• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UEs Power Reduction Evolution with Adaptive Mechanism over LTE Wireless Networks

    2018-04-08 03:11:36RuchiSachanandChangWookAhn
    關鍵詞:連線等價切線

    Ruchi Sachan and Chang Wook Ahn

    1.Introduction

    Devices such as cell phones, email pagers, and moving picture experts group audio layer-3 (MP3) players have some specific functionality and hence are dedicated to the use of power leading to longer battery life. The design of such devices also contributes towards efficient power consumption which has resulted in the popularity of their usage. Therefore, a device for general purpose incorporating many other functionalities should have such design with minimal power consumption.Fig. 1 illustrates the setup of a mobile environment in which we assume connections from the Internet created and terminated at mobile end-points. The backbone of the mobile network is represented as a core network and also assumed as a full outfit network which connects the access points to the rest of the mobile network. The core network behaves like a wired multimedia environment with minimal bit error losses and congestion losses.

    Fig. 1. Mobile environment with LTE networks.

    Batteries provide the necessary energy required for the operations of mobile devices. The capacity of a battery employed in a device is limited which indicates an optimal power management system to be implemented in such devices.Internet streaming applications on mobile devices are popular due to faster broadband speeds and higher bandwidth provided in advanced LTE and 5G networks but constrained in longer usage time due to the limited battery capacity[4]. Battery power consumption can be slightly reduced by lowering the transmission rate of streamed data (reducing the streaming quality), as the power consumption depends on the data transmission rates[5],[6]. Thus, we propose an energy-efficient rate adaptation (RA) mechanism that can reduce the mobile battery power consumption during multimedia streaming.

    The rest part of the paper is organized as follows. In Section 2, we review related literature. The literature study for the proposal is presented in Section 3, followed by the description of a system model which introduces the LTE user equipment (UE) power consumption method as a way to save battery power on mobile devices. Section 4 discusses the simulation results where UE’s energy reduction problem was solved by applying RA and without rate adaptation (WRA) based mechanism over LTE networks. Finally, Section 5 concludes the paper.

    2.Related Work

    Power saving schemes during video streaming have engaged ample research recently[7]. Some related studies proposed several streaming techniques used by commercial video providers, for instance, ON-OFF, throttling, bitrate streaming, and compared them in the context of power,bandwidth, and delay[8]. The authors in [9] measured the video streaming’s energy while using Wi-Fi and 3G. Nevertheless,they did not offer any useful solution to improve the energy efficiency regarding the long life battery consumption.

    In [5], a study presented for the transmission of data to reduce battery power consumption, which was much more complicated while choosing a high-quality version for end users and required server support in advance. Therefore, most of the service network interface cards are compatible by default with the IEEE 802.11 power saving mode (PSM). Recently, the battery power consumption during streaming services is directly minimized, when the power saving mode is on in the devices. For instance, authors in [10] provided a method that maximized the sleeping time of the wireless network interface card (WNIC) in the LTE network. Therefore, the power saving mode suggested a client-centric arrangement to allow buffering on the server side so that streaming data could be able to send in bursts.

    Moreover, to measure the power consumption for LTE UE,a study showed a standard model and parameters[11]. In this model, the power consumption is entirely dependent on the network component of UE based on the carrier aggregation.And in [12], it was shown that decoding multimedia contents consumes a large part of the energy and that the power required to decode audio or video depends on the computational complexity of the codec. Though, the authors had not defined the exact amount of energy consumed by the decoding part in mobile devices. Efficiently managing power on mobile platforms has always been a complex and challenging research problem so far, because of the several running applications and internal configurations, such as possible hardware configuration options,power states, and the interdependencies between computing,sensing, and networking resources, and their quality of experience (QoE)[13]-[15].

    The researchers in [16] introduced the mechanism with the supporting of carrier aggregation (CA) with a complexity in UEs design regarding the receiver and transmitter. Some work has been presented on how this can be affected on the UE battery life after CA was standardized in the 3rd generation partnership project (3GPP). In [17], some contribution has been discussed with the effect on UEs complexity and battery life but the current power consumption was not considered. Our paper has considered saving the power consumption based on the running application of Internet streaming.

    3.Power Consumption Model

    The system model assumes that we have considered an LTE UE power consumption model. Traditionally, LTE has two radio resource control (RRC) states namely RRC_Connected and RRC_Idle according to the UE active or inactive status[18],[19]. As shown in Fig. 2, there are given three modes, respectively: Continuous reception (CR), short discontinuous reception (DRX), and long discontinuous reception (DRX). UE can be in one of these three modes at the RRC_Connected state, but UE is only in the DRX mode at the RRC_Idle state. In that situation, if UE is in the RRC_Idle state and also receives and sends the packet without considering the packet size, then the state will switch from RRC_Idle to RRC_Connected with a pretty substantial delay. Thus, UE enters CR after being endorsed to RRC_Connected by default and keeps observing the physical downlink control channel(PDCCH) to give a control message to UE[20].

    Fig. 2. State transitions in LTE network.

    The DRX inactivity timer Tinalso starts by an individual UE, which will be reset whenever UE receives and sends a packet to/from the server. Based on Tin’s expiration UE enters the short DRX mode without seeing any data activity at the starting point in each DRX cycle. An ON-period will follow, in which the UE turns its receiver on, to receive packets from the eNB (i.e., base station) and monitor whether there is any pending downlink transmission or not while UE is in short DRX.

    教師要通過微課平臺隨時查看學生的學習進度和所提問題,以便有針對性地設計課堂教學活動,突破重難點知識:1.定理的幾何意義:至少存在一點P(ξ,f(ξ)),該曲線y=f(x)在點P(ξ,f(ξ))的切線平行于曲線兩端點的連線AB;2.定理只論證了ξ的存在性,ξ∈(a,b),不知道ξ的準確數(shù)值;3.幾種等價表示形式

    Thus when the short cycle timer starts, UE switches to long DRX if there is no data activity. Else, UE goes back into CR. If there is any data transfer, then every time UE enters CR. And then UE starts the tail timer, which is reset whenever a packet is sent or received by UEs. When expires, UE breaks from RRC_Connected to RRC_Idle and the allocated radio resource is released.

    Based on Fig. 2, note that Ttaiicoexists with Tiand Tis, so the UE overall power consumption model in LTE is defined as(1) with the unit of Watt:

    where V is the binary variable expressing whether the UE is in RRC_Connected; VC, Vid, and VDare binary variables indicating that UE is in connected mode, idle mode, and DRX mode, respectively. Similarly, PC, Pid, and PDare the power consumption in the connected mode, idle mode, and DRX mode, respectively.

    The future UE model depends on the transmits (TX) and receive (RX) power levels, downlink (DL) and uplink (UL)data rates, and RRC mode[21]. The RRC_Connected mode is divided into baseband (BB) and functional blocks. BB block includes the TX baseband (TXBB) and RX baseband (RXBB).The radio frequency (RF) functional blocks which define the power consumption as a function of either TX or RX power level (L) and data rate (R). Fig. 3 shows the model which is divided into blocks, where each block has a different parameter. For instance, the transmit power LTXin the TXRF initially affects the power consumption of that block.

    Fig. 3. LTE cellular system power model.

    The function of the block can be evaluated empirically by varying the function-specific parameter like RTXof the TX BB,at the same time observing the other parameters, such as LTX,RRX, and LRXand a level where they influence the measurement at least. Based on Fig. 3, the RRC_Connected mode power consumption is defined as:

    where PCis the power consumption in the connected mode;Ponis the power consumed when UE is ON, PRXis the power consumed when the receiver is actively receiving;PTXis the power consumed when the transmitter is actively transmitting. And in (2) and (3), PRXBBis the power consumed of RXBB; PRXRFis that of RXRF; PTXBBis that of TXBB; PTXRFis the power consumed in TXRF. During the simulation, the UE energy level is decreased by using RA mechanism based on calculations.

    4.Results and Discussion

    In this section, the performance evaluation results of the proposed algorithm are presented. At first, we have analyzed a power level comparison between RA and WRA based schemes.We also showed the energy level with increasing and decreasing the throughput with and without recharging. Finally,this paper conducted average power consumption over picture resolution in two different scenarios such as online streaming and offline playback. Table 1 lists the simulation parameters which we have considered in this paper.

    Table 1: Simulation parameters

    Based on our experiment and results, total power consumption during streaming over LTE in scenarios using RA and WRA is shown in Fig. 4 and Fig. 5. The LTE power consumption is calculated based on (1) and (4) as described in Section 3.

    Fig. 4. Energy level with power-ON.

    Fig. 5. Energy level due to power in sleep mode.

    We have proposed the RA mechanism to save the power for the mobile phone as a mean to battery power reduction in two conditions: Power-ON and without power-ON means in the sleep mode in a mobile phone individually. We proposed the mechanism based on a power level comparison. Fig. 4 shows the power level comparison between RA and WRA in the power-ON scenario where WRA mechanism consumes 99.5% of the overall power and the proposed RA mechanism consumes 94.5% of the overall power within 5 hours. As the RA mechanism saves almost 5% of power consumption compared with the WRA method. So we can say that the applied WRA mechanism is less efficient than the RA method.And the without power-ON scenario means the sleep-mode condition. As shown in Fig. 5, the WRA mechanism consumes 98% of the overall power and the RA mechanism consumes 88% within 5 hours. So the RA mechanism almost saves 10%power compared with the WRA method. Hence, the RA mechanism has better power consumption in comparison with the WRA mechanism, and this saves high power consumption in the without power-ON means sleep mode in a mobile phone than that with power-ON.

    According to different UE’s energy level, as we can see in Fig. 6, every single UE throughput increases and decreases because their power level is changing. And also,it adjusts the quality of the streaming multimedia contents depending upon the UE’s energy level. The quality of the multimedia content is controlled by adjusting the sending packet size as the constant bit rate (CBR) at the server. The energy level in UE is monitored by every 1 minute and the packet size is changed according to the UE’s extra energy level. Thus, it achieves overall slightly high energy saving with our proposed mechanism.

    5.Conclusions

    Fig. 6. Throughput vs. time.

    In this paper, we studied the energy-aware multimedia streaming on mobile phones. A bit-RA based approach was presented to optimize the power consumption in the context of the green technology. By applying the energy consumption model to a comprehensive dataset, we show that LTE is much less power efficient than the other previous technology.However, we did not show the mechanism comparison with previous technology, but we have shown the battery power consumption on mobile devices based on streaming multimedia contents over LTE networks. Moreover, we have proposed an RA mechanism based on the remnant mobile power level as a mean to save battery power consumption. By comparing the RA and WRA based mechanisms, our results had successfully achieved low power consumption in both power-ON and without power-ON means in the sleep mode during streaming in LTE networks.

    [1]B. Rashidi, C. Fung, and T. Vu, “Recdroid: A resource access permission control portal and recommendation service for smartphone users,” inProc. of the ACM MobiCom Workshop on Security and Privacy in Mobile Environments,2014, pp. 13-18.

    [2]A. Sun, T. Wambach, A. G. Venkatesh, and D. A. Hall, “A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics,” inProc. of 2014 IEEE Biomedical Circuits and Systems Conf., 2014, pp. 312-315.

    [3]A. R. Jensen, M. Lauridsen, P. Mogensen, T. B. S?rensen,and P. Jensen, “LTE UE power consumption model: For system level energy and performance optimization,” inProc.of 2012 IEEE Vehicular Technology Conf., 2012, pp. 1-5.

    [4]A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” inProc. of USENIX Annual Technical Conf., 2010, p. 21.

    [5]Y. Liu, L. Guo, F. Li, and S. Chen, “An empirical evaluation of battery power consumption for streaming data transmission to mobile devices,” inProc. of the 19th ACM Intl. Conf. on Multimedia, 2011, pp. 473-482.

    [6]R. Trestian, Q. T. Vien, P. Shah, and G. Mapp, “Exploring energy consumption issues for multimedia streaming in LTE HetNet small cells,” inProc. of IEEE the 40th Conf. on Local Computer Networks, 2015, pp. 498-501.

    [7]S. Aghaeinezhadfirouzja, H. Liu, B. Xia, and M. Tao,“Implementation and measurement of single user MIMO testbed for TD-LTE-A downlink channels,” inProc. of IEEE the 8th Intl. Conf. on Communication Software and Networks, Beijing, 2016, pp. 211-215.

    [8]M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto,“Dissecting mobile video services: An energy consumption perspective,” inProc. of IEEE the 14th Intl. Symposium on A World of Wireless, Mobile and Multimedia Networks, 2013,pp. 1-11.

    [9]P. M. Eittenberger, M. Hamatschek, M. Gro?mann, and U.R. Krieger, “Monitoring mobile video delivery to android devices,” inProc. of the 4th ACM Multimedia Systems Conf.,2013, pp. 119-124

    [10]E. Tan, L. Guo, S. Chen, and X. Zhang, “PSM-throttling:Minimizing energy consumption for bulk data communications in WLANs,” inProc. of IEEE Intl. Conf. on Network Protocols, 2007, pp. 123-132.

    [11]R. Sanchez-Mejias, Y. Guo, M. Lauridsen, P. Mogensen, and L. A. Maestro Ruiz de Temino, “Current consumption measurements with a carrier aggregation smartphone,” inProc. of IEEE the 80th Vehicular Technology Conf., 2014,pp. 1-5.

    [12]M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy efficient multimedia streaming to mobile devicesa survey,”IEEE Communications Surveys and Tutorials, vol. 16, no. 1,pp. 579-597, 2014.

    [13]Q. Jiang, V. C. M. Leung, H. Tang, and H. S. Xi, “Energyefficient adaptive rate control for streaming media transmission over cognitive radio,”IEEE Trans. on Communications, vol. 63, no. 12, pp. 4682-4693, Dec. 2015.

    [14]N. Khan and M. G. Martini, “Qoe-driven multi-user scheduling and rate adaptation with reduced cross-layer signaling for scalable video streaming over lte wireless systems,”EURASIP Journal on Wireless Communications and Networking, no. 1, pp. 93:1-23, 2016, DOI:10.1186/s13638-016-0584-6.

    [15]M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Ho?feld, and P. Tran-Gia, “A survey on quality of experience of HTTP adaptive streaming,”IEEE Communications Surveys and Tutorials, vol. 17, no. 1, pp. 469-492, 2015.

    [16]B. Dusza, P. Marwedel, O. Spinczyk, and C. Wietfeld, “A context aware battery lifetime model for carrier aggregation enabled LTE-A systems,” inProc. of IEEE Consumer Communications and Networking Conf., 2014, pp. 13-19.

    [17]NTT DoCoMo,Views on Downlink Reception Bandwidth Considering Power Saving Effect in LTE-Advanced, 3GPP R1-090310, 2009.

    [18]W. D. Doyle, “Magnetization reversal in films with biaxial anisotropy,”IEEE Trans. on Magnetics, vol. 2, no. 2, pp. 68-73, 1966.

    [19]Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger,and F. Xu, “Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications,”IEEE Communications Magazine, vol. 50, no. 2, pp. 122-130,2012.

    [20]D. Musiige, L. Vincent, F. Anton, and D. Mioc, “LTE RF subsystem power consumption modeling,” inProc. of the 1st IEEE Global Conf. on Consumer Electronics, Tokyo, 2012,pp. 645-649.

    [21]J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O.Spatscheck, “A close examination of performance and power characteristics of 4G LTE networks,” inProc. of the 10th Intl. Conf. on ACM Mobile Systems, Applications, and Services, 2012, pp. 225-238.

    [22]R. Kwan and C. Leung, “A survey of scheduling and interference mitigation in LTE,”Journal of Electrical and Computer Engineering, no. 1, pp. 1-10, 2010, DOI:10.1155/2010/273486

    猜你喜歡
    連線等價切線
    快樂連線
    快樂語文(2021年27期)2021-11-24 01:29:24
    快樂連線
    快樂語文(2021年11期)2021-07-20 07:41:48
    圓錐曲線的切線方程及其推廣的結論
    快樂連線
    快樂語文(2020年36期)2021-01-14 01:10:44
    切線在手,函數(shù)無憂
    快樂連線
    快樂語文(2019年12期)2019-06-12 08:41:56
    n次自然數(shù)冪和的一個等價無窮大
    中文信息(2017年12期)2018-01-27 08:22:58
    過圓錐曲線上一點作切線的新方法
    收斂的非線性迭代數(shù)列xn+1=g(xn)的等價數(shù)列
    環(huán)Fpm+uFpm+…+uk-1Fpm上常循環(huán)碼的等價性
    国产高潮美女av| 亚洲精华国产精华精| 久9热在线精品视频| 亚洲精品乱码久久久v下载方式 | 欧美性感艳星| 精品无人区乱码1区二区| 免费在线观看日本一区| 婷婷精品国产亚洲av| 2021天堂中文幕一二区在线观| 深夜精品福利| 18禁裸乳无遮挡免费网站照片| 欧美极品一区二区三区四区| 内射极品少妇av片p| 午夜福利在线在线| 偷拍熟女少妇极品色| 一级作爱视频免费观看| 麻豆一二三区av精品| 我的老师免费观看完整版| 国产精品,欧美在线| 色精品久久人妻99蜜桃| 99久久成人亚洲精品观看| www日本在线高清视频| 免费看a级黄色片| 九九热线精品视视频播放| 国产淫片久久久久久久久 | 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 国产精品自产拍在线观看55亚洲| 少妇人妻精品综合一区二区 | 欧美成人免费av一区二区三区| 一进一出抽搐动态| 欧美xxxx黑人xx丫x性爽| 欧美激情在线99| 午夜激情福利司机影院| 一卡2卡三卡四卡精品乱码亚洲| 国产高清videossex| 观看免费一级毛片| 香蕉久久夜色| 特级一级黄色大片| 中文字幕久久专区| 狂野欧美激情性xxxx| 99久国产av精品| 日本在线视频免费播放| 亚洲成人久久爱视频| 欧美成人一区二区免费高清观看| 综合色av麻豆| 欧美性猛交╳xxx乱大交人| 一个人免费在线观看的高清视频| 国产国拍精品亚洲av在线观看 | 欧美丝袜亚洲另类 | 国产久久久一区二区三区| 岛国在线观看网站| 国产伦精品一区二区三区视频9 | netflix在线观看网站| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 成人性生交大片免费视频hd| 久久精品国产综合久久久| 久久久久亚洲av毛片大全| 90打野战视频偷拍视频| aaaaa片日本免费| 久久久久久久久中文| 91字幕亚洲| 国产黄a三级三级三级人| 真人一进一出gif抽搐免费| 久久久久久久亚洲中文字幕 | 99精品欧美一区二区三区四区| 国产亚洲精品久久久com| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 99在线人妻在线中文字幕| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看| 亚洲精品日韩av片在线观看 | 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 偷拍熟女少妇极品色| 久久精品国产99精品国产亚洲性色| 亚洲一区二区三区不卡视频| 久久亚洲精品不卡| 欧美成人一区二区免费高清观看| 国产欧美日韩精品一区二区| 国产乱人视频| 18禁美女被吸乳视频| 老司机午夜福利在线观看视频| 日韩国内少妇激情av| 美女大奶头视频| 国产高清有码在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 国产成年人精品一区二区| tocl精华| 好看av亚洲va欧美ⅴa在| 在线视频色国产色| 俺也久久电影网| 日韩欧美国产在线观看| 亚洲专区中文字幕在线| 久久6这里有精品| 亚洲不卡免费看| 小说图片视频综合网站| 国产精品三级大全| 蜜桃亚洲精品一区二区三区| 日本黄色视频三级网站网址| 露出奶头的视频| 色视频www国产| 日本熟妇午夜| 国产成年人精品一区二区| 在线观看日韩欧美| 免费看光身美女| 精品国产三级普通话版| 欧美日韩一级在线毛片| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 18美女黄网站色大片免费观看| 亚洲人成网站高清观看| 精品人妻1区二区| 51午夜福利影视在线观看| 欧美极品一区二区三区四区| 熟女电影av网| 国产一区二区三区在线臀色熟女| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 乱人视频在线观看| 日韩欧美在线二视频| 欧美三级亚洲精品| 深爱激情五月婷婷| 男女那种视频在线观看| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久人妻精品电影| 色尼玛亚洲综合影院| 国产精品久久久久久久电影 | 特级一级黄色大片| 五月玫瑰六月丁香| 免费看日本二区| 国产黄片美女视频| 久久久国产精品麻豆| 国产精品亚洲av一区麻豆| 亚洲av五月六月丁香网| 日本a在线网址| 欧美xxxx黑人xx丫x性爽| 法律面前人人平等表现在哪些方面| 精华霜和精华液先用哪个| 日本成人三级电影网站| 亚洲专区中文字幕在线| 日本精品一区二区三区蜜桃| 十八禁人妻一区二区| 久久久久精品国产欧美久久久| 日本熟妇午夜| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 久久午夜亚洲精品久久| 在线播放国产精品三级| 亚洲av五月六月丁香网| 18禁黄网站禁片免费观看直播| 国产av不卡久久| 亚洲av二区三区四区| 99国产极品粉嫩在线观看| 亚洲国产欧洲综合997久久,| 国产精品一及| 日韩高清综合在线| 国产麻豆成人av免费视频| 国产成人a区在线观看| 国产精品亚洲一级av第二区| 国产精品一及| 一边摸一边抽搐一进一小说| 成人鲁丝片一二三区免费| 亚洲国产欧美网| 国产一区二区三区视频了| 日韩 欧美 亚洲 中文字幕| 嫩草影院精品99| 日本一二三区视频观看| 欧美成人免费av一区二区三区| 怎么达到女性高潮| 国产老妇女一区| 国产三级在线视频| 亚洲国产欧洲综合997久久,| av视频在线观看入口| 狂野欧美白嫩少妇大欣赏| 精品日产1卡2卡| 国产亚洲精品综合一区在线观看| 国产一区二区三区视频了| 丁香欧美五月| 国产精品自产拍在线观看55亚洲| а√天堂www在线а√下载| 可以在线观看的亚洲视频| 日韩欧美在线二视频| 一本综合久久免费| 久久久久久久久大av| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清作品| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| or卡值多少钱| 久久国产精品人妻蜜桃| 18禁黄网站禁片免费观看直播| 免费观看的影片在线观看| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| aaaaa片日本免费| 国产精品1区2区在线观看.| 麻豆国产97在线/欧美| 少妇的丰满在线观看| 亚洲av二区三区四区| 精品乱码久久久久久99久播| 国模一区二区三区四区视频| 九色国产91popny在线| 日本成人三级电影网站| 国产私拍福利视频在线观看| 久久性视频一级片| 99热这里只有精品一区| 亚洲一区二区三区不卡视频| 身体一侧抽搐| 国产精品免费一区二区三区在线| 亚洲av一区综合| 国产亚洲精品久久久com| 欧美成人免费av一区二区三区| 黄色丝袜av网址大全| 国产午夜精品论理片| 国产高清视频在线播放一区| 日韩欧美一区二区三区在线观看| 国产高清有码在线观看视频| 日本黄色片子视频| 午夜日韩欧美国产| avwww免费| 国产亚洲av嫩草精品影院| 美女高潮的动态| 精品国产三级普通话版| 99国产综合亚洲精品| e午夜精品久久久久久久| 一本精品99久久精品77| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美一级a爱片免费观看看| 免费观看精品视频网站| 脱女人内裤的视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲 欧美 日韩 在线 免费| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线一区亚洲| 成人亚洲精品av一区二区| 亚洲最大成人中文| 精华霜和精华液先用哪个| 69人妻影院| 久久久久性生活片| 91在线观看av| 国产av在哪里看| 亚洲av一区综合| 91麻豆av在线| 欧美+日韩+精品| 日韩免费av在线播放| 九色成人免费人妻av| 好男人在线观看高清免费视频| 亚洲第一电影网av| 国产毛片a区久久久久| 欧美bdsm另类| 两个人视频免费观看高清| 日本撒尿小便嘘嘘汇集6| 亚洲av中文字字幕乱码综合| 国产精品久久久久久亚洲av鲁大| 哪里可以看免费的av片| 亚洲欧美日韩高清专用| 国产成人av激情在线播放| 在线观看av片永久免费下载| 桃红色精品国产亚洲av| 国语自产精品视频在线第100页| 精品久久久久久久毛片微露脸| 国产高清三级在线| 国产主播在线观看一区二区| 国产v大片淫在线免费观看| 久久久久久人人人人人| 国产精品嫩草影院av在线观看 | 97超级碰碰碰精品色视频在线观看| 九九在线视频观看精品| 亚洲国产精品成人综合色| 香蕉av资源在线| 久久精品影院6| 国产精品久久久久久久久免 | 国产午夜精品久久久久久一区二区三区 | 黄色视频,在线免费观看| 国产色婷婷99| 亚洲av免费在线观看| 亚洲欧美精品综合久久99| 亚洲专区中文字幕在线| 久久久国产成人免费| 亚洲专区国产一区二区| 91久久精品国产一区二区成人 | 美女高潮喷水抽搐中文字幕| 国产精品久久久久久久久免 | 中文字幕人成人乱码亚洲影| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 免费看十八禁软件| 老司机在亚洲福利影院| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 欧美一区二区精品小视频在线| 观看美女的网站| 国产精品久久久人人做人人爽| 超碰av人人做人人爽久久 | 美女高潮的动态| 国产熟女xx| 亚洲精品成人久久久久久| 叶爱在线成人免费视频播放| 狂野欧美白嫩少妇大欣赏| 在线观看舔阴道视频| 久久久久亚洲av毛片大全| 精品国产美女av久久久久小说| АⅤ资源中文在线天堂| 女人十人毛片免费观看3o分钟| 国产精华一区二区三区| 国产日本99.免费观看| 日韩欧美国产在线观看| 国产午夜精品论理片| 欧美日韩黄片免| 国产三级在线视频| 亚洲国产欧洲综合997久久,| 中国美女看黄片| 久久久久久久亚洲中文字幕 | 亚洲国产精品999在线| 色精品久久人妻99蜜桃| 18+在线观看网站| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 亚洲激情在线av| 亚洲人成网站在线播| 亚洲成人中文字幕在线播放| 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 日韩欧美三级三区| 在线观看午夜福利视频| 国产色婷婷99| 日本五十路高清| 69av精品久久久久久| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 天美传媒精品一区二区| 久久伊人香网站| 精品人妻偷拍中文字幕| 91久久精品国产一区二区成人 | 91字幕亚洲| 女人十人毛片免费观看3o分钟| 国产在线精品亚洲第一网站| 2021天堂中文幕一二区在线观| 日韩欧美精品免费久久 | 欧美不卡视频在线免费观看| 国产欧美日韩精品亚洲av| 又爽又黄无遮挡网站| 精品国产超薄肉色丝袜足j| 舔av片在线| 欧美色视频一区免费| 国产精品久久久久久人妻精品电影| 黄色丝袜av网址大全| 久久久久久人人人人人| 我要搜黄色片| 国产在视频线在精品| 97碰自拍视频| 国产精品久久视频播放| 国产激情欧美一区二区| 日本与韩国留学比较| 国产精品久久视频播放| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 欧美中文日本在线观看视频| 女人被狂操c到高潮| 午夜福利在线观看免费完整高清在 | 国产私拍福利视频在线观看| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 亚洲国产欧洲综合997久久,| 国产激情欧美一区二区| or卡值多少钱| 一个人看视频在线观看www免费 | 国产极品精品免费视频能看的| 中国美女看黄片| 两性午夜刺激爽爽歪歪视频在线观看| 久久香蕉国产精品| 丝袜美腿在线中文| 国产精品 国内视频| 国产熟女xx| 亚洲无线在线观看| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 亚洲成人久久爱视频| h日本视频在线播放| 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人欧美在线观看| 大型黄色视频在线免费观看| 好男人在线观看高清免费视频| 国产精品99久久99久久久不卡| 床上黄色一级片| 99热这里只有是精品50| 免费av毛片视频| 国产久久久一区二区三区| 全区人妻精品视频| 舔av片在线| 精品一区二区三区av网在线观看| av天堂在线播放| 亚洲成av人片免费观看| 三级男女做爰猛烈吃奶摸视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲午夜理论影院| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 色哟哟哟哟哟哟| 最近最新中文字幕大全免费视频| 免费观看精品视频网站| 日本 av在线| 狂野欧美白嫩少妇大欣赏| 亚洲成人免费电影在线观看| 一夜夜www| 脱女人内裤的视频| 亚洲美女视频黄频| 少妇人妻精品综合一区二区 | 久久久久国内视频| 真人做人爱边吃奶动态| 国产精品一及| 国产日本99.免费观看| 欧美日韩黄片免| 丝袜美腿在线中文| 免费av观看视频| 亚洲国产欧洲综合997久久,| 99热这里只有精品一区| 色综合亚洲欧美另类图片| 国产成人a区在线观看| 女生性感内裤真人,穿戴方法视频| 一级毛片高清免费大全| 午夜亚洲福利在线播放| 又紧又爽又黄一区二区| 99精品久久久久人妻精品| 亚洲精品在线观看二区| 亚洲avbb在线观看| 日本精品一区二区三区蜜桃| netflix在线观看网站| 天美传媒精品一区二区| 小说图片视频综合网站| 熟女人妻精品中文字幕| 国产真实伦视频高清在线观看 | 最后的刺客免费高清国语| 亚洲色图av天堂| 最后的刺客免费高清国语| 我的老师免费观看完整版| 成人性生交大片免费视频hd| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 一级a爱片免费观看的视频| 国产成人啪精品午夜网站| 国产成年人精品一区二区| 中文字幕av在线有码专区| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器| 搡老岳熟女国产| 天堂影院成人在线观看| 琪琪午夜伦伦电影理论片6080| 特级一级黄色大片| 99riav亚洲国产免费| 国产高清视频在线播放一区| 免费看日本二区| 一进一出好大好爽视频| 精品久久久久久久人妻蜜臀av| 少妇裸体淫交视频免费看高清| 黄色日韩在线| 精品一区二区三区视频在线 | av黄色大香蕉| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 日韩高清综合在线| 亚洲av成人不卡在线观看播放网| 亚洲av电影不卡..在线观看| 日本精品一区二区三区蜜桃| 亚洲无线观看免费| 免费看十八禁软件| 97碰自拍视频| 国产成人啪精品午夜网站| 亚洲精品美女久久久久99蜜臀| 搡老熟女国产l中国老女人| 嫩草影院入口| 免费在线观看影片大全网站| 亚洲精品456在线播放app | 欧美av亚洲av综合av国产av| 久久久久精品国产欧美久久久| 国产一区二区在线av高清观看| 欧美日韩国产亚洲二区| a在线观看视频网站| 又粗又爽又猛毛片免费看| 午夜福利成人在线免费观看| 欧美黄色片欧美黄色片| 好看av亚洲va欧美ⅴa在| 久久精品91无色码中文字幕| 久久久久久人人人人人| 色综合欧美亚洲国产小说| 黄色女人牲交| 国内久久婷婷六月综合欲色啪| 精品人妻1区二区| 岛国视频午夜一区免费看| 精品人妻一区二区三区麻豆 | 久久久久免费精品人妻一区二区| 叶爱在线成人免费视频播放| 国产av一区在线观看免费| 村上凉子中文字幕在线| 成人性生交大片免费视频hd| 成人特级黄色片久久久久久久| 久久亚洲真实| 手机成人av网站| 中国美女看黄片| 嫩草影视91久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品美女久久久久99蜜臀| 特级一级黄色大片| 亚洲成av人片免费观看| 亚洲国产精品999在线| 黑人欧美特级aaaaaa片| 极品教师在线免费播放| 国产精品久久久久久久电影 | 黄色女人牲交| 在线国产一区二区在线| 欧美成人一区二区免费高清观看| 伊人久久大香线蕉亚洲五| 蜜桃久久精品国产亚洲av| 国产精品三级大全| 国语自产精品视频在线第100页| 亚洲人成电影免费在线| 热99在线观看视频| 亚洲av中文字字幕乱码综合| 亚洲精品影视一区二区三区av| 亚洲 国产 在线| 亚洲人成网站在线播| 女生性感内裤真人,穿戴方法视频| 99久久九九国产精品国产免费| 欧美日韩一级在线毛片| 日本 av在线| 看片在线看免费视频| 亚洲精品影视一区二区三区av| 欧美+亚洲+日韩+国产| 成人18禁在线播放| 亚洲无线在线观看| 国产精品亚洲一级av第二区| 成年免费大片在线观看| 国产成年人精品一区二区| 伊人久久精品亚洲午夜| 99在线视频只有这里精品首页| 国产真人三级小视频在线观看| 欧美最黄视频在线播放免费| 久久6这里有精品| 国产爱豆传媒在线观看| 久久伊人香网站| 中文字幕熟女人妻在线| 日韩中文字幕欧美一区二区| 国产69精品久久久久777片| 亚洲av免费在线观看| 天天一区二区日本电影三级| 国产真实乱freesex| avwww免费| 国产激情偷乱视频一区二区| 老鸭窝网址在线观看| 欧美又色又爽又黄视频| 最近最新中文字幕大全电影3| 少妇裸体淫交视频免费看高清| 国内精品美女久久久久久| 国产精品久久久久久久久免 | 51午夜福利影视在线观看| 国产一级毛片七仙女欲春2| 特大巨黑吊av在线直播| 99在线人妻在线中文字幕| 国产精品国产高清国产av| 三级毛片av免费| 久久精品国产清高在天天线| 国产午夜精品论理片| 亚洲欧美日韩高清专用| 精品国产三级普通话版| 久久精品国产综合久久久| 欧美乱妇无乱码| 少妇丰满av| 亚洲国产欧美网| 国产亚洲精品久久久com| 国产一区二区在线观看日韩 | 波多野结衣高清作品| 欧美不卡视频在线免费观看| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片| 岛国在线观看网站| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片| 国产精品国产高清国产av| 在线免费观看不下载黄p国产 | 日本免费一区二区三区高清不卡| 国产成人啪精品午夜网站| 欧美性猛交╳xxx乱大交人| 欧美日韩黄片免| 日韩欧美在线二视频| 偷拍熟女少妇极品色| 日韩欧美 国产精品| 级片在线观看| 91在线精品国自产拍蜜月 | 熟女少妇亚洲综合色aaa.| 国产精品爽爽va在线观看网站| 亚洲电影在线观看av| 精品99又大又爽又粗少妇毛片 | 国产av不卡久久| 一级黄色大片毛片| 美女高潮的动态| 麻豆国产97在线/欧美| 九九在线视频观看精品| 老司机福利观看| 最近视频中文字幕2019在线8| 成年女人看的毛片在线观看|