other atoms in the raw materials. This finding was consistent with the outcome of catalytic reaction .

    The number of strong acid sites and weak acid sites in the composites obviously decreased compared with those in ZSM-5. The high- and low-temperature peaks shifted from 430 °C to 410 °C and from 260 °C to 205 °C,respectively (Table 1). The amount of the total acid sites significantly decreased after the introduction of the MAPO molecular sieve. Moreover, the intensity and temperature of the peaks continued to decrease and shifted toward low temperatures. Hence, the concentration and strength of strong acid sites were decreased by the introduction of P, as evidenced by the high-temperature peak.In generally, the P species, such as polyphosphates, shortchain polyphosphates, and pyrophosphates, could form in the channels of molecular sieves after P modification.Most of these species could interact with both acidic and nonacidic hydroxyl groups, especially at the strong acid sites, leading to partial collapse of the molecular sieve framework[31-32]. Furthermore, weak acid sites are considered to be capable of promoting the generation of DME from methanol, and meanwhile, the strong acid sites can easily lead to side reactions, which can produce heavy hydrocarbons that can negatively affect the stability of the catalyst[33].

    Figure 4 NH3-TPD of ZSM-5 (a), ZSM-5/MAPO (b),MAPO (c) and 3%P-ZSM-5/MAPO (d)

    Table 1 NH3-TPD results of the catalysts

    3.5 Textural property analysis

    The textural properties of the catalyst samples are listed in Table 2. The composites showed higher specific surface area (BET and Langmuir surface area), total pore volume (VT), and average pore diameter (DAA) but lower micropore volume (VM) as compared with ZSM-5. This finding could be attributed to the destruction or overlay of some micropores in ZSM-5 during synthesis.Moreover, the average pore size significantly increased after P modification because of the production of mesopores after washing out of the amorphous species in the crystals and/or the dealumination during P modification.The generation of large pores would be bene ficial to the mass transfer.

    Table 2 Textural properties of the catalysts

    3.6 Catalytic performance

    The composites are the key factor in the MTO process because they not only can significantly in fluence the product distribution but can also enhance the selectivity to ole fins[34]. As shown in Figure 5, all catalysts, except the MAPO molecular sieve, exhibited complete methanol conversion, but their product yields significantly differed. ZSM-5 exhibited high selectivity to C2-4(21.8%)and C5+ (21.4%) because of its relatively large pore size and strong acidity, resulting in the occurrence of several side reactions. The MAPO molecular sieve with AEI and AFI framework topology exhibited low selectivity to C5+(4.0%) and partial methanol conversion because of its catalytic property for cracking macromolecules and weak acidity, respectively. Compared with ZSM-5 and MAPO molecular sieve, the ZSM-5/MAPO composite catalyst exhibited higher activity and selectivity to C2-4=(84.0%),C2=(36.3%), and C3=(36.2%) along with a complete methanol conversion. Furthermore, the 3%P-ZSM-5/MAPO composite catalyst showed a further increase in the selectivity to C3=(52.1%) and C2-4=(83.1%) and in the propylene to ethylene ratio (P/E, 5.8) along with a complete methanol conversion; hence, this composite was more suitable for the MTP process than other samples tested.

    Figure 5 MTO activity of the catalysts(Reaction conditions: T = 480 °C, and WHSV = 1 h?1, with the results obtained after 5 h of reaction.)

    The non-desired products in the MTO reaction were produced by side reactions on the acid sites, and such reactions could occur due to the strong acidity of catalysts.In addition, the MAPO molecular sieve could crack C5+to light olefins, which in turn would enhance the mass transfer and decrease the acid sites, thereby suppressing the side reactions and leading to a high selectivity to light ole fins.

    The C5+ components and alkanes in the MTO reaction mainly originate from the side reactions because of unsuitable concentration and strength of acid sites. Polymethylbenzenes, which are hydrocarbon-pool intermediates dissociating light alkenes[35-36], can also be converted to polycyclic aromatics on stream and finally to coke[37-38].Thus, a suitable amount of active hydrocarbon pool species and a low amount of aromatics are required for the MTP reaction. The selectivity of the ZSM-5 catalyst to C5+ hydrocarbons was very high (Figure 5), which could promote the coke formation and accelerate the catalyst deactivation.

    The concentration and strength of acid sites decreased in the MAPO molecular sieve, suppressing the hydride transfer and cyclization, which could eventually lead to the formation of aromatics. The MAPO molecular sieve could also crack C5+ components into light products. So we can obtain a low C5+ amount and high selectivity to ole fins, which are crucial for minimal coke formation and high catalyst stability in the MTO reaction.

    The appropriate concentration and strength of acid sites,which are crucial for the selectivity of propylene and the stability of catalysts in the MTP reaction, can be achieved by modification with P[39].

    4 Conclusions

    A ZSM-5/MAPO composite catalyst was synthesized through a conventional hydrothermal method, followed by P modification. The conversion of methanol to ole fins over the composites was investigated in a fixed-bed process with a two-stage unit similar to an industrial reactor.The first reaction tube filled with the Al2O3-type catalyst was a pre-reactor for converting methanol into DME and water. The second reaction tube was a MTO reactor for converting a mixture of methanol and DME to hydrocarbons over the composite catalyst. The composites exhibited high cooperative property: firstly, the reduction of the acidity over ZSM-5 effectively restrained side reactions because of the MAPO molecular sieve covering;and secondly, the C5+ components were cracked further by MAPO molecular sieve. The mass transfer was also enhanced due to the generation of small molecules. Thus,the ZSM-5/MAPO composite catalyst exhibited high selectivity to C2-4=(84.0%) and low selectivity to C5+(6.3%). The characterization results demonstrated that the composites led to the partial elimination of the strong acid sites on the ZSM-5 catalyst, thereby enhancing the shape selectivity for ole fins. The catalytic selectivity and stability in terms of propylene production can be further improved by modification with P.

    Acknowledgement:This work was financially supported by the National International Cooperation S & T Project of China (No.2015DFA40660).

    [1] Butter S A. Production of chemicals from methanol: I. Low molecular weight olefins[J]. Journal of Catalysis, 1980,61(1): 155–164

    [2] Chang C D. Methanol conversion to light olefins[J].Catalysis Reviews, 1984, 26(3/4): 323–345

    [3] Stocker M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Materials, 1999, 29(1/2): 3–48

    [4] Tian P, Wei Y, Ye M, et al. Methanol to olefins (MTO):From fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922–1938

    [5] Chen J Q, Bozzano A, Glover B, et al. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catalysis Today, 2005,106(1/4): 103–107

    [6] Koempel H, Liebner W. Lurgi’s methanol to propylene(MTP?) report on a successful commercialisation[J].Studies in Surface Science & Catalysis, 2007, 167: 261–267

    [7] Fleisch T H, Sills R A. Large-scale gas conversion through oxygenates: Beyond GTL-FT[J]. Studies in Surface Science & Catalysis, 2004, 147(4): 31–36

    [8] Na K, Jo C, Kim J, et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science, 2011,333(6040): 328

    [9] Ng E P, Chateigner D, Bein T, et al. Capturing ultrasmall EMT zeolite from template-free systems.[J]. Science,2012, 335(6064): 70–73

    [10] Zhang X, Liu D, Xu D, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science,2012, 336(6089): 1684–1687

    [11] Kazusa Terasaka H I A X. Control of morphology and acidity of SAPO-5 for the methanol-to- olefins (MTO)reaction[J]. Journal of Advanced Chemical Engineering,2015, 5(4): 138–144

    [12] Nazari M, Behbahani R M, Moradi G, et al. A facile synthesis route for modifying the catalytic performance of SAPO-18 in MTO process[J]. Journal of Porous Materials,2016, 23(4): 1037–1046

    [13] Gayubo A G, Aguayo A T, Alonso A, et al. Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst[J]. Catalysis Today, 2005, 106(1/4):112–117

    [14] Chen J, Thomas J M. MAPO-18 (M= Mg, Zn, Co): A new family of catalysts for the conversion of methanol to light olefins[J]. Journal of The Chemical Society, Chemical Communications, 1994(5): 603–604

    [15] Andersen N I, Serov A, Atanassov P. Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media[J]. Applied Catalysis B-environmental, 2015, 163: 623–627

    [16] Faungnawakij K, Tanaka Y, Shimoda N, et al. Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina[J]. Applied Catalysis B-Environmental, 2007,74(1): 144–151

    [17] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006,443(7107): 63–66

    [18] Wang W, Serp P, Kalck P. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method[J]. Applied Catalysis B-Environmental, 2005, 56(4): 305–312

    [19] Liu W, Flytzanistephanopoulos M. Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts[J]. Journal of Catalysis,1995, 153(2): 304–316

    [20] Razavian M, Fatemi S. Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process[J]. Microporous and Mesoporous Materials, 2015,201: 176–189

    [21] Li X, Xia T, Xu C, et al. Synthesis and photoactivity of nanostructured CdS–TiO2composite catalysts[J]. Catalysis Today, 2014, 225: 64–73

    [22] Dagle R A, Lizarazoadarme J, Dagle V L, et al. Syngas conversion to gasoline-range hydrocarbons over Pd/ZnO/Al2O3and ZSM-5 composite catalyst system[J]. Fuel Processing Technology, 2014, 123: 65–74

    [23] Chae H, Song Y, Jeong K, et al. Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4): 600–603

    [24] Wendelbo R, Akporiaye D, Andersen A, et al. Synthesis,characterization and catalytic testing of SAPO-18,MgAPO-18, and ZnAPO-18 in the MTO reaction[J].Applied Catalysis A-General, 1996, 142(2): 1197–1207

    [25] Girnus I, Jancke K, Vetter R, et al. Large AlPO4-5 crystals by microwave heating[J]. Zeolites, 1995, 15(1): 33–39

    [26] Huang Y, Demko B A, Kirby C W. Investigation of the evolution of intermediate phases of AlPO4-18 molecular sieve synthesis[J]. Chemistry of Materials, 2003, 15(12):2437–2444

    [27] Zhao G, Teng J, Xie Z, et al. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. Journal of Catalysis, 2007, 248(1):29–37

    [28] Carreon M L, Li S, Carreon M A. AlPO-18 membranes for CO2/CH4separation[J]. Chemical Communications, 2012,48(17): 2310–2312

    [29] Naydenov V, Tosheva L, Antzutkin O N, et al. Meso/macroporous AlPO-5 spherical macrostructures tailored by resin templating[J]. Microporous and Mesoporous Materials, 2005, 78(2): 181–188

    [30] Zhang Zhe Z B. Preparation and catalytic cracking activity of ZSM-5(core)/AlPO-4-5(shell) binary structure zeolite[J]. Chinese Journal of Catalysis, 2003, 24(11):856–860

    [31] Lischke G, Eckelt R, Jerschkewitz H G, et al. Spectroscopic and physicochemical characterization of P-modified H-ZSM- 5[J]. Journal of Catalysis, 1991, 132(1): 229–243

    [32] Xue N, Chen X, Lei N, et al. Understanding the enhancement of catalytic performance for ole fin cracking:Hydrothermally stable acids in P/HZSM-5[J]. Journal of Catalysis, 2007, 248(1): 20–28

    [33] Ono. Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites[J]. Journal of Catalysis,1992, 34(3): 179–226

    [34] Keil F J, Hinderer J, Garayhi A R. Diffusion and reaction in ZSM-5 and composite catalysts for the methanol-toole fins process[J]. Catalysis Today, 1999, 50(3): 637–650.[35] Olsbye U, Bjorgen M, Svelle S, et al. Mechanistic insight into the methanol-to-hydrocarbons reaction[J]. Catalysis Today, 2005, 106(1): 108–111

    [36] Hunger M, Wang W. Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique[J]. Chemical Communications, 2004, 10(5): 584–585

    [37] Bjorgen M, Olsbye U, Petersen D, et al. The methanolto-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta[J]. Journal of Catalysis,2004, 221(1): 1–10.

    [38] Marcus D M, Song W, Ng L L, et al. Aromatic hydrocarbon formation in HSAPO-18 catalysts: Cage topology and acid site density[J]. Langmuir, 2002, 18(22) :8386–8391

    [39] Liu J, Zhang C, Shen Z, et al. Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst[J].Catalysis Communications, 2009, 10(11): 1506–1509

    久久精品国产清高在天天线| 人成视频在线观看免费观看| 国产av一区二区精品久久| 日韩中文字幕欧美一区二区| 久久久久久人人人人人| 久久久精品大字幕| 欧洲精品卡2卡3卡4卡5卡区| 99久久综合精品五月天人人| 国产成人aa在线观看| 久久久久九九精品影院| 日韩大码丰满熟妇| 亚洲精华国产精华精| 亚洲国产精品成人综合色| 亚洲av熟女| 99国产综合亚洲精品| 精品久久久久久久毛片微露脸| 日韩三级视频一区二区三区| 国产精品久久久人人做人人爽| 国产精品香港三级国产av潘金莲| 国产又色又爽无遮挡免费看| 国产高清激情床上av| 日韩 欧美 亚洲 中文字幕| 神马国产精品三级电影在线观看 | 女人高潮潮喷娇喘18禁视频| 少妇粗大呻吟视频| 国产一区二区三区视频了| 动漫黄色视频在线观看| 亚洲精品在线美女| 999久久久精品免费观看国产| 两个人的视频大全免费| 91字幕亚洲| 免费看a级黄色片| 亚洲片人在线观看| 亚洲男人天堂网一区| 欧美日本视频| 成人av在线播放网站| 精品欧美国产一区二区三| av福利片在线| 18禁黄网站禁片午夜丰满| 成年免费大片在线观看| 亚洲精品国产一区二区精华液| 中文字幕最新亚洲高清| 看免费av毛片| 午夜日韩欧美国产| 好看av亚洲va欧美ⅴa在| 国内精品一区二区在线观看| 白带黄色成豆腐渣| 亚洲欧美精品综合一区二区三区| 日本成人三级电影网站| 国产99白浆流出| 午夜视频精品福利| 国产精品综合久久久久久久免费| 欧美一区二区精品小视频在线| 精品电影一区二区在线| 亚洲精品一区av在线观看| 国产野战对白在线观看| 一a级毛片在线观看| 岛国视频午夜一区免费看| 麻豆国产97在线/欧美 | 19禁男女啪啪无遮挡网站| 免费高清视频大片| 长腿黑丝高跟| 哪里可以看免费的av片| 久久久国产精品麻豆| 舔av片在线| 精品国产乱码久久久久久男人| 精品免费久久久久久久清纯| 嫩草影院精品99| 国产精品久久久久久人妻精品电影| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频1000在线观看| 精品熟女少妇八av免费久了| e午夜精品久久久久久久| 特大巨黑吊av在线直播| 色综合欧美亚洲国产小说| 国产久久久一区二区三区| 色尼玛亚洲综合影院| 两个人看的免费小视频| 男男h啪啪无遮挡| 亚洲最大成人中文| 老熟妇乱子伦视频在线观看| 曰老女人黄片| 国产精品一区二区三区四区免费观看 | 变态另类丝袜制服| 长腿黑丝高跟| 麻豆国产97在线/欧美 | 可以免费在线观看a视频的电影网站| 国产区一区二久久| 成人三级做爰电影| 久久久久久久久免费视频了| 午夜日韩欧美国产| 国产熟女xx| 国产精品98久久久久久宅男小说| 国内少妇人妻偷人精品xxx网站 | 欧美日本亚洲视频在线播放| 国产在线观看jvid| 色在线成人网| 色精品久久人妻99蜜桃| 中国美女看黄片| 一本久久中文字幕| 欧美黄色淫秽网站| 欧美大码av| 久久精品亚洲精品国产色婷小说| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 亚洲 国产 在线| 亚洲欧美日韩无卡精品| 深夜精品福利| 国产精品爽爽va在线观看网站| 免费观看人在逋| 国模一区二区三区四区视频 | 久久久久国内视频| tocl精华| 久久久久性生活片| 在线播放国产精品三级| 91老司机精品| 欧美绝顶高潮抽搐喷水| 日韩中文字幕欧美一区二区| 99国产极品粉嫩在线观看| 国产高清激情床上av| 亚洲人成77777在线视频| а√天堂www在线а√下载| 一级片免费观看大全| 欧美色视频一区免费| 精品欧美一区二区三区在线| av视频在线观看入口| 岛国在线观看网站| 久久精品91蜜桃| 国产精品久久久久久亚洲av鲁大| av欧美777| 日韩三级视频一区二区三区| 在线观看美女被高潮喷水网站 | 99在线人妻在线中文字幕| 国产精品自产拍在线观看55亚洲| 嫩草影院精品99| www.www免费av| 99热6这里只有精品| 国产高清videossex| 亚洲国产欧美网| 日本成人三级电影网站| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av | 夜夜躁狠狠躁天天躁| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 啦啦啦免费观看视频1| 国产三级黄色录像| 午夜福利在线观看吧| 99久久国产精品久久久| 精品日产1卡2卡| 成人精品一区二区免费| 国语自产精品视频在线第100页| 亚洲全国av大片| 久久精品aⅴ一区二区三区四区| 淫秽高清视频在线观看| 男插女下体视频免费在线播放| 可以免费在线观看a视频的电影网站| 精品国内亚洲2022精品成人| 一二三四在线观看免费中文在| 国产男靠女视频免费网站| 五月玫瑰六月丁香| 国产精品 国内视频| 精品无人区乱码1区二区| 午夜久久久久精精品| 亚洲最大成人中文| 嫩草影视91久久| 在线永久观看黄色视频| 国产精品自产拍在线观看55亚洲| 精品欧美国产一区二区三| 亚洲国产中文字幕在线视频| 亚洲国产欧美网| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产| 免费看美女性在线毛片视频| 久久久久性生活片| 一本精品99久久精品77| 亚洲第一欧美日韩一区二区三区| xxx96com| 国产黄片美女视频| 久久人人精品亚洲av| 长腿黑丝高跟| 99riav亚洲国产免费| 亚洲精品国产一区二区精华液| 欧美日本视频| 久久久久久九九精品二区国产 | 老司机福利观看| 在线国产一区二区在线| 两个人的视频大全免费| 亚洲激情在线av| 两个人视频免费观看高清| 精品无人区乱码1区二区| 黄色a级毛片大全视频| 国产精品一区二区精品视频观看| 日韩成人在线观看一区二区三区| 亚洲中文av在线| 精品欧美国产一区二区三| 级片在线观看| 国产黄片美女视频| 18禁黄网站禁片免费观看直播| 亚洲九九香蕉| 别揉我奶头~嗯~啊~动态视频| xxxwww97欧美| 一个人观看的视频www高清免费观看 | 最近最新中文字幕大全电影3| 久热爱精品视频在线9| 国产精品野战在线观看| 国产av麻豆久久久久久久| 国产乱人伦免费视频| 男女午夜视频在线观看| 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器 | 99久久无色码亚洲精品果冻| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 欧美成人午夜精品| 美女免费视频网站| 舔av片在线| 无人区码免费观看不卡| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 99久久精品热视频| 国产精品九九99| 好男人在线观看高清免费视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 国产野战对白在线观看| 琪琪午夜伦伦电影理论片6080| 久久精品成人免费网站| 精品久久蜜臀av无| 亚洲国产欧美网| 男人舔女人的私密视频| 久久香蕉国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频| 黑人巨大精品欧美一区二区mp4| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| 国产熟女午夜一区二区三区| 国产在线精品亚洲第一网站| 亚洲欧美精品综合一区二区三区| 亚洲片人在线观看| 1024视频免费在线观看| www国产在线视频色| 亚洲成av人片在线播放无| 老司机靠b影院| www.999成人在线观看| 精品久久久久久久末码| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 久久亚洲精品不卡| 色播亚洲综合网| 法律面前人人平等表现在哪些方面| 午夜激情av网站| 一进一出好大好爽视频| 久久性视频一级片| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 国产一区二区在线观看日韩 | 日本一本二区三区精品| 中文亚洲av片在线观看爽| 久久婷婷人人爽人人干人人爱| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 白带黄色成豆腐渣| av欧美777| 69av精品久久久久久| svipshipincom国产片| 成年版毛片免费区| 久久亚洲精品不卡| 男女视频在线观看网站免费 | 丁香欧美五月| 国产精品自产拍在线观看55亚洲| 日韩有码中文字幕| 中文字幕高清在线视频| 日本黄大片高清| 一二三四社区在线视频社区8| 午夜精品在线福利| 久久人妻av系列| 欧美日韩黄片免| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清专用| 九色国产91popny在线| 亚洲国产高清在线一区二区三| 1024香蕉在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品 欧美亚洲| 老司机在亚洲福利影院| 久久亚洲精品不卡| 久久久久九九精品影院| 观看免费一级毛片| 妹子高潮喷水视频| 成人国产一区最新在线观看| 亚洲激情在线av| 夜夜爽天天搞| 亚洲精品国产一区二区精华液| 亚洲欧美日韩东京热| 中文字幕人成人乱码亚洲影| 久久精品国产亚洲av高清一级| 校园春色视频在线观看| 又黄又粗又硬又大视频| 国产又色又爽无遮挡免费看| 免费搜索国产男女视频| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 亚洲熟妇熟女久久| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦观看免费观看视频高清| 老熟妇仑乱视频hdxx| or卡值多少钱| 久久久久久亚洲精品国产蜜桃av| 久久精品国产综合久久久| 美女大奶头视频| 国产成人精品久久二区二区91| 国产又黄又爽又无遮挡在线| 久久婷婷成人综合色麻豆| 亚洲av日韩精品久久久久久密| 久久久国产成人精品二区| 激情在线观看视频在线高清| 国产蜜桃级精品一区二区三区| 国产亚洲av嫩草精品影院| 国产1区2区3区精品| 精品人妻1区二区| 一夜夜www| 亚洲国产中文字幕在线视频| 一区二区三区激情视频| 女生性感内裤真人,穿戴方法视频| bbb黄色大片| 一本大道久久a久久精品| av在线播放免费不卡| 久久久久九九精品影院| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 亚洲九九香蕉| 成熟少妇高潮喷水视频| 国产乱人伦免费视频| 免费av毛片视频| 99在线视频只有这里精品首页| 亚洲国产欧美网| 中文字幕人成人乱码亚洲影| 1024视频免费在线观看| 脱女人内裤的视频| 免费看a级黄色片| a在线观看视频网站| 可以在线观看毛片的网站| 美女大奶头视频| 日本一二三区视频观看| 99国产精品99久久久久| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 国产激情偷乱视频一区二区| 日韩成人在线观看一区二区三区| 久久精品成人免费网站| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| a级毛片在线看网站| 黑人欧美特级aaaaaa片| 午夜视频精品福利| 制服丝袜大香蕉在线| 精品久久久久久久久久久久久| 国内少妇人妻偷人精品xxx网站 | 国内毛片毛片毛片毛片毛片| 午夜福利成人在线免费观看| 不卡一级毛片| 久久中文字幕人妻熟女| 国产激情久久老熟女| 12—13女人毛片做爰片一| 51午夜福利影视在线观看| 国产精品一区二区免费欧美| 波多野结衣高清无吗| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 久久久久亚洲av毛片大全| 日韩高清综合在线| 久久久精品大字幕| 美女大奶头视频| 久久性视频一级片| 亚洲国产欧美网| 亚洲激情在线av| 成人国语在线视频| 国产一级毛片七仙女欲春2| 亚洲av日韩精品久久久久久密| 国内久久婷婷六月综合欲色啪| www.自偷自拍.com| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 一区福利在线观看| 成人av在线播放网站| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 在线看三级毛片| 一边摸一边做爽爽视频免费| 国产精品精品国产色婷婷| 级片在线观看| 国产三级在线视频| 在线观看免费日韩欧美大片| 欧美日韩国产亚洲二区| 99精品欧美一区二区三区四区| 久久久久国产一级毛片高清牌| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| 国产片内射在线| 精品人妻1区二区| 禁无遮挡网站| 特级一级黄色大片| 中文字幕人妻丝袜一区二区| 狂野欧美激情性xxxx| 不卡一级毛片| 亚洲七黄色美女视频| 啦啦啦韩国在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 日韩 亚洲 欧美在线| 国语自产精品视频在线第100页| 有码 亚洲区| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 99久国产av精品国产电影| 亚洲性久久影院| 色吧在线观看| 又爽又黄无遮挡网站| 国产免费一级a男人的天堂| 亚洲国产精品成人综合色| 国产色婷婷99| 最新中文字幕久久久久| 可以在线观看的亚洲视频| av福利片在线观看| 青青草视频在线视频观看| 亚洲天堂国产精品一区在线| 少妇人妻一区二区三区视频| 成人av在线播放网站| 婷婷精品国产亚洲av| 综合色av麻豆| 国产成人精品一,二区 | 久久精品国产99精品国产亚洲性色| 亚洲欧美精品自产自拍| 色播亚洲综合网| 国产精品野战在线观看| av免费在线看不卡| 如何舔出高潮| 在线观看av片永久免费下载| 18禁在线无遮挡免费观看视频| 久久久久免费精品人妻一区二区| 久久精品91蜜桃| 99九九线精品视频在线观看视频| 亚洲第一电影网av| 国产精品无大码| 国产老妇伦熟女老妇高清| 国语自产精品视频在线第100页| 欧美性感艳星| 久久久精品大字幕| 久久婷婷人人爽人人干人人爱| 久久久国产成人精品二区| 国产乱人视频| 免费观看的影片在线观看| 日本熟妇午夜| 一边亲一边摸免费视频| 成年av动漫网址| 99国产极品粉嫩在线观看| 久久九九热精品免费| h日本视频在线播放| av在线天堂中文字幕| 可以在线观看毛片的网站| www.色视频.com| 国产69精品久久久久777片| 国产高潮美女av| or卡值多少钱| 午夜福利视频1000在线观看| 色5月婷婷丁香| 九色成人免费人妻av| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| 日本撒尿小便嘘嘘汇集6| 三级国产精品欧美在线观看| 能在线免费看毛片的网站| 天天一区二区日本电影三级| 97在线视频观看| 黄色欧美视频在线观看| 热99在线观看视频| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 亚洲欧美日韩高清专用| 黄色日韩在线| 一个人观看的视频www高清免费观看| 精品少妇黑人巨大在线播放 | 久久久久久久午夜电影| 成人综合一区亚洲| eeuss影院久久| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站| 在线观看午夜福利视频| 日本熟妇午夜| 偷拍熟女少妇极品色| 99久久精品一区二区三区| 国产精品一区二区三区四区久久| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 99久国产av精品| 中文欧美无线码| 秋霞在线观看毛片| 日韩av不卡免费在线播放| 久久久久网色| 美女脱内裤让男人舔精品视频 | 中文字幕免费在线视频6| 日本五十路高清| 午夜激情欧美在线| 男的添女的下面高潮视频| 国产老妇伦熟女老妇高清| 免费观看在线日韩| 高清毛片免费观看视频网站| 日本成人三级电影网站| 亚洲精品影视一区二区三区av| 国产精品国产高清国产av| 精品免费久久久久久久清纯| 亚洲性久久影院| 精品免费久久久久久久清纯| 精品少妇黑人巨大在线播放 | 在线观看美女被高潮喷水网站| 欧美日本视频| 国产精品爽爽va在线观看网站| 天堂av国产一区二区熟女人妻| 国产黄a三级三级三级人| 黄色欧美视频在线观看| 美女黄网站色视频| 久久久a久久爽久久v久久| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 久久久久久伊人网av| 国产亚洲av片在线观看秒播厂 | 成人鲁丝片一二三区免费| 亚洲乱码一区二区免费版| 性欧美人与动物交配| 91av网一区二区| 晚上一个人看的免费电影| 日韩中字成人| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 久久草成人影院| 国产一区二区在线观看日韩| 精品日产1卡2卡| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 免费电影在线观看免费观看| 观看免费一级毛片| 色吧在线观看| 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| 日韩视频在线欧美| 国产成人福利小说| 少妇的逼水好多| 最近视频中文字幕2019在线8| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 少妇的逼水好多| 欧美性猛交╳xxx乱大交人| av在线亚洲专区| 一夜夜www| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 欧美日韩综合久久久久久| 能在线免费看毛片的网站| 永久网站在线| 国产人妻一区二区三区在| 又粗又爽又猛毛片免费看| 国产日本99.免费观看| 日本与韩国留学比较| 亚洲精品456在线播放app| 26uuu在线亚洲综合色| 日本三级黄在线观看| 亚洲av.av天堂| 精品久久久久久久久久免费视频| 色哟哟·www| 91精品一卡2卡3卡4卡| 黄色视频,在线免费观看| 成人高潮视频无遮挡免费网站| 免费人成视频x8x8入口观看| 国产老妇女一区| 给我免费播放毛片高清在线观看| av在线蜜桃| 美女 人体艺术 gogo| 久久99精品国语久久久| 国产精品久久久久久久久免| av国产免费在线观看| 内地一区二区视频在线| 国产私拍福利视频在线观看| 精品久久久久久久久久免费视频| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 六月丁香七月| 在线观看免费视频日本深夜| 国产精品嫩草影院av在线观看| 亚洲av中文av极速乱| 免费看日本二区| 久久这里只有精品中国| 久久久a久久爽久久v久久| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看| 一级毛片久久久久久久久女| 亚洲色图av天堂| 高清毛片免费观看视频网站| 两个人的视频大全免费| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区在线观看99 | 成熟少妇高潮喷水视频| 草草在线视频免费看| 亚洲图色成人| 国产成年人精品一区二区| 99热精品在线国产| 免费大片18禁| 看十八女毛片水多多多| 最近手机中文字幕大全| 国产精品综合久久久久久久免费| 日韩一区二区三区影片| avwww免费| 亚洲在线自拍视频|