• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Therapeutic targets against gastric cancer stem cells interacting with tumor microenvironment

    2018-04-20 06:31:43TomoyukiUchiharaTakatsuguIshimotoAtsukoYonemuraHideoBaba

    Tomoyuki Uchihara, Takatsugu Ishimoto, Atsuko Yonemura, Hideo Baba

    Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto 860-8556, Japan.

    INTRODUCTION

    Although the proportion of individuals with gastric cancer (GC) has declined for decades, GC continues to be a major cause of cancer-related deaths worldwide[1-3]. Despite improvements in the treatment of GC,the clinical outcome of patients with advanced GC after curative resection is still poor, which is mainly due to recurrence and metastasis[4]. Therefore, new treatment options for this disease must be developed.

    Recent evidence has increasingly indicated that the heterogeneity of the tumor is a consequence of cancer stem cells (CSCs), which are deeply involved in tumor progression and metastasis[5-7]. Malignant tumors have been reported to exhibit obvious histologic heterogeneity. In 1937, Furthet al.[8]demonstrated that a single leukemia cell could cause systemic disease in recipient mice. However, it took a long time for the concept of CSCs to be widely recognized. CSCs of acute myelogenous leukemia (AML) were first identified by Bonnet and Dick[9]in 1997, and they also determined that the CD34+ CD38- fraction of AML tumor cells enhances tumorigenicity after continuous transplant into immunodeficient mice. CSCs have subsequently been found in various types of solid tumors[10-12]. Gastric CSCs (GCSCs) have been vigorously investigated in studies using GC cell lines and primary GC tissues[13-15].

    The current review provides recent evidence for the regulation of GCSCs in the tumor microenvironment and for GCSC-targeted treatments.

    MARKERS OF GCSCS

    CD44

    CD44 was first identified as a potential GCSC marker in a study using GC cell lines. The CD44-positive fraction in these GC cell lines showed the ability to form spheroidsin vitroand demonstrated tumorigenicityin vivowhen injected into the stomach wall or when injected subcutaneously into immunodeficient mice[16].Furthermore, a combination of the cell surface markers CD44 and CD24 has been examined in GC cell lines and primary GC tissues from five patients using fluorescence-activated cell sorting. The authors of that study found that the CD44+/CD24+ fraction demonstrated a higher tumorigenicity compared with the CD44-/CD24- fraction when injected into immunodeficient mice. Therefore, not only do these cells have the ability to self-replicate and produce differentiated offspring, the combined expression of CD44+/CD24+ acts as a putative GCSC marker[17]. CSCs were isolated from the peripheral blood of GC patients using the cell surface markers CD44 and CD54, and tumors similar to the original human tumor were generated when the cells were injected into immunodeficient mice. The same cells differentiated into gastric epithelial cellsin vitroand self-renewedin vivoandin vitro. These results suggest that the combination of CD44+/CD54+can also be used as a potential cell surface marker for GCSCs[18]. Epithelial cell adhesion molecule (EpCAM)and CD44 have also been identified as CSC markers in various types of tumors. The EpCAM+/CD44+fraction from human GC tissues grew into tumors in immunodeficient mice, maintained a differentiated phenotype and reproduced the morphological and phenotypical heterogeneities of the original gastric tumors. These cells acquired greater tolerance to anticancer agents than other subtypes of cells[19].

    Lgr5

    CD133

    One study examined the expression of three putative CSC markers, including ATP-binding cassette subfamily B member 1, ATP-binding cassette sub-family G member 2, and CD133, in 90 human GC tissue samples and three human GC cell lines. The authors concluded that the expression levels of these markers in GC varied with the degree of differentiation, while poorly differentiated GC expressed high levels of these markers. Furthermore, CD133 expression in GC cells could be divided into two forms:luminal expression in the gland and cytoplasmic expression. A multivariate analysis revealed that the expression of CD133 in the cytoplasm was an independent prognostic factor in GC[25,26].

    Other GCSC markers

    In addition, aldehyde dehydrogenase 1 (ALDH1) has been identified as a marker of GCSCs. ALDH1+ cells derived from a diffuse-type GC cell line had a higher tumorigenic capacityin vitroandin vivocompared with ALDH1- cells and were capable of self-renewal and the generation of heterogeneous cell populations.Moreover, regenerating islet-derived family member 4 (REG4) was overexpressed in ALDH1+ GCSCs,and ALDH1 and REG4 expression were down-regulated by transforming growth factor-B (TGF-B), which correlated with a reduction in the GCSC population and tumorigenicity[27,28]. CD90+ cells, which possessed a greater ability to initiate tumorsin vivocompared with CD90- cells, could re-establish the cellular hierarchy of tumors from single-cell implantation, which demonstrates their self-renewal properties. In addition, previous studies on chemo-resistance revealed that ERBB2 was overexpressed in approximately 20%-25% of the gastric primary tumor models, which correlated with the higher level of CD90 expression in these tumors[29,30]. Moreover, trastuzumab treatment could decrease the CD90+ population in these tumor masses and could suppress tumor growth when combined with traditional chemotherapy. Taken together,this evidence suggests that CD90 may be another potential candidate marker of GCSCs[30]. The CD71-fraction of GC cells was enriched after treatment with 5-fluorouracil and accumulated during the G0/G1 cell cycle phase. This cell subtype also exhibited high drug resistance to conventional chemotherapy, which demonstrates its stem cell-like properties. Limiting dilution and serial transplantation assays revealed that the CD71- cell fraction had higher tumorigenicity than the CD71+ cell fraction[31].

    More recently, new tissue stem cell markers have been proposed. Lrig1, which is a marker of proliferative and quiescent stem cells in the skin and intestine, is a marker of gastric corpus epithelial progenitor cells that are capable of repopulating the damaged oxyntic mucosa via differentiation into normal gastric lineage cells in the mouse stomach. Lineage labelling using Lrig1-CreERT2/+; R26R-YFP/+ (Lrig1/YFP) or R26RLacZ/+ (Lrig1/LacZ) mice demonstrated that the Lrig1-YFP-marked cells were gastric progenitor cells[32].Likewise, Mist1 is a marker of quiescent stem cells in the gastric corpus isthmus. Mist1-positive stem cells serve as a cell-of-origin for intestinal-type GCs, and have the combination of Kras and Apc mutations;Mist1-positive cells are also the cell-of-origin of diffuse-type GCs when E-cadherin expression is lost[33].Potential GCSC markers are summarized in Table 1.

    GCSC REGULATION IN THE TUMOR MICROENVIRONMENT

    The tumor microenvironment consists of various types of cells including immune cells, endothelial cells,and fibroblasts, in addition to the extracellular matrix, and has a large impact on tumor progression[34,35].Cancer cells remodel their microenvironment through the secretion of growth factors and proteases,while stromal cells also affect cancer cells through the secretion of soluble factors such as matrix metalloproteinases, TGF-B1, Wnt ligands, bone morphogenetic proteins, stromal cell-derived factor 1 and exosomes[36-38]. Tissue stem cells are located beside the surrounding environment termed a “stem cell niche” where they play critical roles in tissue homeostasis by maintaining their ability to self-renew and differentiate[39,40].

    In the tumor microenvironment, myofibroblasts, which are also known as cancer-associated fibroblasts(CAFs), share characteristics with smooth muscle cells and fibroblasts. CAFs enhance tumor progression through the secretion of soluble factors such as growth factors and cytokines in various tumor types[41-43].One study showed that CAFs significantly increased the number of spheroid colonies, the expression level of CSC markers and the fraction of side population cells in scirrhous GC cell lines. The influence of CAFs was significantly inhibited by TGF-B inhibitors, but not by fibroblast growth factor receptor or cMet inhibitors. These findings suggest that CAFs might promote CSC properties in scirrhous GC through TGF-B signaling[44]. IL-17B induced the expression of the self-renewal-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and promoted tumor progression. After treatment with exogenous IL-17B, the supernatant from cultured mesenchymal stem cells promoted the proliferation and migration of GC cells.This suggests that IL-17B might promote the production of soluble factors by mesenchymal stem cells,which leads to GC progression[45].

    Table 1: Gastric cancer stem cell markers

    A recent compelling study demonstrated that nerves help to regulate both normal and neoplastic stem cell dynamics in the gastrointestinal stem cell niche. The authors of that study utilized a series of Dclk1-CreERT mouse models to show that acetylcholine from nerves and from Dclk1+ tuft cells, which acted as intermediary niche cells to coordinate neural input to help regulate subsequent stem cell activity, induced nerve growth factor in gastric epithelial cells; this in turn promoted neuron expansion and tumorigenesis[46].

    CURRENT TREATMENT OF GC AND THE POTENTIAL FOR TARGETING GCSCS

    Surgical resection is currently the only curative modality to eliminate GC. Endoscopic screening has become widespread, however, GCs are frequently diagnosed at an advanced stage, when the clinical outcomeis still poor. Even after curative surgery, patients with advanced GC still experience recurrence,which implies that undetectable GC cells exist in the blood at the time of surgery. Based on this possibility,definitive evidence has been found that multimodal treatments consisting of surgery with neoadjuvant chemotherapy, adjuvant chemotherapy, or chemoradiation would improve the poor outcomes compared with surgery alone.

    In recent years, several molecular-targeted agents have been investigated in various combinations with conventional treatment as a first-line chemotherapy against advanced GC. The Trastuzumab for Gastric Cancer (ToGA) trial revealed that trastuzumab, a recombinant monoclonal antibody against HER2 (also known as ERBB2), combined with fluoropyrimidine plus cisplatin provided a significant survival advantage compared with fluoropyrimidine plus cisplatin alone in patients with HER2-positive advanced GC[29,47,48].The ramucirumab for patients with previously treated advanced gastric or gastro-esophageal junction adenocarcinoma (RAINBOW) trial showed that the combination of ramucirumab and paclitaxel significantly improved overall survival compared with placebo plus paclitaxel and that this combination could be regarded as a new standard second-line chemotherapy for patients with advanced GC[49,50].

    Figure 1: GCSCs in the microenvironment and the activated pathway in GCSCs. GCSCs: Gastric cancer stem cells; CAF: cancer-associated fibroblasts; TGF: transforming growth factor; IL: interleukin

    Immune checkpoint blockade is new topic in cancer therapy. The immune checkpoint pathways, which basically maintain self-tolerance and limit collateral tissue damage during anti-microbial immune responses, can be co-opted by cancer to evade immune destruction[51]. Nivolumab is a human monoclonal IgG4 antibody that blocks the human programmed cell death-1 (PD-1) receptor. Preliminary data from a double-blinded, randomized, phase III trial (ONO-4538/BMS-936558) demonstrated the efficacy of nivolumab as salvage treatment as a third- or later line of treatment in 493 patients with advanced gastric or gastroesophageal junction cancer compared with placebo (NCT02267343). Finally, a clinical study demonstrated that nivolumab was effective as the salvage treatment for pretreated advanced GC with significantly improved clinical outcomes compared with the placebo[52].

    To develop a treatment strategy to target GCSCs, we must select critical molecules that regulate the biological characteristics of CSCs [Figure 1]. Several molecules have been investigated as possible targets including those associated with specific signaling pathways, cell surface markers, and microenvironmental factors. We previously used K19-Wnt1/C2mE mice, a transgenic GC mouse model, to demonstrate that the CD44 variant isoform (CD44v), one of the cell surface markers of GCSCs, contributed to the defense against reactive oxygen species by stabilizing the glutamate-cystine transporter subunit xCT and promoting the synthesis of the primary intracellular antioxidant glutathione[53,54]. Moreover, we found that CD44v expression was up-regulated in these gastric tumor cells. We also showed that the inhibition of the cystine transport system xc(-) with sulfasalazine, an inhibitor of xCT-dependent cystine transport, suppressed the progression of gastric tumors in these transgenic mice[55]. Our findings suggest that targeted therapy against the CD44v-xCT system may provide a strategy for the targeting of CD44v positive GCSCs. CD133 was a potential therapeutic target for antibody-drug conjugates (ADC), which was proven by binding mouse anti-human CD133 monoclonal antibody to highly cytotoxic monomethyl auristatin F, ultimately inducing apoptosis in cancer cells with high levels of CD133 expression[56]. However, a recent study demonstrated that the hierarchical organization that involves CSCs and non-CSCs may be reversible through epigenetic gene regulation, which suggests that therapeutic strategies that target GCSCs themselves might be insufficient to eliminate cancer cells[57].

    CONCLUSION

    Molecular-targeted agents have been developed as a new treatment strategy and have been applied to various types of solid tumors. These developed agents have been assessed in diverse combinations with conventional chemotherapy as a treatment against advanced tumors including GC. However, the success of molecular-targeted agents for GC has been limited, and the prognosis of patients with advanced GC is still poor. Based on accumulating evidence, GCSCs are deeply involved in GC progression. Moreover,the tumor microenvironment that surrounds GCSCs forms the CSC niche and allows the stem cells to give rise to a hierarchy of proliferative and non-GCSC cells. Targeting the critical pathways and molecules between GCSCs and their environment may therefore represent a promising therapeutic strategy, and may provide a complementary approach to conventional therapies that target the malignant cells themselves.This review describes recent progress and evidence concerning the markers of GCSCs, related molecules within the GCSC niche and treatment targets. Further elucidation of the molecular mechanisms of GCSC regulation may lead to the development of novel treatment strategies that target GCSCs.

    DECLARATIONS

    Authors’ contributions

    Writing manuscript: Uchihara T, Ishimoto T, Yonemura A, Baba H Organized data: Uchihara T, Ishimoto T

    Financial support and sponsorship

    None.

    Conflicts of interest

    There are no conflicts of interest.

    Patient consent

    Not applicable.

    Ethics approval

    Not applicable.

    Copyright

    ? The Author(s) 2018.

    1. Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M, La Vecchia C. Recent patterns in gastric cancer: a global overview.Int J Cancer2009;125:666-73.

    2. Taghavi S, Jayarajan SN, Davey A, Willis AI. Prognostic significance of signet ring gastric cancer.J Clin Oncol2012;30:3493-8.

    3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics.CA Cancer J Clin2011;61:69-90.

    4. Hohenberger P, Gretschel S. Gastric cancer.Lancet2003;362:305-15.

    5. Clarke MF, Fuller M. Stem cells and cancer: two faces of eve.Cell2006;124:1111-5.

    6. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities.Cell Stem Cell2012;10:717-28.

    7. Jordan CT, Guzman ML, Noble M. Cancer stem cells.N Engl J Med2006;355:1253-61.

    8. Furth J, Kahn MC, Breedis C. The transmission of leukemia of mice with a single cell.Am J Cancer1937;31:276-82.

    9. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.NatMed1997;3:730-7.

    10. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human coloncancer-initiating cells.Nature2007;445:111-5.

    11. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors.Cancer Res2003;63:5821-8.

    12. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells.Proc Natl Acad Sci U S A2003;100:3983-8.

    13. Xu G, Shen J, Ou Yang X, Sasahara M, Su X. Cancer stem cells: the “heartbeat” of gastric cancer.J Gastroenterol2013;48:781-97.

    14. Singh SR. Gastric cancer stem cells: a novel therapeutic target.Cancer Lett2013;338:110-9.

    15. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity.Proc Natl Acad Sci U S A2008;105:13427-32.

    16. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44.Stem Cells2009;27:1006-20.

    17. Zhang C, Li C, He F, Cai Y, Yang H. Identification of CD44+CD24+ gastric cancer stem cells.J Cancer Res Clin Oncol2011;137:1679-86.

    18. Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F, Liu F, Liu J, Dai B, Chen X, Wang F, Zeng F, Xu H, Hu J, Mo X. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients.Cell Res2012;22:248-58.

    19. Han ME, Jeon TY, Hwang SH, Y.S. Lee Y, Kim HJ, Shim HE, Yoon S, Baek SY, Kim BS, Kang CD, Oh SO. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research.Cell Mol Life Sci2011;68:3589-605.

    20. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H.Identification of stem cells in small intestine and colon by marker gene Lgr5.Nature2007;449:1003-7.

    21. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, Danenberg E,van den Brink S, Korving J, Abo A, Peters PJ, Wright N, Poulsom R, Clevers H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro.Cell Stem Cell2010;6:25-36.

    22. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.Nature2011;469:415-8.

    23. Demitrack ES, Gifford GB, Keeley TM, Carulli AJ, VanDussen KL, Thomas D, Giordano TJ, Liu Z, Kopan R, Samuelson LC. Notch signaling regulates gastric antral LGR5 stem cell function.EMBO J2015;34:2522-36.

    24. Leushacke M, Tan SH, Wong A, Swathi Y, Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K, Barker N. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach.Nat Cell Biol2017;19:774-86.

    25. Jiang Y, He Y, Li H, Li HN, Zhang L, Hu W, Sun YM, Chen FL, Jin XM. Expressions of putative cancer stem cell markers ABCB1,ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer.Gastric Cancer2012;15:440-50.

    26. Hashimoto K, Aoyagi K, Isobe T, Kouhuji K, Shirouzu K. Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer.Gastric Cancer2014;17:97-106.

    27. Katsuno Y, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-beta.J Pathol2012;228:391-404.

    28. Nguyen PH, Giraud J, Chambonnier L, Dubus P, Wittkop L, Belleannée G, Collet D, Soubeyran I, Evrard S, Rousseau B, Senant-Dugot N,Mégraud F, Mazurier F, Varon C. Characterization of biomarkers of tumorigenic and chemoresistant cancer stem cells in human gastric carcinoma.Clin Cancer Res2017;23:1586-97.

    29. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E,Hill J, Lehle M, Rüschoff J, Kang YK; ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial.Lancet2010;376:687-97.

    30. Jiang J, Zhang Y, Chuai S, Wang Z, Zheng D, Xu F, Zhang Y, Li C, Liang Y, Chen Z. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype.Oncogene2012;31:671-82.

    31. Ohkuma M, Haraguchi N, Ishii H, Mimori K, Tanaka F, Kim HM, Shimomura M, Hirose H, Yanaga K, Mori M. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells.Ann Surg Oncol2012;19:1357-64.

    32. Choi E, Lantz TL, Vlacich G, Keeley TM, Samuelson LC, Coffey RJ, Goldenring JR, Powell AE. Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach.Gut2017; doi: 10.1136/gutjnl-2017-313874

    33. Hayakawa Y, Ariyama H, Stancikova J, Sakitani K, Asfaha S, Renz BW, Dubeykovskaya ZA, Shibata W, Wang H, Westphalen CB, Chen X, Takemoto Y, Kim W, Khurana SS, Tailor Y, Nagar K, Tomita H, Hara A, Sepulveda AR, Setlik W, Gershon MD, Saha S, Ding L, Shen Z,Fox JG, Friedman RA, Konieczny SF, Worthley DL, Korinek V, Wang TC. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche.Cancer Cell2015;28:800-14.

    34. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis.Nat Med2013;19:1423-37.

    35. Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang KK, Lin SJ, Kalpana R, Tay ST, Suzuki Y, Cho BC, Kuroda D, Arima K,Izumi D, Iwatsuki M, Baba Y, Oki E, Watanabe M, Saya H, Hirakawa K, Baba H, Tan P. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells.Gastroenterology2017;153:191-204.e16.

    36. Leedham SJ, Brittan M, Preston SL, McDonald SA, Wright NA. The stomach periglandular fibroblast sheath: all present and correct.Gut2006;55:295-6.

    37. Hoffmann W. Stem cells, self-renewal and cancer of the gastric epithelium.Curr Med Chem2012;19:5975-83.

    38. Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J, Minn AJ. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer.Cell2017;170:352-66.e13.

    39. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell.Blood Cells1978;4:7-25.

    40. Moore KA, Lemischka IR. Stem cells and their niches.Science2006;311:1880-5.

    41. Boral D, Nie D. Cancer stem cells and niche mircoenvironments.Front Biosci (Elite Ed)2012;4:2502-14.

    42. Yi SY, Hao YB, Nan KJ, Fan TL. Cancer stem cells niche: a target for novel cancer therapeutics.Cancer Treat Rev2013;39:290-6.

    43. Kalluri R. The biology and function of fibroblasts in cancer.Nat Rev Cancer2016;16:582-98.

    44. Hasegawa T, Yashiro M, Nishii T, Matsuoka J, Fuyuhiro Y, Morisaki T, Fukuoka T, Shimizu K, Shimizu T, Miwa A, Hirakawa K. Cancerassociated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-beta signaling.Int J Cancer2014;134:1785-95.

    45. Bie Q, Zhang B, Sun C, Ji X, Barnie PA, Qi C, Peng J, Zhang D, Zheng D, Su Z, Wang S, Xu H. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.Oncotarget2017;8:18914-23.

    46. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, Jiang Z, Tanaka T, Dubeykovskaya ZA, Kim W, Chen X, Urbanska AM, Nagar K, Westphalen CB, Quante M, Lin CS, Gershon MD, Hara A, Zhao CM,Chen D, Worthley DL, Koike K, Wang TC. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling.Cancer Cell2017;31:21-34.

    47. Sawaki A, Ohashi Y, Omuro Y, Satoh T, Hamamoto Y, Boku N, Miyata Y, Takiuchi H, Yamaguchi K, Sasaki Y, Nishina T, Satoh A,Baba E, Tamura T, Abe T, Hatake K, Ohtsu A. Efficacy of trastuzumab in Japanese patients with HER2-positive advanced gastric or gastroesophageal junction cancer: a subgroup analysis of the Trastuzumab for Gastric Cancer (ToGA) study.Gastric Cancer2012;15:313-22.

    48. Yamaguchi K, Sawaki A, Doi T, Satoh T, Yamada Y, Omuro Y, Nishina T, Boku N, Chin K, Hamamoto Y, Takiuchi H, Komatsu Y, Saji S,Koizumi W, Miyata Y, Sato A, Baba E, Tamura T, Abe T, Ohtsu A. Efficacy and safety of capecitabine plus cisplatin in Japanese patients with advanced or metastatic gastric cancer: subset analyses of the AVAGAST study and the ToGA study.Gastric Cancer2013;16:175-82.

    49. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, Cunningham D, Rougier P, Komatsu Y, Ajani J, Emig M, Carlesi R, Ferry D, Chandrawansa K, Schwartz JD, Ohtsu A; RAINBOW Study Group. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial.Lancet Oncol2014;15:1224-35.

    50. Shitara K, Muro K, Shimada Y, Hironaka S, Sugimoto N, Komatsu Y, Nishina T, Yamaguchi K, Segawa Y, Omuro Y, Tamura T, Doi T,Yukisawa S, Yasui H, Nagashima F, Gotoh M, Esaki T, Emig M, Chandrawansa K, Liepa AM, Wilke H, Ichimiya Y, Ohtsu A. Subgroup analyses of the safety and efficacy of ramucirumab in Japanese and Western patients in RAINBOW: a randomized clinical trial in secondline treatment of gastric cancer.Gastric Cancer2016;19:927-38.

    51. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy.Cancer Cell2015;27:450-61.

    52. Kang YK, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yoshikawa T, Oh SC, Tamura T, Lee KW, Boku N, Chen LT. Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): a double-blinded, randomized, phase III trial.J Clin Oncol2017;35:2.

    53. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T,Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth.Cancer Cell2011;19:387-400.

    54. Nagano O, Okazaki S, Saya H. Redox regulation in stem-like cancer cells by CD44 variant isoforms.Oncogene2013;32:5191-8.

    55. Wada T, Ishimoto T, Seishima R, Tsuchihashi K, Yoshikawa M, Oshima H, Oshima M, Masuko T, Wright NA, Furuhashi S, Hirashima K, Baba H, Kitagawa Y, Saya H, Nagano O. Functional role of CD44v-xCT system in the development of spasmolytic polypeptideexpressing metaplasia.Cancer Sci2013;104:1323-9.

    56. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, Zabinski RF, Sutherland MK, Gerber HP, Van Orden KL, Moore PA, Ruben SM, Carter PJ. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers.Br J Cancer2008;99:100-9.

    57. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth.Cell2010;141:583-94.

    58. Xu YY, Guo M, Yang LQ, Zhou F, Yu C, Wang A, Pang TH, Wu HY, Zou XP, Zhang WJ, Wang L, Xu GF, Huang Q. Regulation of CD44v6 expression in gastric carcinoma by the IL-6/STAT3 signaling pathway and its clinical significance. Oncotarget 2017;8:45848-61.

    59. Phesse TJ, Sansom OJ. Lgr5 joins the club of gastric stem cell markers in the corpus.Nat Cell Biol2017;19:752-4.

    60. Li XB, Yang G, Zhu L, Tang YL, Zhang C, Ju Z, Yang X, Teng Y. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinaltype gastric cancer in mice.Cell Res2016;26:838-49.

    61. Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q, Carmon KS. LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence.Mol Cancer Ther2016;15:1580-90.

    62. Zhang L, Guo X, Zhang D, Fan Y, Qin L, Dong S, Zhang L. Upregulated miR-132 in Lgr5(+) gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway.Mol Carcinog2017;56:2022-34.

    63. Wen L, Chen XZ, Yang K, Chen ZX, Zhang B, Chen JP, Zhou ZG, Mo XM, Hu JK. Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review.PLoS One2013;8:e59154.

    一区二区三区国产精品乱码| 性色avwww在线观看| 国产私拍福利视频在线观看| 啦啦啦免费观看视频1| 日韩欧美一区二区三区在线观看| 国产一区二区在线观看日韩 | 久久久久久久久大av| 国内揄拍国产精品人妻在线| 欧美bdsm另类| 亚洲美女视频黄频| 久久精品国产亚洲av香蕉五月| 美女免费视频网站| 久久精品国产自在天天线| 国产精品久久久久久精品电影| 极品教师在线免费播放| e午夜精品久久久久久久| 美女被艹到高潮喷水动态| 久久精品91蜜桃| 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| xxxwww97欧美| 国产伦在线观看视频一区| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| 国产精华一区二区三区| 亚洲欧美日韩高清在线视频| 日本黄大片高清| 国产91精品成人一区二区三区| 亚洲国产精品成人综合色| 欧美中文日本在线观看视频| 久久久久国产精品人妻aⅴ院| 色在线成人网| 女人十人毛片免费观看3o分钟| 桃色一区二区三区在线观看| 国产亚洲精品一区二区www| 嫩草影视91久久| 少妇的逼好多水| tocl精华| 色综合婷婷激情| 日本免费一区二区三区高清不卡| 乱人视频在线观看| 久久久久性生活片| 欧美+日韩+精品| 女人高潮潮喷娇喘18禁视频| 精品免费久久久久久久清纯| 国产精品久久电影中文字幕| 麻豆成人av在线观看| 亚洲国产欧美人成| av女优亚洲男人天堂| 精品久久久久久久久久免费视频| 老司机深夜福利视频在线观看| 人人妻人人澡欧美一区二区| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 99久久成人亚洲精品观看| 久久精品国产亚洲av涩爱 | 在线播放无遮挡| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 在线免费观看不下载黄p国产 | xxx96com| ponron亚洲| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 国产成+人综合+亚洲专区| 国产精品久久久久久亚洲av鲁大| 在线观看美女被高潮喷水网站 | 亚洲第一电影网av| 日本黄色视频三级网站网址| 少妇的逼好多水| 成人性生交大片免费视频hd| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 岛国在线免费视频观看| 黄色丝袜av网址大全| 欧美最新免费一区二区三区 | 19禁男女啪啪无遮挡网站| 性色avwww在线观看| 久久人妻av系列| 亚洲电影在线观看av| 亚洲,欧美精品.| 一本久久中文字幕| 真人做人爱边吃奶动态| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 亚洲第一电影网av| 国产高清视频在线播放一区| 深爱激情五月婷婷| 国产久久久一区二区三区| 欧美最新免费一区二区三区 | 欧美性猛交黑人性爽| 美女 人体艺术 gogo| 小蜜桃在线观看免费完整版高清| 国产一区二区三区视频了| 男女做爰动态图高潮gif福利片| a级毛片a级免费在线| 国产精品久久久久久人妻精品电影| 俺也久久电影网| 男人的好看免费观看在线视频| 美女 人体艺术 gogo| 色av中文字幕| 国产激情偷乱视频一区二区| 亚洲无线观看免费| 国内精品美女久久久久久| 日韩欧美精品v在线| 美女高潮喷水抽搐中文字幕| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 国产成人啪精品午夜网站| 人人妻人人看人人澡| 女同久久另类99精品国产91| 日韩 欧美 亚洲 中文字幕| 乱人视频在线观看| 尤物成人国产欧美一区二区三区| 国产免费一级a男人的天堂| 国产精品三级大全| 免费看日本二区| 激情在线观看视频在线高清| 欧美黑人欧美精品刺激| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| avwww免费| 在线观看午夜福利视频| a级一级毛片免费在线观看| 97碰自拍视频| 亚洲七黄色美女视频| 亚洲不卡免费看| 熟女电影av网| 国产精品自产拍在线观看55亚洲| 国产精品永久免费网站| 国产爱豆传媒在线观看| 亚洲国产精品成人综合色| 国产色爽女视频免费观看| 日韩免费av在线播放| 免费看美女性在线毛片视频| 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 久久亚洲真实| 亚洲av中文字字幕乱码综合| 亚洲国产精品999在线| 男女视频在线观看网站免费| 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 色播亚洲综合网| 亚洲av成人精品一区久久| 精品人妻偷拍中文字幕| а√天堂www在线а√下载| 国产精品 欧美亚洲| 欧美三级亚洲精品| 天天添夜夜摸| 国产高清三级在线| 午夜免费成人在线视频| 一本久久中文字幕| 伊人久久精品亚洲午夜| 久久精品影院6| 色视频www国产| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 两个人的视频大全免费| 最近最新中文字幕大全免费视频| 怎么达到女性高潮| 人人妻人人澡欧美一区二区| 亚洲最大成人手机在线| 伊人久久精品亚洲午夜| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 欧美日韩黄片免| a级毛片a级免费在线| 熟女少妇亚洲综合色aaa.| 国内精品美女久久久久久| 极品教师在线免费播放| 天堂网av新在线| 99国产极品粉嫩在线观看| 日本a在线网址| 国产综合懂色| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 亚洲18禁久久av| 99久久精品国产亚洲精品| 婷婷亚洲欧美| 少妇的逼好多水| 中出人妻视频一区二区| 亚洲精品在线美女| 偷拍熟女少妇极品色| 99久久成人亚洲精品观看| 91字幕亚洲| 亚洲av熟女| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| www.www免费av| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 欧美+日韩+精品| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 香蕉久久夜色| 天堂动漫精品| 法律面前人人平等表现在哪些方面| 色哟哟哟哟哟哟| 欧美日韩乱码在线| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 精品欧美国产一区二区三| 特级一级黄色大片| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 日日夜夜操网爽| av欧美777| 99精品久久久久人妻精品| www日本在线高清视频| 国产高清视频在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 免费人成在线观看视频色| 国产真人三级小视频在线观看| 午夜精品在线福利| 在线观看66精品国产| 久久久久久大精品| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 亚洲人成网站高清观看| 久久久成人免费电影| 国内精品久久久久久久电影| 日韩欧美 国产精品| 免费人成视频x8x8入口观看| 国产亚洲精品综合一区在线观看| 国产高清视频在线观看网站| 国产av一区在线观看免费| 国产男靠女视频免费网站| 国产成人影院久久av| 内射极品少妇av片p| www.色视频.com| 国产成人影院久久av| 免费看日本二区| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 婷婷精品国产亚洲av在线| 露出奶头的视频| 久久久国产成人精品二区| 欧美日韩精品网址| 色综合亚洲欧美另类图片| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 精品久久久久久久毛片微露脸| 久久久国产成人精品二区| 婷婷亚洲欧美| 丰满人妻一区二区三区视频av | 一级毛片高清免费大全| 国产av在哪里看| 69av精品久久久久久| 淫妇啪啪啪对白视频| 91字幕亚洲| 十八禁人妻一区二区| 国产亚洲精品一区二区www| 免费高清视频大片| 久久久久久久亚洲中文字幕 | 免费搜索国产男女视频| 伊人久久精品亚洲午夜| 免费观看人在逋| 国产激情欧美一区二区| 欧美黑人欧美精品刺激| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 一进一出抽搐动态| 国产爱豆传媒在线观看| 午夜精品久久久久久毛片777| 欧美日韩综合久久久久久 | 97人妻精品一区二区三区麻豆| tocl精华| 精品一区二区三区视频在线观看免费| 欧美xxxx黑人xx丫x性爽| 国产精品亚洲美女久久久| 免费高清视频大片| 天堂网av新在线| 久久久成人免费电影| 成年女人毛片免费观看观看9| 91久久精品电影网| 国产精品嫩草影院av在线观看 | 成人18禁在线播放| 欧美在线黄色| 精品一区二区三区视频在线 | av在线天堂中文字幕| 欧美成人a在线观看| 69人妻影院| 日本一本二区三区精品| 在线视频色国产色| 桃红色精品国产亚洲av| 国产亚洲精品av在线| 最新中文字幕久久久久| 亚洲五月婷婷丁香| 成人18禁在线播放| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 亚洲国产中文字幕在线视频| 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 国产视频内射| 老熟妇乱子伦视频在线观看| 亚洲国产欧美人成| 亚洲国产中文字幕在线视频| 91久久精品电影网| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 亚洲精品在线观看二区| 高清毛片免费观看视频网站| 久久精品国产综合久久久| 午夜两性在线视频| 人人妻,人人澡人人爽秒播| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 91av网一区二区| 国产亚洲av嫩草精品影院| 亚洲中文日韩欧美视频| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 97碰自拍视频| 禁无遮挡网站| 搞女人的毛片| 国产成人福利小说| 在线播放国产精品三级| 国产午夜精品久久久久久一区二区三区 | 国产精华一区二区三区| 国产成+人综合+亚洲专区| 免费电影在线观看免费观看| 男人和女人高潮做爰伦理| 看片在线看免费视频| 草草在线视频免费看| 成人av在线播放网站| 亚洲色图av天堂| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文综合在线视频| 婷婷精品国产亚洲av在线| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| 在线天堂最新版资源| 亚洲内射少妇av| 久久久国产成人精品二区| 日本黄色视频三级网站网址| 叶爱在线成人免费视频播放| 尤物成人国产欧美一区二区三区| 午夜福利在线在线| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 日本在线视频免费播放| 午夜免费成人在线视频| 中亚洲国语对白在线视频| 日韩国内少妇激情av| 成人特级av手机在线观看| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 男人的好看免费观看在线视频| 成人性生交大片免费视频hd| 免费看光身美女| 美女高潮喷水抽搐中文字幕| svipshipincom国产片| 国产三级在线视频| 禁无遮挡网站| 欧美精品啪啪一区二区三区| 国产精品三级大全| 成人18禁在线播放| 国产av在哪里看| 久99久视频精品免费| 亚洲中文字幕日韩| 欧美激情在线99| 成人精品一区二区免费| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 国产高清视频在线播放一区| 51午夜福利影视在线观看| 香蕉丝袜av| 国产精品 欧美亚洲| av天堂在线播放| 麻豆国产av国片精品| 国产av麻豆久久久久久久| 麻豆一二三区av精品| 最好的美女福利视频网| 欧美乱妇无乱码| 白带黄色成豆腐渣| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 日本黄色视频三级网站网址| 91久久精品电影网| 日本一二三区视频观看| 免费无遮挡裸体视频| 观看美女的网站| 成人精品一区二区免费| 亚洲国产欧洲综合997久久,| 色尼玛亚洲综合影院| 最新中文字幕久久久久| www国产在线视频色| 成人国产一区最新在线观看| 国产精品 国内视频| 国产伦在线观看视频一区| 99精品欧美一区二区三区四区| 亚洲久久久久久中文字幕| 91av网一区二区| 国产中年淑女户外野战色| 午夜福利在线观看免费完整高清在 | 国内精品久久久久久久电影| 熟妇人妻久久中文字幕3abv| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 国产av在哪里看| 日韩有码中文字幕| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 午夜免费男女啪啪视频观看 | 国产亚洲av嫩草精品影院| 欧美不卡视频在线免费观看| 最近视频中文字幕2019在线8| 国产精品电影一区二区三区| 色吧在线观看| 亚洲国产中文字幕在线视频| 欧美日本亚洲视频在线播放| 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 免费搜索国产男女视频| 欧美乱色亚洲激情| 久久精品综合一区二区三区| 日本一本二区三区精品| 欧美一区二区精品小视频在线| 麻豆久久精品国产亚洲av| 国产精品美女特级片免费视频播放器| 97碰自拍视频| 老司机午夜福利在线观看视频| 草草在线视频免费看| 国产在线精品亚洲第一网站| 国产精品爽爽va在线观看网站| 免费无遮挡裸体视频| 日韩高清综合在线| 91字幕亚洲| 性欧美人与动物交配| 搡女人真爽免费视频火全软件 | www日本黄色视频网| 久久久久精品国产欧美久久久| 亚洲熟妇中文字幕五十中出| 中文资源天堂在线| 国产黄色小视频在线观看| 国产激情偷乱视频一区二区| 色综合站精品国产| 岛国在线观看网站| 欧美在线一区亚洲| 亚洲最大成人中文| 成人午夜高清在线视频| 午夜两性在线视频| 亚洲人成伊人成综合网2020| 国内揄拍国产精品人妻在线| 日韩大尺度精品在线看网址| 香蕉丝袜av| 黄色成人免费大全| 久久久国产成人免费| 国产精品影院久久| 老司机福利观看| 99热只有精品国产| 亚洲国产日韩欧美精品在线观看 | 国产极品精品免费视频能看的| 久99久视频精品免费| 国产真实伦视频高清在线观看 | 久久草成人影院| 九九久久精品国产亚洲av麻豆| 日韩大尺度精品在线看网址| 制服丝袜大香蕉在线| 久久久久国产精品人妻aⅴ院| 男女之事视频高清在线观看| 国产免费男女视频| 国产精品国产高清国产av| 久久香蕉国产精品| 首页视频小说图片口味搜索| 99久久精品一区二区三区| 久久精品影院6| 精品久久久久久久久久免费视频| 免费电影在线观看免费观看| 亚洲av成人精品一区久久| 国产欧美日韩一区二区三| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 狂野欧美白嫩少妇大欣赏| 中文亚洲av片在线观看爽| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 国产高清视频在线观看网站| 亚洲在线自拍视频| 亚洲av免费在线观看| 制服人妻中文乱码| 香蕉av资源在线| 天堂影院成人在线观看| 亚洲美女视频黄频| 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 特大巨黑吊av在线直播| 国产成人系列免费观看| 国产成人欧美在线观看| eeuss影院久久| 亚洲av不卡在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成年女人毛片免费观看观看9| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 久久香蕉精品热| 高清毛片免费观看视频网站| 亚洲人成网站在线播放欧美日韩| 最近最新免费中文字幕在线| 网址你懂的国产日韩在线| 欧美成人性av电影在线观看| 在线观看舔阴道视频| av在线天堂中文字幕| 黄色女人牲交| 在线免费观看不下载黄p国产 | 成年女人毛片免费观看观看9| 久久亚洲精品不卡| 真实男女啪啪啪动态图| 国产三级黄色录像| 国产午夜精品论理片| 91在线精品国自产拍蜜月 | 最近最新中文字幕大全免费视频| 在线十欧美十亚洲十日本专区| 国产精品 国内视频| 亚洲电影在线观看av| 欧美日韩一级在线毛片| av中文乱码字幕在线| 免费看日本二区| 丰满的人妻完整版| 久久久久久久亚洲中文字幕 | 国产精品久久久久久精品电影| 精品久久久久久久久久免费视频| 国产亚洲欧美在线一区二区| 国产午夜精品论理片| 一个人观看的视频www高清免费观看| 在线观看免费视频日本深夜| 欧美日韩福利视频一区二区| 日韩欧美精品v在线| 在线播放国产精品三级| 哪里可以看免费的av片| 中文资源天堂在线| av视频在线观看入口| 伊人久久精品亚洲午夜| 一区二区三区免费毛片| 国内精品美女久久久久久| 免费在线观看成人毛片| 无遮挡黄片免费观看| 亚洲国产精品久久男人天堂| 深夜精品福利| 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 久久精品国产亚洲av涩爱 | 少妇人妻精品综合一区二区 | 俺也久久电影网| 最近最新中文字幕大全电影3| 一二三四社区在线视频社区8| 免费av观看视频| 一个人免费在线观看电影| 久久久久国产精品人妻aⅴ院| 日本 欧美在线| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区视频在线 | 一个人观看的视频www高清免费观看| 在线观看66精品国产| 母亲3免费完整高清在线观看| 小说图片视频综合网站| 毛片女人毛片| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区 | 欧美大码av| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 国产三级黄色录像| 成人永久免费在线观看视频| 丝袜美腿在线中文| av福利片在线观看| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩一区二区三| 国产av麻豆久久久久久久| 国产伦人伦偷精品视频| 波野结衣二区三区在线 | 精品久久久久久久人妻蜜臀av| 制服丝袜大香蕉在线| 免费av不卡在线播放| 午夜福利视频1000在线观看| 国产三级中文精品| 少妇的丰满在线观看| 日本与韩国留学比较| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 一本久久中文字幕| 欧美+亚洲+日韩+国产| 精品午夜福利视频在线观看一区| 免费电影在线观看免费观看| 免费人成在线观看视频色| 观看美女的网站| 在线观看免费视频日本深夜| 热99re8久久精品国产| 一a级毛片在线观看|