胡玉芬,薛富民
(齊魯工業(yè)大學(xué)(山東省科學(xué)院),山東省分析測試中心,山東 濟(jì)南 250014)
電化學(xué)發(fā)光也稱為電致化學(xué)發(fā)光(Electrogenerated chemiluminescence,ECL),是指物質(zhì)在電極表面經(jīng)過電子轉(zhuǎn)移反應(yīng)形成激發(fā)態(tài)釋放出能量,進(jìn)而發(fā)光的過程[1-3].ECL包含兩個(gè)過程:電化學(xué)反應(yīng)和化學(xué)發(fā)光反應(yīng),由此ECL類型主要分成兩種,即湮滅型ECL和共反應(yīng)劑參與ECL.前者是由單個(gè)發(fā)光體產(chǎn)生的,后者涉及到發(fā)光體與合適的共反應(yīng)劑發(fā)生電化學(xué)反應(yīng)[4].
由上述可知,ECL具備了化學(xué)發(fā)光和電化學(xué)分析技術(shù)的共同優(yōu)勢,如靈敏度高、動(dòng)力學(xué)范圍寬、操作簡單和穩(wěn)定性好等優(yōu)點(diǎn)[5-6].與化學(xué)發(fā)光相比,ECL對于光的發(fā)射具有較好的時(shí)空可控性.與光致發(fā)光(photoluminescence,PL)分析相比,ECL無需激發(fā)光源,有效避免了雜散光的干擾,增加了分析的靈敏度.因此,ECL無論是在基礎(chǔ)研究還是在實(shí)際應(yīng)用中都已成為一種有效的分析手段.
基于上述原因,有關(guān)新型ECL分析技術(shù)的報(bào)道層出不窮.本文主要是從最近三年的ECL分析應(yīng)用角度出發(fā),對該領(lǐng)域盡可能做一全面梳理、歸納,為相關(guān)學(xué)者的研究提供一定的借鑒.這篇綜述的主要內(nèi)容包括概述ECL最新進(jìn)展,包括新型發(fā)光體系,傳感機(jī)理和電化學(xué)發(fā)光信號放大策略,最后討論了電化學(xué)發(fā)光分析的應(yīng)用領(lǐng)域.
按照發(fā)光體類型來劃分,ECL分析體系大致分為三種,納米材料體系、無機(jī)體系和有機(jī)體系.具體來說,2002年,Bard課題組首次報(bào)道了硅量子點(diǎn)(SiNCs)的ECL現(xiàn)象[7],之后,不同納米材料比如量子點(diǎn)(QDs)、貴重金屬簇和碳納米材料及其摻雜材料的ECL性質(zhì)也得到了大量研究.無機(jī)體系主要包含釕化合物和銥化合物.有機(jī)體系包括蒽、芴、吡啶、魯米諾和它們的衍生物.在這些發(fā)光體中,三聯(lián)吡啶釕(II)化合物(Ru(bpy)32+)和魯米諾(Luminol)是應(yīng)用最為成熟的.這些所涉及經(jīng)典的納米材料體系、無機(jī)體系和有機(jī)體系的開創(chuàng)性工作已經(jīng)有人全面綜述過[6],在此不再贅述,本文將要介紹一些最新報(bào)道的發(fā)光體.
納米材料獨(dú)特的性質(zhì),例如量子尺寸效應(yīng)、表面效應(yīng)和小尺寸效應(yīng)等,使其在生物電化學(xué)分析領(lǐng)域具有如下優(yōu)勢:第一,大的比表面積,可作為生物分子的載體;第二,良好的生物相容性,保持了生物分子的活性;第三,良好的導(dǎo)電性,可有效促進(jìn)體系內(nèi)的電子傳遞.因此,納米材料在ECL生物傳感器的構(gòu)建中具有重要作用[8].近年來,大量 QDs包括 CdS、CdSe、ZnS,Ag2Se等的ECL被相繼報(bào)道[9-16].最近,新的納米材料作為有效的ECL發(fā)光體相繼出現(xiàn),例如鈣鈦礦量子點(diǎn)(Pervoskite Quantum Dots,PQDs)、二硫化鉬量子點(diǎn)(molybdenum disulfide Quantum Dots,MoS2QDs),貴金屬納米簇(Nobel Metal Clusters,NCs)和金屬有機(jī)框架化合物(Metal Organic Frameworks,MOFs)[17-20].
2009年,鈣鈦礦作為太陽能電池被提出[21],之后發(fā)展迅猛.目前,無機(jī)鈣鈦礦納米材料研究得到了廣泛關(guān)注[22-25].近兩年,鈣鈦礦量子點(diǎn)在ECL領(lǐng)域已經(jīng)引起了重視,相關(guān)工作大量發(fā)表在美國化學(xué)會(huì)期刊上.Zou等首次報(bào)道了甲基胺溴化鉛納米粒子(CH3H3PbBr3NCs)在水相體系中的電化學(xué)及ECL性質(zhì)[26].隨后,Zou等又研究了 CsPbBr3QDs在水溶液中的ECL過程.CsPbBr3QDs通過物理方法沉積在玻碳電極(GCE)表面上,并在載流子注入和復(fù)合過程中保持一定的穩(wěn)定性[27].CsPbBr3量子點(diǎn)首先在電化學(xué)過程中注入空穴,隨后在GCE表面與H2O2或者電化學(xué)過程中產(chǎn)生的活性氧反應(yīng),進(jìn)而完成載流子的復(fù)合過程.這種載流子復(fù)合的過程對H2O2具有較高的選擇性,可以在陽極產(chǎn)生高效高單色性的ECL信號.Zhu等利用刮涂法在電極上制備了致密且均勻的CsPbBr3QDs薄膜,用無水乙酸乙酯作為電解液和共反應(yīng)劑,成功構(gòu)建了基于CsPbBr3QDs作為發(fā)光體的ECL平臺(tái)[28].在該體系中,CsPbBr3QDs薄膜能發(fā)出較強(qiáng)的、穩(wěn)定的ECL,半峰寬達(dá)到24 nm,其ECL效率比標(biāo)準(zhǔn)Ru(bpy)3
2+/TPrA體系高出5倍.MoS2QDs是一類獨(dú)特的、具有類石墨烯二維結(jié)構(gòu)的量子點(diǎn),它具有發(fā)射光譜可調(diào)控、量子產(chǎn)率高、易功能化和生物相容性好等優(yōu)點(diǎn).Yuan[29]等通過超聲處理二維MoS2納米片制備了片狀的MoS2QDs,在共反應(yīng)劑三乙胺(TEA)作用下,可以得到穩(wěn)定且較強(qiáng)的ECL信號.實(shí)驗(yàn)結(jié)果表明,具有穩(wěn)定發(fā)光的新型 MoS2QDs將成為一種有競爭力的新型ECL納米材料類發(fā)光物質(zhì).
金屬納米簇(Au NCs)性質(zhì)介于單核金屬配合物和大的金屬納米粒子之間.前者具有量子化的電子能級;后者是一個(gè)等離子體,具有連續(xù)能帶的離域電子能級[30-31],而金納米簇的電子能級是非連續(xù)的,具有ECL行為.然而,Au NCs的PL和ECL效率相對低,這使其應(yīng)用受到了限制.Wei等利用層層自組裝原理將Au NCs涂覆在二維層狀雙金屬氫氧化物納米片上(LDHs),得到Au NCs基的超薄納米膜[18].由于這種主-客體的相互作用,Au NCs被固定在LDHs納米材料的有限空間里,使得非輻射躍遷減弱,從而增強(qiáng)了PL和ECL性能.Wang研究團(tuán)隊(duì)最近發(fā)現(xiàn)了一種可顯著提高ECL的新機(jī)理,將共反應(yīng)劑N,N-二乙基乙酰胺(DEDA)通過共價(jià)鍵連接到硫辛酸穩(wěn)定的Au(Au-L)簇上[32],這種設(shè)計(jì)減少了共反應(yīng)劑之間傳質(zhì)的復(fù)雜性,同時(shí),每個(gè)金納米簇的多重態(tài)和多個(gè)DEDA配體也有助于提高發(fā)光效率.
金屬有機(jī)框架化合物(MOFs)是一種晶態(tài)化合物.目前基于MOFs的ECL研究不是很多.Yin等報(bào)道了由[Ru(4,4′-(HO2C)2-bpy)2bpy]2+和 Zn2+制備的MOFs ECL性質(zhì)[33].研究發(fā)現(xiàn)MOF產(chǎn)生的ECL發(fā)射與共反應(yīng)劑TPrA有很好的濃度依賴關(guān)系.這種強(qiáng)的ECL說明在MOF和其共反應(yīng)劑之間有良好的電子傳遞能力.利用具有良好發(fā)光性能的金屬化合物替代有機(jī)分子做配體,從而制備具有良好 ECL性質(zhì)的MOFs是一項(xiàng)很有前景的工作.將鋅離子和二氯化三-(4,4'-二羧酸-2,2'-二吡啶)釕(II)([Ru(dcbpy)3]2+)分別作為中心離子和配體,得到了一種新型的MOFs[34].Wei等報(bào)道了 Pb(II)-β-環(huán)糊精(Pb-β-CD)MOF的ECL行為,其中K2S2O8作為共反應(yīng)劑[35].研究表明Pb-β-CD對AuCl4-和Ag+產(chǎn)生了還原作用.在無添加其他還原劑情況下,金和銀納米粒子(NPs)在Pb-β-CD上就能原位生成[20].
硼-二吡咯亞甲基染料(BODIPY)及其衍生物具有優(yōu)異的光學(xué)性質(zhì)如高的吸收系數(shù)和熒光量子效率,其可作為發(fā)光標(biāo)記物.結(jié)構(gòu)決定性質(zhì),不同的BODIPY染料會(huì)有不同的光學(xué)性質(zhì)和電子化學(xué)特性.Bard等對幾種BODIPY染料進(jìn)行了ECL方面的創(chuàng)新性研究[36-37],然而這些染料的ECL效率沒有期望的那么高.Ding等[38]合成了一種大分子的BODIPY染料,該染料具備高效ECL性質(zhì),其結(jié)構(gòu)包含一個(gè)聯(lián)苯且在間位和α位上含兩個(gè)長鏈(C8)基團(tuán).重要的是,芳香環(huán)的存在大大提高了π健離域性,這樣利于發(fā)生分子內(nèi)的電子轉(zhuǎn)移.在BODIPY染料中心的α、β或間位位置上進(jìn)行修飾使得產(chǎn)生的自由基趨向穩(wěn)定,進(jìn)而增強(qiáng)電化學(xué)發(fā)光強(qiáng)度.與Ru(bpy)32+/三丙胺共反應(yīng)劑體系相比,這種BODIPY染料的電化學(xué)發(fā)光效率會(huì)高出80%.甲臜(Formazans)作為BODIPY染料衍生物,由于具備易合成、低成本和同時(shí)兼具吸收、發(fā)射及氧化還原性可調(diào)的優(yōu)點(diǎn),近來引起了大家的廣泛關(guān)注[39].Ding等人首次系統(tǒng)地報(bào)道了甲臜衍生物的ECL性能,尤其是研究了二氟化硼衍生化的甲臜染料.他們所合成的二氟化硼-3-氰基formazanate染料在共反應(yīng)劑TPrA存在的情況下表現(xiàn)出優(yōu)異的ECL性能.
二萘嵌苯及其衍生物由于具有優(yōu)異的物理化學(xué)特性,也受到了相當(dāng)多的關(guān)注.二萘嵌苯及其衍生物是有ECL活性的,但是它溶解性差、自由基離子不穩(wěn)定等缺點(diǎn)限制了其在水溶液中的應(yīng)用.為了解決其水溶性問題,可在二萘嵌苯衍生物中引入親水基團(tuán),比如羧基和氨基.Chen等報(bào)道了3,4,9,10-二萘嵌苯四羧酸二酐(PTC-NH2)與共反應(yīng)劑K2S2O8在水相中發(fā)生陰極ECL[40].利用多巴胺能夠有效淬滅PTC-NH2的ECL信號從而檢測多巴胺,然而PTC-NH2的ECL受其水溶性所限而導(dǎo)致光敏效率不佳,需要額外加入K2S2O8作為共反應(yīng)劑.另外,該課題組首次報(bào)道了一種由聚乙烯亞胺和二萘嵌苯四羧酸共價(jià)結(jié)合的新二萘嵌苯衍生物(PTC-PEI),在水相體系中研究了其陰極ECL性能,所使用的共反應(yīng)劑是內(nèi)部溶解的氧氣[41].PTC-PEI與其它二萘嵌苯衍生物相比有著很好的物理和化學(xué)穩(wěn)定性以及更高的ECL效率,這為構(gòu)建高靈敏度的電化學(xué)發(fā)光傳感器提供了一條途徑.
另外,Ding等報(bào)道了3-疊氮基噻吩和4-疊氮-2,2’-二噻吩與多種芳基乙炔通過點(diǎn)擊耦合成功合成了八種以噻吩為基礎(chǔ)的發(fā)光體,并對其進(jìn)行了電化學(xué)和ECL研究[42].作者分別對它們以湮滅型過程和共反應(yīng)劑過程進(jìn)行了相關(guān)研究,其中共反應(yīng)劑參與過程包括過氧化苯甲酰(BPO)、過硫酸銨和TPrA.噻吩在湮滅型體系中只有很弱的ECL信號,而在增加了氧化型共反應(yīng)劑情況下,發(fā)光效率會(huì)增加.從ECL光譜上可發(fā)現(xiàn)激發(fā)二聚體或者聚合激發(fā)狀態(tài)下比其在單體激發(fā)狀態(tài)下更有利于ECL,可以通過控制電勢調(diào)節(jié)這種狀態(tài).
星形共軛齊聚物作為一種較為新穎的有機(jī)共軛齊聚物,也逐漸被大家所認(rèn)識.這類化合物具有很多新的光電特性和拓?fù)浣Y(jié)構(gòu)[43].Bard等報(bào)道了三種1,3,5-三(蒽-10-基)- 苯星形齊聚芴(T1-T3)在乙腈-苯溶液中的電化學(xué)發(fā)光性質(zhì)[44].(T1-T3)化合物分子中包含1,3,5-三(蒽-10-基)-苯作為中心核,芴作為從單芴到三芴的連接臂(n=1-3),從而形成剛性三維結(jié)構(gòu).電勢的形成是隨著分子中心和支鏈臂上電子的先后缺失或者增加而產(chǎn)生的.通過超微電極、數(shù)字模擬和DFT計(jì)算證實(shí)了上述化合物的ECL過程存在多電子轉(zhuǎn)移機(jī)制.從T1到T3,在離子湮滅條件下,能產(chǎn)生很強(qiáng)的藍(lán)色ECL.上述化合物可以作為很有前景的ECL發(fā)光體.
為滿足人們對ECL分析技術(shù)高靈敏度、高準(zhǔn)確性和低檢出限的要求,急需發(fā)展高效、不同顏色的ECL發(fā)光體.與常用的Ru-(bpy)32+相比,環(huán)金屬銥(III)配合物具有更高的光致發(fā)光效率且發(fā)射波長可調(diào),已經(jīng)成為了過去幾年比較熱門的電化學(xué)發(fā)光體.通過修飾主配體和改變絡(luò)合方式,用2-苯基喹啉及其衍生物設(shè)計(jì)、合成出了一系列環(huán)金屬銥化合物,并研究了其各種光學(xué)性能[45].通過在2-苯基喹啉上修飾甲基,所得化合物具有更低的氧化電勢和更高的HOMO能級,這使得其在乙腈溶液中比Ru(bpy)32+有更強(qiáng)的ECL.環(huán)金屬銥化合物研究多數(shù)情況下是在有機(jī)介質(zhì)中進(jìn)行的,只有少數(shù)報(bào)道是在水相或者水相/有機(jī)相摻雜介質(zhì)中研究的.Cola等報(bào)道了雙環(huán)金屬銥(III)化合物,如[Ir-(C^N)2(L^X)](C^N = 金屬環(huán)配體,L^X =吡啶甲酸(pic),乙酰丙酮(acac)),在水相中的光致發(fā)光和ECL性質(zhì)[46].結(jié)果表明:與商業(yè)用釕標(biāo)記物相比,修飾后的C^N配體具有更高的電化學(xué)發(fā)光效率.特別是苯基菲啶(pphent)作為C^N配體比商業(yè)用的Ru(bpy)32+檢測信號要高三倍.
由于ECL本身包含激發(fā)和發(fā)射過程,因此單一體系中對所含不同的發(fā)光體進(jìn)行電勢激發(fā)可產(chǎn)生不同的發(fā)射,通過檢測不同的發(fā)射可實(shí)現(xiàn)多組分檢測[47].然而,在一種溶液中對混合過渡金屬化合物體系的湮滅型ECL研究還沒有報(bào)道過.Hogan及其合作者對一系列混合的湮滅型ECL體系進(jìn)行了研究,這些體系包含Ru(bpy)32+和環(huán)金屬銥(III)螯合物,通過在電解池上安裝CCD光譜儀可同步收集他們所發(fā)出的綠光或者藍(lán)光[48].
除了上述混合ECL體系,單一發(fā)光體的多色ECL也被逐漸報(bào)道.Hogan等最近報(bào)道了一種發(fā)光材料 fac-tris[5-(4-氟-3-甲基苯基)-1-甲基-3-n-丙基 -(1、2、4)-三唑)銥(III)(Ir(mptz)3)特殊的 ECL 行為,該化合物可發(fā)射不同的顏色,包括紅、綠、藍(lán)、白色,這種發(fā)光可以通過調(diào)控電勢而可逆生成.作者使用3D-ECL技術(shù),研究了其湮滅型ECL機(jī)理[49].
隨著科技的不斷發(fā)展,基于ECL構(gòu)建的目標(biāo)物示蹤方法也取得了空前進(jìn)步.總結(jié)來說,目前所建立的ECL檢驗(yàn)方法有以下幾種[50-51]:第一,通過能量轉(zhuǎn)移或者電子轉(zhuǎn)移方式來減弱或增強(qiáng)目標(biāo)物的ECL性能;第二,通過氧化還原反應(yīng)或者表面結(jié)合-分離方式進(jìn)而增強(qiáng)或降低ECL發(fā)射;第三,通過產(chǎn)生或者消耗共反應(yīng)劑來影響ECL發(fā)射強(qiáng)度;第四,利用生物識別反應(yīng)產(chǎn)生的空間位阻制備信號關(guān)閉的ECL傳感體系;第五,根據(jù)供體和受體的光譜重合性,利用ECL共振能量轉(zhuǎn)移(ECL-RET)建立高效的傳感策略.
基于上述傳感策略,為了進(jìn)一步提高ECL傳感器的靈敏度,科研人員發(fā)展了大量信號放大方法.其中,多功能納米材料所發(fā)揮的作用功不可沒.納米材料具有特殊物理化學(xué)性質(zhì),如大的比表面積,良好的導(dǎo)電性和催化活性,非常適合作為電極材料或者載體,且可以通過特殊設(shè)計(jì)來放大識別信號,提高生物傳感的靈敏度[52].目前,已經(jīng)有不同種類的納米材料用于ECL信號放大,如金屬納米材料[53-55].利用各種酶的催化反應(yīng)來提高ECL性能也是一種不錯(cuò)的選擇[56-58].目前,發(fā)展高靈敏的ECL平臺(tái)仍然是一項(xiàng)很有意義的工作.
為提高ECL分析技術(shù)的靈敏度和準(zhǔn)確度,科研人員發(fā)展了基于雙信號發(fā)射的比率型ECL傳感器.比率ECL體系測定法包括要檢測該體系的雙電位和雙波長信號的比值.目前為止,在生物和化學(xué)分析領(lǐng)域,多數(shù)傳感策略都采用了雙電位的ECL比率測定方法[59-64].最近,Xu等報(bào)道了用雙波長比率型ECL測定微RNA(miRNA).其中,該體系是利用從類石墨烯氮化碳(g-C3N4)納米片(發(fā)光峰460 nm)到Ru(bpy)3
2+(發(fā)光峰620 nm)發(fā)生共振能轉(zhuǎn)移(RET)來構(gòu)建檢測策略的[40].他們還開發(fā)了一種可視化顏色開關(guān)ECL傳感平臺(tái),該平臺(tái)可定量檢測HL-60癌細(xì)胞,且使用了魯米諾(藍(lán)色)和Ru(bpy)32+(紅色)作為不同顏色的發(fā)光[65].
自增強(qiáng)ECL是發(fā)光試劑與共反應(yīng)試劑通過共價(jià)作用共存于同一分子內(nèi)的具有高發(fā)光效率的新型ECL反應(yīng)模式[66].在該ECL反應(yīng)體系中,電子在發(fā)光試劑與共反應(yīng)試劑之間的轉(zhuǎn)移發(fā)生在同一分子內(nèi).與通常的分子間ECL反應(yīng)相比,這種方式縮短了電子傳輸?shù)木嚯x、提高了發(fā)光穩(wěn)定性、簡化了操作步驟、降低了操作誤差及減少了共反應(yīng)試劑的用量.更重要的是,分子內(nèi)自增強(qiáng)ECL反應(yīng)顯著減少了在共反應(yīng)試劑擴(kuò)散到電極表面過程中由弛豫效應(yīng)所導(dǎo)致的能量損失,大大提高了發(fā)光效率[67].最近,基于自增強(qiáng)型ECL發(fā)光體建立ECL分析技術(shù)已經(jīng)有了報(bào)道[30,68-69].
1927年,Duffurd在電解格林試劑時(shí)首次觀察到了發(fā)光現(xiàn)象[70].1928年,Havery在電解Luminol水溶液時(shí)也發(fā)現(xiàn)了發(fā)光現(xiàn)象[71].從此,有關(guān)ECL的研究拉開了序幕.20世紀(jì),ECL相關(guān)技術(shù)的發(fā)展進(jìn)步,使ECL成為了電化學(xué)領(lǐng)域的重要組成部分.如今,ECL的研究應(yīng)用范圍更加廣泛,已經(jīng)深入到食品、藥物、環(huán)境和生物等領(lǐng)域.本文將在金屬離子、生物小分子、免疫和細(xì)胞傳感等四個(gè)方面進(jìn)行梳理總結(jié)最近三年的ECL分析技術(shù)應(yīng)用進(jìn)展.
伴隨著經(jīng)濟(jì)社會(huì)的飛速發(fā)展,人類賴以生存的生態(tài)系統(tǒng)面臨著巨大壓力,食品、環(huán)境污染問題日益突出,其中金屬污染尤為明顯,金屬離子會(huì)通過各種食物鏈進(jìn)入人體,對人體健康產(chǎn)生極大危害.Pb2+是最有害的重金屬污染物之一,因此研究快速、高靈敏檢測Pb2+方法對環(huán)境保護(hù)和疾病的防治非常重要.Yan等通過將CdS QDs和捕獲探針固定在金納米修飾的銦錫氧化物電極上(ITO),從而合成了一種檢測Pb2+的傳感器[72].利用Pb2+誘導(dǎo)活化DNA酶作用,使得Ag/ZnO耦合結(jié)構(gòu)能夠靠近電極的表面,并催化陰極ECL發(fā)射的共反應(yīng)劑H2O2減少,導(dǎo)致ECL強(qiáng)度下降.Yuan等建立了一種ECL生物傳感器,分別用氮摻雜碳點(diǎn)(N-CDs)在GCE上原位電聚合作為發(fā)光體和Pd-Au六八面體(Pd@Au HOHs)做為增強(qiáng)劑來檢測細(xì)胞內(nèi)Pb2+[73].這項(xiàng)工作中,在N-CDs修飾電極上形成了Pd@Au HOHs-DNA樹枝狀分子,能夠以穩(wěn)定的G4結(jié)構(gòu)耦合Pb2+.
汞是毒性很強(qiáng)的重金屬,汞污染即使在低濃度水平也會(huì)對人類健康和環(huán)境造成重大影響,因此,開展對Hg2+高靈敏檢測是一項(xiàng)很有意義的工作.Wang等發(fā)展了一種Au-Ag雙金屬納米簇可用于Hg2+ECL檢測的新方法,研究表明摻雜Ag的Au納米簇可顯著增加其ECL性能[74].Liu等開發(fā)了一種基于Hg2+誘導(dǎo)DNA雜交的 Hg2+ECL傳感器[75].含有胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)的dsDNA所具備的電荷轉(zhuǎn)移特性能提高ECL強(qiáng)度,且ECL信號的增強(qiáng)幅度與Hg2+濃度成對數(shù)關(guān)系.Huang等人通過用可特異結(jié)合汞離子寡核苷酸修飾Au NPs,然后再自組裝到ITO電極表面,從而成功制備了檢測Hg2+的ECL生物傳感器[76].通過T-Hg2+-T結(jié)構(gòu)對Hg2+結(jié)合可以使線形構(gòu)象的寡核苷酸形成發(fā)夾結(jié)構(gòu).該體系中,雙功能寡核苷酸作為Hg2+探針,同時(shí)也是多個(gè)ECL信號共軛分子的載體.
鈷是人體必需的微量元素之一.Li等制備了一種雙電位比率型ECL傳感器來檢測Co2+[77].該體系中,氮摻雜石墨烯量子點(diǎn)(N-GQDs)在溶解氧的協(xié)同下能夠發(fā)射正負(fù)兩種ECL信號,在Co2+存在的情況下,NGQDs的陰極ECL強(qiáng)度迅速增加(增加大約15倍),而陽極信號明顯降低,利用這種信號的差異完成了比率型Co2+ECL探針的制備并成功應(yīng)用于真實(shí)水樣中Co2+的檢測.
生物小分子活性物質(zhì)是生物機(jī)體的重要組成部分,利用ECL分析技術(shù)可對其進(jìn)行痕量檢測.
硫化氫(H2S)能參與生物體內(nèi)的多種生理生化過程并發(fā)揮特定功能.在動(dòng)物體內(nèi),H2S能夠調(diào)節(jié)血管及神經(jīng)系統(tǒng)功能.近來,Ye等使用一種新型釕化合物,[Ru(bpy)2(bpy-DPA)]2+(bpy = 2,2’-二吡啶,bpy-DPA =4,甲基-4’[N,N-二(2-甲基吡啶)甲氨-2,2’-二吡啶],作為一個(gè)識別單元來建立一種基于反應(yīng)型的ECL傳感器,并用于選擇性檢測小鼠大腦中的細(xì)胞外 H2S含量[78].[Ru(bpy)2(bpy-DPA)]2+的ECL可通過與Cu2+形成[Ru(bpy)2(bpy-DPA)Cu]4+而被淬滅.由于S和Cu2+結(jié)合能力較強(qiáng),Ru(bpy)2(bpy-DPA)Cu]4+/Nafion/GCE傳感器與揮發(fā)性的H2S反應(yīng)后,會(huì)被還原成[Ru(bpy)2(bpy-DPA)]2+/Nafion/GC,使得 ECL信號提高,方法的檢出限達(dá)到0.25 μmol/L.
次氯酸(HClO)作為生物體內(nèi)重要的活性氧之一,可抵御外部細(xì)菌和病原體的入侵.然而,如果體內(nèi)含量過高會(huì)導(dǎo)致組織損傷和一系列疾病.因此,開展檢測生物樣品中的HClO具有重要意義.Yuan等合成了一種新的基于釕(II)配合物的多信號化學(xué)傳感器,Ru-Fc(二茂鐵),其能夠高靈敏、選擇性檢測活細(xì)胞和實(shí)驗(yàn)動(dòng)物樣本中溶酶體產(chǎn)生的次氯酸(HOCl)[79].從Fc到Ru(II)中心,所發(fā)生的光誘導(dǎo)電子轉(zhuǎn)移(PET)過程取代了金屬-配體電荷轉(zhuǎn)移(MLCT)的電子轉(zhuǎn)移過程,因此Ru-Fc只有微弱的發(fā)光.當(dāng)HOCl所誘導(dǎo)的特異性反應(yīng)發(fā)生后,PET過程消失,MLCT發(fā)揮作用,同時(shí)出現(xiàn)較強(qiáng)的PL和ECL現(xiàn)象.
ECL免疫分析結(jié)合了電化學(xué)發(fā)光與免疫分析技術(shù)的特點(diǎn),將發(fā)光體標(biāo)記抗原或抗體后與待測物質(zhì)特異性結(jié)合,通過檢測特異性反應(yīng)發(fā)生前后ECL信號的改變從而對待測物進(jìn)行檢測.Zou等發(fā)展了一種采用雙穩(wěn)定劑包被的CdSe量子點(diǎn),通過特異性反應(yīng)固定在玻碳電極上,構(gòu)建了一種單分子檢測策略,實(shí)現(xiàn)了對癌胚抗原(CEA)分子的超靈敏檢測[14].Zhu等制備了一種基于自電化學(xué)發(fā)光、氧化石墨烯包被的金納米粒子復(fù)合物(Au@L012),并將該復(fù)合物用于CEA抗原檢測[80].在該體系中,為了使發(fā)光強(qiáng)度最大化,將L012分子(魯米諾衍生物)與聚(二烯丙基二甲基氯化銨)(PDDA)相連形成一對帶正電的PDDA&L012復(fù)合物,該復(fù)合物被修飾到帶負(fù)電的Au@nafion納米粒子上并構(gòu)建Au@nafion@PDDA&L012(Au@L012)復(fù)合物(圖1)[80].帶羧基的氧化石墨烯通過靜電作用與Au@L012結(jié)合,從而形成可與CEA共價(jià)結(jié)合的有效基質(zhì).與傳統(tǒng)的金@魯米諾復(fù)合物相比,該復(fù)合物的自電化學(xué)發(fā)光強(qiáng)度增加了740倍,且在無共反應(yīng)劑情況下,在電極表面對CEA抗原的檢測可達(dá)到0.5 amol.
圖1 GO-Au@L012納米復(fù)合物制備及CEA抗原檢測體系的構(gòu)建Fig.1 Schematic preparation of GO-Au@L012 nanocomposite for the detection of CEA antigens.
前列腺特異抗原(PSA)是目前在前列腺癌早期診斷中最好的血清標(biāo)記物,Xu等報(bào)道了一種基于可關(guān)閉的雙電極多色ECL裝置,該裝置可用于人血清中PSA的可視化檢測.利用該裝置,人的PSA cutoff值大概(4.0和10.0 ng/mL)可以裸眼根據(jù)綠-黃-紅ECL發(fā)射顏色的改變觀察確定[81].Wei等制備了一種新的、可用于 PSA檢測的夾心 ECL免疫傳感器[82].該體系中,氨基-石墨烯作為CeO2的負(fù)載基質(zhì),通過銀納米粒子將抗-PSA1(Ab1)與CeO2結(jié)合,NH2-Gr/Au@CeO2作為ECL信號的響應(yīng)層,銀納米粒子功能化的Bi2S3用作標(biāo)記二抗(Ab2),發(fā)生夾心反應(yīng)后,ECL信號會(huì)大大減弱,該P(yáng)SA探針的檢出限達(dá)到0.3 pg/mL.Yuan等成功合成一系列ECL免疫傳感器[68,83-85].
Ugo等使用金納米陣列電極(NEEs)作為檢測平臺(tái)構(gòu)建了一種新型可用于麥膠性腸病免疫傳感器[86].方法的創(chuàng)新點(diǎn)是體系中發(fā)生電化學(xué)反應(yīng)的區(qū)域與負(fù)載上生物分子所產(chǎn)生的ECL之間實(shí)現(xiàn)了物理分離.該方法的識別骨架為:組織的轉(zhuǎn)谷氨酰胺酶(tTG)作為捕獲試劑固定在刻蝕膜的聚碳酸酯(PC)表面上,與抗tTG抗體發(fā)生反應(yīng),鏈霉素-修飾釕基的ECL探針再與合適的生物素化的二抗反應(yīng),免疫傳感器檢出限為0.5 ng/mL.這種設(shè)計(jì)的特殊優(yōu)勢在于ECL發(fā)射在非常低的電位下就能得到,從而大大減少了樣品中氧化副反應(yīng)產(chǎn)生的干擾.
細(xì)胞是有機(jī)體結(jié)構(gòu)與生命活動(dòng)的基本單位,發(fā)展電化學(xué)細(xì)胞傳感器對于研究生命體系的重要現(xiàn)象有著十分重大的現(xiàn)實(shí)意義,而開展靈敏度更高的ECL細(xì)胞傳感器研制工作顯得尤為重要.Yu等報(bào)道了一種紙基型ECL細(xì)胞傳感器,該裝置用多孔的銀鈀合金作為納米探針用于多元癌細(xì)胞的檢測[87].隨后,他們又發(fā)展了相似的微流控紙芯片細(xì)胞器件,該器件通過將石墨烯量子點(diǎn)負(fù)載到絨狀的金納米籠上作為ECL納米探針,從而用于MCF-7細(xì)胞表面CA153的原位檢測[88].近來,他們又進(jìn)一步提高了基于雙金屬AuPd紙芯片的細(xì)胞傳感器性能并用于檢測MCF-7細(xì)胞表面的兩種抗原[89].
比率型ECL探針在細(xì)胞傳感器設(shè)計(jì)、制備方面表現(xiàn)出了較好的靈敏度、穩(wěn)定性和可重復(fù)性.He等構(gòu)建了一種可再生,雙電位響應(yīng)的電化學(xué)發(fā)光生物傳感器用以同時(shí)進(jìn)行細(xì)胞檢測及其表面的N聚糖分析(圖2)[90].該工作在一個(gè)傳感器中同時(shí)構(gòu)建了基于正電位Ru(phen)32+信號的競爭機(jī)制檢測路徑及基于負(fù)電位ConA@Au-C3N4信號的發(fā)夾結(jié)構(gòu)檢測路徑,實(shí)現(xiàn)了細(xì)胞的雙信號檢測.負(fù)電位和正電位的ECL信號比(ΔECLn/ΔECLp)只與細(xì)胞表面N-聚糖程度有關(guān),使得細(xì)胞表面的N-聚糖分析能夠在無額外細(xì)胞計(jì)數(shù)下實(shí)時(shí)進(jìn)行.該傳感器被成功用作人乳腺癌細(xì)胞MCF-7的檢測及評估衣霉素抑制劑和PNGase F酶切處理后細(xì)胞表面的N-聚糖變化.近來,Chen等合成了一種比率型ECL細(xì)胞傳感器件,該器件用g-C3N4納米片和Ag-PAMAM-luminol納米復(fù)合物作為ECL標(biāo)記物,首次實(shí)現(xiàn)了對癌細(xì)胞HL-60雙信號檢測[59].在HL-60細(xì)胞存在的情況下,適配體與目標(biāo)細(xì)胞結(jié)合,釋放Ag-PAMAM-luminol納米復(fù)合物.經(jīng)磁性分離后,所釋放的Ag-PAMAM-luminol納米復(fù)合物與與g-C3N4納米片修飾的捕獲DNA發(fā)生雜化.由于從g-C3N4納米片到銀納米粒子發(fā)生RET效應(yīng),源于-1.25V處的g-C3N4的ECL信號發(fā)生淬滅而源于+0.45V的魯米諾ECL信號會(huì)增強(qiáng).通過測量兩個(gè)激發(fā)電位下的ECL強(qiáng)度,可以實(shí)現(xiàn)對癌細(xì)胞的高靈敏、可靠檢測.
基于ECL的細(xì)胞傳感也可對細(xì)胞凋亡進(jìn)行探測.最近,Zhu等制備了一種ECL細(xì)胞傳感器,可高靈敏檢測癌細(xì)胞分泌的caspase-3蛋白酶的活性[54].因?yàn)閏aspase-3蛋白酶在整個(gè)癌細(xì)胞凋亡的過程中通常會(huì)被活化,因此被用作細(xì)胞凋亡的標(biāo)記物.該體系中Ru(bpy)3
2+摻雜的硅納米粒子作為ECL標(biāo)記物,其中TPrA作為共反應(yīng)劑,并且含有多壁碳納米管、聚(二甲基二烯丙基氯化銨)和金納米粒子的納米復(fù)合物作為ECL平臺(tái).通過生物素與鏈霉親和素的特異性結(jié)合,生物素化的DEVD-多肽會(huì)進(jìn)一步嫁接到復(fù)合物上以便于去捕獲電極上鏈霉素修飾的ECL標(biāo)記物,這樣釋放強(qiáng)烈的 ECL信號.伴隨著細(xì)胞分泌caspase-3蛋白酶能特異性切割DEVD的N-端,ECL標(biāo)記物會(huì)從電極表面釋放,隨后導(dǎo)致ECL信號的減弱.因此,這類生物傳感器有可能用于高效檢測 caspase-3蛋白酶活性.
圖2 雙電位響應(yīng)ECL生物傳感器用于細(xì)胞檢測及N-聚糖分析的原理圖Fig.2 Schematic illustration of ECL biosensor for carbohydrate expression on cell surface.
綜上所述,本文總結(jié)了ECL技術(shù)近三年來的發(fā)展?fàn)顩r,主要圍繞新出現(xiàn)的發(fā)光體系、新的傳感機(jī)理、發(fā)光信號放大方法和應(yīng)用領(lǐng)域進(jìn)行了梳理.發(fā)展靈敏度高、穩(wěn)定性強(qiáng)及檢測速度快的ECL分析技術(shù)始終是一項(xiàng)有挑戰(zhàn)性的工作.
首先,ECL分析技術(shù)的發(fā)展離不開新發(fā)光體系的設(shè)計(jì)與制備.鈣鈦礦量子點(diǎn)作為一種高效發(fā)光的納米材料,未來在ECL分析領(lǐng)域值得期待.如何解決水相中穩(wěn)定存在且具有優(yōu)異ECL性能的鈣鈦礦納米材料對于其在生物分析領(lǐng)域的應(yīng)用至關(guān)重要.當(dāng)然,其他新興材料如無機(jī)材料中的釕、銥配合物,有機(jī)材料中的BODIPY化合物,同樣也面臨上述問題.
其次,基于對現(xiàn)有檢測方法不斷深化的基礎(chǔ)上,發(fā)展新的傳感策略和信號放大策略也是ECL分析技術(shù)領(lǐng)域一項(xiàng)很有意義的工作.如新發(fā)展的雙電位比率型ECL分析技術(shù)大大提高了分析的靈敏度和降低了方法的檢出限.
最后,發(fā)展新的ECL分析儀器也是一項(xiàng)重要工作.由于常規(guī)的ECL檢測儀器沒有濾光裝置,傳統(tǒng)ECL研究涉及相關(guān)光譜信息較少.近年來,有課題組通過采用在ECL檢測池和PMT之間加濾光片而自制成ECL光譜儀系統(tǒng)研究了傳感體系的ECL,大大推進(jìn)了ECL光譜采集技術(shù)的發(fā)展和方法靈敏度的提高.
[1]RICHTER M.Electrochemiluminescence(ECL)[J].Chemical Reviews,2004,104(6):3003-3036.
[2]MIAO W J.Electrogenerated chemiluminescence and its biorelated applications[J].Chemical Reviews,2008,108(7):2506-2553.
[3]FAHNRICH K A,PRAVDA M,GUIBAULT G G.Recent applications of electrogenerated chemiluminescence in chemical analysis[J].Talanta,2001,54(4):531-559.
[4]SWANICK K N,SANDRONI M,DING Z,et al.Enhanced electrochemiluminescence from a stoichiometric ruthenium(II)–iridium(III)complex soft salt[J].Chemistry-A European Journal,2015,21(20):7435-7440.
[5]ZHOU Y,YAN D,WEI M.A2D quantum dot-based electrochemiluminescence film sensor towards reversible temperature-sensitive response and nitrite detection[J].Journal of Materials Chemistry C,2015,3(39):10099-10106.
[6]LIU Z,QI W,XU G,et al.Recent advances in electrochemiluminescence[J].Chemical Society Reviews,2015,44(10):3117-3142.
[7]DING Z F,QUINN B M,HARMB S K,et al.Electrochemistry and elec-trogenerated chemiluminescence from silicon nanocrystal quantum dots[J].Science,2002,296(5571):1293-1297.
[8]BERTONCELLO P,F(xiàn)ORSTER R J.Nanostructured materials for electrochemi-luminescence(ECL)-based detection methods:recent advances and future perspectives[J].Biosensors & Bioelectronics,2009,24:3191-3200.
[9]JIE G,QIN Y,MENG Q,et al.Autocatalytic amplified detection of DNA based on a CdSe quantum dot/folic acid electrochemiluminescence energy transfer system[J].Analyst,2015,140(1):79-82.
[10]WANG L,LUO D,QIN D,et al.Cathodic electrochemiluminescence of a CdSe/ZnS QDs-modified glassy carbon electrode and its application in sensing of Pb2+[J].Analytical Methods,2015,7(4):1395-1400.
[11]STEWART A J,O’REILLY E J,MORIARTY R D,et al.A cholesterol biosensorbased on the NIR electrogenerated-chemiluminescence(ECL)of water-soluble CdSeTe/ZnS quantum dots[J].Electrochimica Acta,2015,157:8-14.
[12]LV X,PANG X,LI Y,et al.Electrochemiluminescent immune-modified electrodes based on Ag2Se@CdSe nanoneedles loaded with polypyrrole intercalated graphene for detection of CA72-4[J].ACS Applied Materials & Interfaces,2015,7(1):867-872.
[13]JIE G T,JIE G F.Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles[J].RSC Advances,2016,6(29):24780-24785.
[14]ZhANG X,ZhANG B,MIAO W,et al.Molecular-counting-free and electrochemiluminescent single-molecule immunoassay with dual-stabilizers-capped CdSe nanocrystals as labels[J].Analytical Chemistry,2016,88(10):5482-5488.
[15]HUAN J,LIU Q,F(xiàn)EI A,et al.A biosensing strategy for the rapid detection and classification of antibiotic resistance[J].Biosensors&Bioelectronics,2015,73:221-227.
[16]WANG Y L,CAO J T,CHEN Y H,et al.A label-free electrochemiluminescence aptasensor for carcinoembryonic antigen detection based on electrodeposited ZnS–CdS on MoS2decorated electrode[J].Analytical Methods,2016,8(26):5242-5247.
[17]CHEN A,MA S,ZhUO Y,et al.In situ electrochemical generation of electrochemiluminescent silver naonoclusters on target-cycling synchronized rolling circle amplification platform for microRNA detection[J].Analytical Chemistry,2016,88(6):3203-3210.
[18]TIAN R,ZHANG S,LI M,et al.Localization of Au nanoclusters on layered double hydroxides nanosheets:confinement-induced emission enhancement and temperature-responsive luminescence[J].Advanced Functional Materials,2015,25:5006-5015.
[19]ZHU S,LIN X,RAN P,et al.A novel luminescence-functionalized metal-organic framework nanoflowers electrochemiluminesence sensor via “on-off” system[J].Biosensors & Bioelectronics,2017,91:436-440.
[20]MA H M,LI X J,YAN T,et al.Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb(II)metal-organic framework[J].Biosensors & Bioelectronics,2016,79:379-385.
[21]KOJIMA A,TESHIMA K,SHIRAI Y,et al.Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells[J].Journal of the American Chemical Society,2009,131:6050-6051.
[22]JELLICOE T C,RICHER J M,HUGH F J,et al.Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals[J].Journal of the American Chemical Society,2016,138(9):2941-2944.
[23]ZHANG D D,Eaton S W,YU Y,et al.Solution-phase synthesis of cesium lead halide perovskite nanowires[J].Journal of the American Chemical Society,2015,137(29):9230-9233.
[24]SUN S B,YUAN D,XU Y,et al.Ligand-mediated synthesis of shapecontrolled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J].ACS Nano,2016,10(3):3648-3657.
[25]BEK ENSTEIN Y,KOSCHER B A,EATON S W,et al.Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J].Journal of the American Chemical Society,2015,137(51):16008-16011.
[26]TAN X,ZHANG B,ZOU G Z,et al.Electrochemistry and electrochemiluminescence of organometal halide perovskite nanocrystals in aqueous medium[J].Journal of the American Chemical Society,2015,139(25):8772-8776.
[27]HUANG Y,LONG X Y,SHEN D Z,et al.Hydrogen peroxide involved anodic charge transfer and electrochemiluminescence of all-inorganic halide perovskite CsPbBr3nanocrystals in an aqueous medium[J].Inorganic Chemistry,56(17):10135-10138.
[28]XUE J J,ZHANG,Z Y,ZHENG F F,et al.Efficient solid-state electrochemiluminescence from high-quality perovskite quantum dot films[J].Analytical Chemistry,2017,89(16):8212-8216.
[29]ZHAO M,CHEN A Y,HUANG D,et al.MoS2quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide[J].Analytical Chemistry,2017,89(16):8335-8342.
[30]LIANG W,ZHUO Y,XIONG C,et al.Ultrasensitive cytosensor based on self-enhanced electrochemiluminescent ruthenium-silica composite nanoparticles for efficient drug screening with cell apoptosis monitoring[J].Analytical Chemistry,2015,87(24):12363-12371.
[31]QIU J J,WU Y C,WANG Y C,et al.Surface plasmon mediated chemical solution deposition of gold nanoparticles on a nanostructured silver surface at room temperature[J].Journal of the American Chemical Society,2013,135:38-41.
[32]WANG T,WANG D,PADELFORD J W,et al.Near-infrared electrogenerated chemiluminescence from aqueous soluble lipoic acid Au nanoclusters[J].Journal of the American Chemical Society,2016,138(20):6380-6383.
[33]XU Y,YIN X B,HE X W,et al.Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework[J].Biosensors& Bioelectronics 2015,68:197-203.
[34]XIONG C Y,WANG H J,LIANG W B,H J,et al.Luminescence-functionalized metal-organic frameworks based on a ruthenium(II)complex:a signal amplification strategy for electrogenerated chemiluminescence immunosensors[J].Chemistry-A European Journal,2015,21(27):9825-9832.
[35]MA H,LI X,YAN T,et al.Sensitive insulin detection based on electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+and Au nanoparticle-doped β-Cyclodextrin-Pb(II)metalorganic framework[J].ACS Applied Materials & Interfaces,2016,8(16):10121-10127.
[36]NEPOMNYASHCHII A B,CHO S,ROSSKY P,et al.Dependence of electrochemical and electrogenerated chemiluminescence properties on the structure of BODIPY dyes unusually large separation between sequential electron transfers[J].Journal of the American Chemical Society,2010,132(49):17550-17559.
[37]NEPOMNYASHCHII A B,PISTNER A J,BARD A J,et al.Synthesis,photophysics,electrochemistry and electrogenerated chemiluminescence of PEG-modified BODIPY dyes in organic and aqueous solutions[J].The Journal of Physical Chemistry C,2013,117(11):5599-5609.
[38]HESARI M,LU J S,WANG S,et al.Efficient Electrochemiluminescence of a boron-dipyrromethene(BODIPY)Dye[J].Chemical Communications,2015,51(6):1081-1084.
[39]PINAUD F,RUSSO L,PINET S,et al.Enhanced electrogenerated chemiluminescence in thermoresponsive microgels[J].Journal of the American Chemical Society,2013,135(15):5517-5520.
[40]LU Q,ZHANG J,WU Y,et al.Cathodic electrochemiluminescence behavior of an ammonolysis product of 3,4,9,10-perylenetetracarboxylic dianhydride in aqueous solution and its application for detecting dopamine[J].RSC Advances,2015,5(28):22289-22293.
[41]ZHAO J,LEI Y M,CHAI Y Q,et al. Novel electrochemiluminescence of perylene derivative and its application to mercury ion detection based on a dual amplification strategy[J].Biosensors&Bioelectronics,2016,86:720-727.
[42]PRICE J T,LI M S,BRAZEAU A L,et al.Structural insight into electrogenerated chemiluminescence of para-substituted aryl-triazole-thienyl compounds[J].The Journal of Physical Chemistry C,2016,120(38):21778-21789.
[43]HADJICHRISTIDIS N,PITSIKALIS M,PISPAS S,et al.Polymers with complex architecture by living anionic polymerization[J].Chemical Reviews,2001,101(12):3747-3792.
[44]QI H,ZHANG C,HUANG Z,et al.Electrochemistry and electrogenerated chemiluminescence of 1,3,5-tri(anthracen-10-yl)-benzene-centered starburst oligofluorenes[J].Journal of the American Chemical Society,2016,138(6):1947-1954.
[45]ZHOU Y,LI W,YU L,et al.Highly efficient electrochemiluminescence from iridium(III)complexes with 2-phenylquinoline ligand[J].Dalton Transactions,2015,44(4):1858-1865.
[46]HERNANDEZ J M,LONGHI E,CYSEWSKI R,et al.Photophysics and electrochemiluminescence of bright cyclometalated Ir(III)complexes in aqueous solutions[J].Analytical Chemistry,2016,88(8):4174-4178.
[47]LIU X,JIANG H,F(xiàn)ANG Y,et al.Quantum dotsbasedpotential-resolution dual-targets electrochemiluminescent immunosensor for subtype of tumor marker and its serological evaluation[J].Analytical Chemistry,2015,87(18):9163-9169.
[48]KERR E,DOEVEN E H,BARBANTE G J,et al.Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution:modulating emission colour by manipulating the energetic[J].Chemical Science,2015,6(1):472-479.
[49]HAGHIGHABIN M A,LO S C,BURN P L,et al.Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter[J].Chemical Science,2016,7(12):6974-6980.
[50]DENG S,JU H.Electrogenerated chemiluminescence of nanomaterials for bioanalysis[J].Analyst,2013,138(1):43-61.
[51]CHEN L,ZENG X,F(xiàn)ERHAN A R,et al.Signal-on electrochemiluminescent aptasensors based on target controlled permeable films[J].Chemical Communications,2015,51(6):1035-1038.
[52]ZHU C,YANG G,LI H,et al.Electrochemical sensors and biosensors based on nanomaterials and hanostructures[J].Analytical Chemistry,2015,87(1):230-249.
[53]LIN X,WANG Q,ZHU S,et al.A highly sensitive glutamic acid biosensor based on the determination of NADH enzymically generated by L-glutamic dehydrogenase[J].RSC Advances,2016(51):45829-45834.
[54]DONG Y P,CHENG G,ZHOU Y,et al.Electrochemiluminescent sensing for caspase-3 activity based on Ru(bpy)32+-doped silica nanoprobe[J].Analytical Chemistry,2016,88(3):1922-1929.
[55]JIANG D,ZHANG L,LIU F,et al.An electrochemiluminescence sensor with dual dignal amplification of Ru(bpy)32+based on PtNPs and glucose dehydrogenase for diagnosis of gas gangrene[J].RSC Advances,2016,6(24):19676-19685.
[56]LIANG H,SONG D D,GONG J M.Signal-on electrochemiluminescence of biofunctional Cd Te quantum dots for biosensing of organo-phosphate pesticides[J].Biosensors & Bioelectronics,2014,53,363-369.
[57]WANG B X,WANG H J,ZHONG X,et al.A highly sensitive electrochemiluminescence biosensor for the detection of organophosphate pesticides based on cyclodextrin functionalized graphitic carbon nitride and enzyme inhibition[J].Chemical Communications,2016,52,5049-5052.
[58]WU X P,CHAI Y Q,YUAN R,et al.A novel electrochemiluminescence choline biosensor based on biofunctional AMs-Cho biocomposite[J].Sensors and Actuators B,2014,204:429-436.
[59]WANGY Y Z,HAO N,F(xiàn)ENG Q M,SHI H W,et al.A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites[J].Biosensors&Bioelectronics,2016,77:76-82.
[60-]HANG H R,XU J J,CHEN H Y,et al.Electrochemiluminescence ratiometry:a new approach to DNA biosensing[J].Analytical Chemistry,2013,85(11):5321-5325.
[61]ZHAO H F,LIANG R P,WANG J W,et al.A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity[J].Chemical Communications,2015,51:12669-12672.
[62]HUAN Y,LEI J P,CHENG Y,et al.Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing[J].Biosensors & Bioelectronics,2016,77:733-739.
[63]FENG Q M,SHEN Y Z,LI M X,et al.Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+for microRNA detection[J].Analytical Chemistry,2016,88(1):937-944.
[64]ZHANG H R,WU M S,XU J J,et al.Signal-on dual-potential electrochemiluminescence based on luminol-gold bifunctional nanoparticles for telomerase detection[J].Analytical Chemistry,2014,86(8):3834-3840.
[65]ZHANG H R,WANG Y Z,ZHAO W,et al.Visual color-switch electrochemiluminescence biosensing of cancer cell based on multichannel bipolar electrode chip[J].Analytical Chemistry,2016,88(5):2884-2890.
[66]CHEN A Y,GUI G F,ZHUO Y,et al.Signal-off electrochemiluminescence biosensor based on Phi29 DNA polymerase mediated strand displacement amplification for Micro RNA detection.Analytical Chemistry,2015,87(12):6328-6334.
[67]GUI G F,ZHUO Y,CHAI Y Q,et al.In situ generation of self-enhanced luminophore by β-Lactamase catalysis for highly sensitive electrochemiluminescent aptasensor[J].Analytical Chemistry,2014,86(12):5873-5880.
[68]JIANG X Y,WANG H J,WANG H J,et al.Self-enhanced N-(aminobutyl)-N-(ethylisoluminol)derivative-based electrochemiluminescence immunosensor for sensitive laminin detection using PdIr cubes as a mimic peroxidas[J].Nanoscale,2016,8(15):8017-8023.
[69]SWANICK K N,LADOUCEUR S,ZYSMAN-COLMAN E,et al.Selfenhanced electrochemiluminescence of an iridium(III)complex:mechanistic insight[J].Angewandte Chemie International Edition,2012,51(44):11079-11082.
[70]DUFFORD R T,NIGHTINGALE D,GADDUM L W,et al.Luminescence of grignard compounds in electric and magnetic fields,and related electrical phenomena[J].Journal of the American Chemical Society,1927,49(8):1858-1864.
[71]HARVEY N.Luminescence during electrolysis[J].The Journal of Physical Chemistry,1929,33(10):1456-1459.
[72]LI M,KONG Q,BIAN Z,et al.Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures[J].Biosensors & Bioelectronics,2015,65:176-182.
[73]XIONG C,LIANG W,WANG H,et al.In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions[J].Chemical Communications,2016,52(32):5589-5592.
[74]ZHAI Q F,XING H H,ZHANG X W,et al.Enhanced Electrochemiluminescence Behavior of Gold-Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II)[J].Analytical Chemistry,2017,89(14):7788-7794.
[75]LI J,LU L,KANG T,et al.Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg2+[J].Biosensors & Bioelectronics,2016,77:740-745.
[76]HUANG R F,LIU H X,GAI Q Q,et al.A facile and sensitive electrochemiluminescence biosensor for Hg2+analysis based on a dual-function oligonucleotide probe[J].Biosensors & Bioelectronics,2015,71:194-199.
[77]CHEN H,LI W,WANG Q,et al.Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ion[J].Electrochimica Acta,2016,214:94-102.
[78]YUE X,ZHU Z,ZHANG M,et al.Reaction-based turn-on electrochemiluminescent sensor with a ruthenium(II)complex for selective detection of extracellular hydrogen sulfide in rat brain[J].Analytical Chemistry,2015,87(3):1839-45.
[79]CAO L,ZHANG R,ZHANG W,et al.A ruthenium(II)complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid[J].Biomaterials,2015,68:21-31.
[80]CUI C,CHEN Y,JIANG D C,et al.Attomole antigen detection using self-electrochemiluminous graphene oxide-capped Au@L012 nanocomposite[J].Analytical Chemistry,2017,89(4):2418-2423.
[81]WANG Y Z,XU C H,ZHAO W,et al.Bipolar electrode based multicolor electrochemiluminescence biosensor[J].Analytical Chemistry,2017,89(15):8050-8056.
[82]ZHAO Y,WANG Q,LI J,et al.A CeO2-matrical enhancing ECL sensing platform based on the Bi2S3-labeled inverted quenching mechanism for PSA detection[J].The Journal of Physical Chemistry B,2016,4(17):2963-2971.
[83]WANG H,YUAN Y,CHAI Y,et al. Self-enhanced electrochemiluminescence immunosensor based on nanowires obtained by a green approach[J].Biosensors & Bioelectronics,2015,68:72-77.
[84]ZHANG L,HE Y,WANG H,et al.A self-enhanced electrochemiluminescence immunosensor based on l-Lys-ruimage functionalized porous six arrises column nanorods for detection of CA15-3[J].Biosensors&Bioelectronics,2015,74:924-930.
[85]WANG H J,YUAN Y,ZHUO Y,et al.Sensitive electrochemiluminescence immunosensor for detection of N-Acetyl-β-d-glucosaminidase based on a“l(fā)ight-switch” molecule combined with DNA dendrimer[J].Analytical Chemistry,2016,88(11):5797-5803.
[86]HABTAMU H B,SENTIC M,SILVESTRINI M,et al.A sensitive electrochemiluminescence immunosensor for celiac disease diagnosis based on nanoelectrode ensembles[J].Analytical Chemistry,2015,87(24):12080-12087.
[87]WU L,MA C,GE L,et al. Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels[J].Biosensors&Bioelectronics,2015,63:450-457.
[88]LIU F,GE S,SU M,et al.Electrochemiluminescence device for in-situ and accurate determination of CA153 at the MCF-7 cell surface based on graphene quantum dots loaded surface villous Au nanocage[J].Biosensors & Bioelectronics,2015,71:286-293.
[89]SU M,LIU H,GE S,et al.An electrochemilumine scencelab-on-paper device for sensitive detection of two antigens at the MCF-7 cell surface based on porous bimetallic AuPd nanoparticles[J].RSC Advances,2016,6(20):16500-16506.
[90]HE Y,LI J,LIU Y,et al.Reusable and dual-potential responses electrogenerated chemiluminescence biosensor for synchronously cytosensing and dynamic cell surface N-glycan evaluation[J].Analytical Chemistry,2015,87(19):9777-9785.