• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UEs Power Reduction Evolution with Adaptive Mechanism over LTE Wireless Networks

    2018-04-08 03:11:36RuchiSachanandChangWookAhn
    關鍵詞:連線等價切線

    Ruchi Sachan and Chang Wook Ahn

    1.Introduction

    Devices such as cell phones, email pagers, and moving picture experts group audio layer-3 (MP3) players have some specific functionality and hence are dedicated to the use of power leading to longer battery life. The design of such devices also contributes towards efficient power consumption which has resulted in the popularity of their usage. Therefore, a device for general purpose incorporating many other functionalities should have such design with minimal power consumption.Fig. 1 illustrates the setup of a mobile environment in which we assume connections from the Internet created and terminated at mobile end-points. The backbone of the mobile network is represented as a core network and also assumed as a full outfit network which connects the access points to the rest of the mobile network. The core network behaves like a wired multimedia environment with minimal bit error losses and congestion losses.

    Fig. 1. Mobile environment with LTE networks.

    Batteries provide the necessary energy required for the operations of mobile devices. The capacity of a battery employed in a device is limited which indicates an optimal power management system to be implemented in such devices.Internet streaming applications on mobile devices are popular due to faster broadband speeds and higher bandwidth provided in advanced LTE and 5G networks but constrained in longer usage time due to the limited battery capacity[4]. Battery power consumption can be slightly reduced by lowering the transmission rate of streamed data (reducing the streaming quality), as the power consumption depends on the data transmission rates[5],[6]. Thus, we propose an energy-efficient rate adaptation (RA) mechanism that can reduce the mobile battery power consumption during multimedia streaming.

    The rest part of the paper is organized as follows. In Section 2, we review related literature. The literature study for the proposal is presented in Section 3, followed by the description of a system model which introduces the LTE user equipment (UE) power consumption method as a way to save battery power on mobile devices. Section 4 discusses the simulation results where UE’s energy reduction problem was solved by applying RA and without rate adaptation (WRA) based mechanism over LTE networks. Finally, Section 5 concludes the paper.

    2.Related Work

    Power saving schemes during video streaming have engaged ample research recently[7]. Some related studies proposed several streaming techniques used by commercial video providers, for instance, ON-OFF, throttling, bitrate streaming, and compared them in the context of power,bandwidth, and delay[8]. The authors in [9] measured the video streaming’s energy while using Wi-Fi and 3G. Nevertheless,they did not offer any useful solution to improve the energy efficiency regarding the long life battery consumption.

    In [5], a study presented for the transmission of data to reduce battery power consumption, which was much more complicated while choosing a high-quality version for end users and required server support in advance. Therefore, most of the service network interface cards are compatible by default with the IEEE 802.11 power saving mode (PSM). Recently, the battery power consumption during streaming services is directly minimized, when the power saving mode is on in the devices. For instance, authors in [10] provided a method that maximized the sleeping time of the wireless network interface card (WNIC) in the LTE network. Therefore, the power saving mode suggested a client-centric arrangement to allow buffering on the server side so that streaming data could be able to send in bursts.

    Moreover, to measure the power consumption for LTE UE,a study showed a standard model and parameters[11]. In this model, the power consumption is entirely dependent on the network component of UE based on the carrier aggregation.And in [12], it was shown that decoding multimedia contents consumes a large part of the energy and that the power required to decode audio or video depends on the computational complexity of the codec. Though, the authors had not defined the exact amount of energy consumed by the decoding part in mobile devices. Efficiently managing power on mobile platforms has always been a complex and challenging research problem so far, because of the several running applications and internal configurations, such as possible hardware configuration options,power states, and the interdependencies between computing,sensing, and networking resources, and their quality of experience (QoE)[13]-[15].

    The researchers in [16] introduced the mechanism with the supporting of carrier aggregation (CA) with a complexity in UEs design regarding the receiver and transmitter. Some work has been presented on how this can be affected on the UE battery life after CA was standardized in the 3rd generation partnership project (3GPP). In [17], some contribution has been discussed with the effect on UEs complexity and battery life but the current power consumption was not considered. Our paper has considered saving the power consumption based on the running application of Internet streaming.

    3.Power Consumption Model

    The system model assumes that we have considered an LTE UE power consumption model. Traditionally, LTE has two radio resource control (RRC) states namely RRC_Connected and RRC_Idle according to the UE active or inactive status[18],[19]. As shown in Fig. 2, there are given three modes, respectively: Continuous reception (CR), short discontinuous reception (DRX), and long discontinuous reception (DRX). UE can be in one of these three modes at the RRC_Connected state, but UE is only in the DRX mode at the RRC_Idle state. In that situation, if UE is in the RRC_Idle state and also receives and sends the packet without considering the packet size, then the state will switch from RRC_Idle to RRC_Connected with a pretty substantial delay. Thus, UE enters CR after being endorsed to RRC_Connected by default and keeps observing the physical downlink control channel(PDCCH) to give a control message to UE[20].

    Fig. 2. State transitions in LTE network.

    The DRX inactivity timer Tinalso starts by an individual UE, which will be reset whenever UE receives and sends a packet to/from the server. Based on Tin’s expiration UE enters the short DRX mode without seeing any data activity at the starting point in each DRX cycle. An ON-period will follow, in which the UE turns its receiver on, to receive packets from the eNB (i.e., base station) and monitor whether there is any pending downlink transmission or not while UE is in short DRX.

    教師要通過微課平臺隨時查看學生的學習進度和所提問題,以便有針對性地設計課堂教學活動,突破重難點知識:1.定理的幾何意義:至少存在一點P(ξ,f(ξ)),該曲線y=f(x)在點P(ξ,f(ξ))的切線平行于曲線兩端點的連線AB;2.定理只論證了ξ的存在性,ξ∈(a,b),不知道ξ的準確數(shù)值;3.幾種等價表示形式

    Thus when the short cycle timer starts, UE switches to long DRX if there is no data activity. Else, UE goes back into CR. If there is any data transfer, then every time UE enters CR. And then UE starts the tail timer, which is reset whenever a packet is sent or received by UEs. When expires, UE breaks from RRC_Connected to RRC_Idle and the allocated radio resource is released.

    Based on Fig. 2, note that Ttaiicoexists with Tiand Tis, so the UE overall power consumption model in LTE is defined as(1) with the unit of Watt:

    where V is the binary variable expressing whether the UE is in RRC_Connected; VC, Vid, and VDare binary variables indicating that UE is in connected mode, idle mode, and DRX mode, respectively. Similarly, PC, Pid, and PDare the power consumption in the connected mode, idle mode, and DRX mode, respectively.

    The future UE model depends on the transmits (TX) and receive (RX) power levels, downlink (DL) and uplink (UL)data rates, and RRC mode[21]. The RRC_Connected mode is divided into baseband (BB) and functional blocks. BB block includes the TX baseband (TXBB) and RX baseband (RXBB).The radio frequency (RF) functional blocks which define the power consumption as a function of either TX or RX power level (L) and data rate (R). Fig. 3 shows the model which is divided into blocks, where each block has a different parameter. For instance, the transmit power LTXin the TXRF initially affects the power consumption of that block.

    Fig. 3. LTE cellular system power model.

    The function of the block can be evaluated empirically by varying the function-specific parameter like RTXof the TX BB,at the same time observing the other parameters, such as LTX,RRX, and LRXand a level where they influence the measurement at least. Based on Fig. 3, the RRC_Connected mode power consumption is defined as:

    where PCis the power consumption in the connected mode;Ponis the power consumed when UE is ON, PRXis the power consumed when the receiver is actively receiving;PTXis the power consumed when the transmitter is actively transmitting. And in (2) and (3), PRXBBis the power consumed of RXBB; PRXRFis that of RXRF; PTXBBis that of TXBB; PTXRFis the power consumed in TXRF. During the simulation, the UE energy level is decreased by using RA mechanism based on calculations.

    4.Results and Discussion

    In this section, the performance evaluation results of the proposed algorithm are presented. At first, we have analyzed a power level comparison between RA and WRA based schemes.We also showed the energy level with increasing and decreasing the throughput with and without recharging. Finally,this paper conducted average power consumption over picture resolution in two different scenarios such as online streaming and offline playback. Table 1 lists the simulation parameters which we have considered in this paper.

    Table 1: Simulation parameters

    Based on our experiment and results, total power consumption during streaming over LTE in scenarios using RA and WRA is shown in Fig. 4 and Fig. 5. The LTE power consumption is calculated based on (1) and (4) as described in Section 3.

    Fig. 4. Energy level with power-ON.

    Fig. 5. Energy level due to power in sleep mode.

    We have proposed the RA mechanism to save the power for the mobile phone as a mean to battery power reduction in two conditions: Power-ON and without power-ON means in the sleep mode in a mobile phone individually. We proposed the mechanism based on a power level comparison. Fig. 4 shows the power level comparison between RA and WRA in the power-ON scenario where WRA mechanism consumes 99.5% of the overall power and the proposed RA mechanism consumes 94.5% of the overall power within 5 hours. As the RA mechanism saves almost 5% of power consumption compared with the WRA method. So we can say that the applied WRA mechanism is less efficient than the RA method.And the without power-ON scenario means the sleep-mode condition. As shown in Fig. 5, the WRA mechanism consumes 98% of the overall power and the RA mechanism consumes 88% within 5 hours. So the RA mechanism almost saves 10%power compared with the WRA method. Hence, the RA mechanism has better power consumption in comparison with the WRA mechanism, and this saves high power consumption in the without power-ON means sleep mode in a mobile phone than that with power-ON.

    According to different UE’s energy level, as we can see in Fig. 6, every single UE throughput increases and decreases because their power level is changing. And also,it adjusts the quality of the streaming multimedia contents depending upon the UE’s energy level. The quality of the multimedia content is controlled by adjusting the sending packet size as the constant bit rate (CBR) at the server. The energy level in UE is monitored by every 1 minute and the packet size is changed according to the UE’s extra energy level. Thus, it achieves overall slightly high energy saving with our proposed mechanism.

    5.Conclusions

    Fig. 6. Throughput vs. time.

    In this paper, we studied the energy-aware multimedia streaming on mobile phones. A bit-RA based approach was presented to optimize the power consumption in the context of the green technology. By applying the energy consumption model to a comprehensive dataset, we show that LTE is much less power efficient than the other previous technology.However, we did not show the mechanism comparison with previous technology, but we have shown the battery power consumption on mobile devices based on streaming multimedia contents over LTE networks. Moreover, we have proposed an RA mechanism based on the remnant mobile power level as a mean to save battery power consumption. By comparing the RA and WRA based mechanisms, our results had successfully achieved low power consumption in both power-ON and without power-ON means in the sleep mode during streaming in LTE networks.

    [1]B. Rashidi, C. Fung, and T. Vu, “Recdroid: A resource access permission control portal and recommendation service for smartphone users,” inProc. of the ACM MobiCom Workshop on Security and Privacy in Mobile Environments,2014, pp. 13-18.

    [2]A. Sun, T. Wambach, A. G. Venkatesh, and D. A. Hall, “A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics,” inProc. of 2014 IEEE Biomedical Circuits and Systems Conf., 2014, pp. 312-315.

    [3]A. R. Jensen, M. Lauridsen, P. Mogensen, T. B. S?rensen,and P. Jensen, “LTE UE power consumption model: For system level energy and performance optimization,” inProc.of 2012 IEEE Vehicular Technology Conf., 2012, pp. 1-5.

    [4]A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” inProc. of USENIX Annual Technical Conf., 2010, p. 21.

    [5]Y. Liu, L. Guo, F. Li, and S. Chen, “An empirical evaluation of battery power consumption for streaming data transmission to mobile devices,” inProc. of the 19th ACM Intl. Conf. on Multimedia, 2011, pp. 473-482.

    [6]R. Trestian, Q. T. Vien, P. Shah, and G. Mapp, “Exploring energy consumption issues for multimedia streaming in LTE HetNet small cells,” inProc. of IEEE the 40th Conf. on Local Computer Networks, 2015, pp. 498-501.

    [7]S. Aghaeinezhadfirouzja, H. Liu, B. Xia, and M. Tao,“Implementation and measurement of single user MIMO testbed for TD-LTE-A downlink channels,” inProc. of IEEE the 8th Intl. Conf. on Communication Software and Networks, Beijing, 2016, pp. 211-215.

    [8]M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto,“Dissecting mobile video services: An energy consumption perspective,” inProc. of IEEE the 14th Intl. Symposium on A World of Wireless, Mobile and Multimedia Networks, 2013,pp. 1-11.

    [9]P. M. Eittenberger, M. Hamatschek, M. Gro?mann, and U.R. Krieger, “Monitoring mobile video delivery to android devices,” inProc. of the 4th ACM Multimedia Systems Conf.,2013, pp. 119-124

    [10]E. Tan, L. Guo, S. Chen, and X. Zhang, “PSM-throttling:Minimizing energy consumption for bulk data communications in WLANs,” inProc. of IEEE Intl. Conf. on Network Protocols, 2007, pp. 123-132.

    [11]R. Sanchez-Mejias, Y. Guo, M. Lauridsen, P. Mogensen, and L. A. Maestro Ruiz de Temino, “Current consumption measurements with a carrier aggregation smartphone,” inProc. of IEEE the 80th Vehicular Technology Conf., 2014,pp. 1-5.

    [12]M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy efficient multimedia streaming to mobile devicesa survey,”IEEE Communications Surveys and Tutorials, vol. 16, no. 1,pp. 579-597, 2014.

    [13]Q. Jiang, V. C. M. Leung, H. Tang, and H. S. Xi, “Energyefficient adaptive rate control for streaming media transmission over cognitive radio,”IEEE Trans. on Communications, vol. 63, no. 12, pp. 4682-4693, Dec. 2015.

    [14]N. Khan and M. G. Martini, “Qoe-driven multi-user scheduling and rate adaptation with reduced cross-layer signaling for scalable video streaming over lte wireless systems,”EURASIP Journal on Wireless Communications and Networking, no. 1, pp. 93:1-23, 2016, DOI:10.1186/s13638-016-0584-6.

    [15]M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Ho?feld, and P. Tran-Gia, “A survey on quality of experience of HTTP adaptive streaming,”IEEE Communications Surveys and Tutorials, vol. 17, no. 1, pp. 469-492, 2015.

    [16]B. Dusza, P. Marwedel, O. Spinczyk, and C. Wietfeld, “A context aware battery lifetime model for carrier aggregation enabled LTE-A systems,” inProc. of IEEE Consumer Communications and Networking Conf., 2014, pp. 13-19.

    [17]NTT DoCoMo,Views on Downlink Reception Bandwidth Considering Power Saving Effect in LTE-Advanced, 3GPP R1-090310, 2009.

    [18]W. D. Doyle, “Magnetization reversal in films with biaxial anisotropy,”IEEE Trans. on Magnetics, vol. 2, no. 2, pp. 68-73, 1966.

    [19]Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger,and F. Xu, “Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications,”IEEE Communications Magazine, vol. 50, no. 2, pp. 122-130,2012.

    [20]D. Musiige, L. Vincent, F. Anton, and D. Mioc, “LTE RF subsystem power consumption modeling,” inProc. of the 1st IEEE Global Conf. on Consumer Electronics, Tokyo, 2012,pp. 645-649.

    [21]J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O.Spatscheck, “A close examination of performance and power characteristics of 4G LTE networks,” inProc. of the 10th Intl. Conf. on ACM Mobile Systems, Applications, and Services, 2012, pp. 225-238.

    [22]R. Kwan and C. Leung, “A survey of scheduling and interference mitigation in LTE,”Journal of Electrical and Computer Engineering, no. 1, pp. 1-10, 2010, DOI:10.1155/2010/273486

    猜你喜歡
    連線等價切線
    快樂連線
    快樂語文(2021年27期)2021-11-24 01:29:24
    快樂連線
    快樂語文(2021年11期)2021-07-20 07:41:48
    圓錐曲線的切線方程及其推廣的結論
    快樂連線
    快樂語文(2020年36期)2021-01-14 01:10:44
    切線在手,函數(shù)無憂
    快樂連線
    快樂語文(2019年12期)2019-06-12 08:41:56
    n次自然數(shù)冪和的一個等價無窮大
    中文信息(2017年12期)2018-01-27 08:22:58
    過圓錐曲線上一點作切線的新方法
    收斂的非線性迭代數(shù)列xn+1=g(xn)的等價數(shù)列
    環(huán)Fpm+uFpm+…+uk-1Fpm上常循環(huán)碼的等價性
    我的女老师完整版在线观看| 又爽又黄无遮挡网站| 在线 av 中文字幕| 亚洲国产精品成人综合色| 精品久久久久久电影网| 国产精品无大码| 日本午夜av视频| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 观看免费一级毛片| 亚洲电影在线观看av| 久久这里只有精品中国| 18禁在线无遮挡免费观看视频| 超碰97精品在线观看| 国产成人午夜福利电影在线观看| 婷婷色麻豆天堂久久| av又黄又爽大尺度在线免费看| 97热精品久久久久久| 亚洲一区高清亚洲精品| 亚洲av中文字字幕乱码综合| 中文字幕av成人在线电影| 亚洲18禁久久av| 美女内射精品一级片tv| 五月天丁香电影| 日韩亚洲欧美综合| 六月丁香七月| 亚洲四区av| 国产亚洲精品久久久com| 精品一区二区三区视频在线| 水蜜桃什么品种好| 亚洲四区av| 亚洲精品成人av观看孕妇| 麻豆乱淫一区二区| 午夜精品国产一区二区电影 | 精品人妻熟女av久视频| 婷婷色av中文字幕| 少妇高潮的动态图| 亚洲怡红院男人天堂| 丝袜美腿在线中文| 直男gayav资源| 精品酒店卫生间| eeuss影院久久| 搡老乐熟女国产| 观看美女的网站| 亚洲国产欧美人成| 国产伦在线观看视频一区| 女人久久www免费人成看片| 国产精品.久久久| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看免费完整高清在| 伦理电影大哥的女人| 欧美三级亚洲精品| 哪个播放器可以免费观看大片| 精品一区二区免费观看| 日韩三级伦理在线观看| 久久久成人免费电影| 亚洲伊人久久精品综合| 亚洲欧洲国产日韩| 亚洲av福利一区| 成人漫画全彩无遮挡| 国精品久久久久久国模美| 性插视频无遮挡在线免费观看| 2021少妇久久久久久久久久久| 三级毛片av免费| 久久久久久久大尺度免费视频| 亚洲精品一区蜜桃| 久久这里有精品视频免费| 色网站视频免费| 人人妻人人澡欧美一区二区| 亚洲成人中文字幕在线播放| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 久久久久久九九精品二区国产| 一边亲一边摸免费视频| 一二三四中文在线观看免费高清| 久久久久九九精品影院| 亚洲精品久久午夜乱码| 国产av国产精品国产| 高清欧美精品videossex| 麻豆乱淫一区二区| 99久久人妻综合| 精品国内亚洲2022精品成人| 不卡视频在线观看欧美| av.在线天堂| 日韩av不卡免费在线播放| 男人舔女人下体高潮全视频| 淫秽高清视频在线观看| 精品一区在线观看国产| 国产成人aa在线观看| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 日日干狠狠操夜夜爽| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 中文乱码字字幕精品一区二区三区 | 一个人看视频在线观看www免费| 美女大奶头视频| 69人妻影院| 男人狂女人下面高潮的视频| 国产成人精品福利久久| 久久久久久久久大av| 久久国内精品自在自线图片| 赤兔流量卡办理| 男人舔奶头视频| 青春草亚洲视频在线观看| 一级av片app| 人妻制服诱惑在线中文字幕| 777米奇影视久久| 亚洲成人久久爱视频| 久久亚洲国产成人精品v| 深夜a级毛片| 免费观看无遮挡的男女| 国产成人a区在线观看| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 美女高潮的动态| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 久久久久久久久久人人人人人人| 麻豆国产97在线/欧美| 午夜激情欧美在线| 国产精品一区二区在线观看99 | 国产v大片淫在线免费观看| 一个人看的www免费观看视频| 丰满人妻一区二区三区视频av| 国产精品熟女久久久久浪| 日韩一区二区视频免费看| 亚洲精品久久久久久婷婷小说| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 全区人妻精品视频| 久久久久久久午夜电影| 九九爱精品视频在线观看| 夜夜看夜夜爽夜夜摸| 日韩av免费高清视频| 亚洲精品成人av观看孕妇| 亚洲欧美日韩东京热| www.色视频.com| 久久久色成人| 亚洲精品一二三| 日本午夜av视频| 亚洲va在线va天堂va国产| 亚洲丝袜综合中文字幕| 91av网一区二区| 久久午夜福利片| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 亚洲四区av| 亚洲精品一二三| 少妇丰满av| 免费观看的影片在线观看| 久久久精品免费免费高清| 亚洲成人精品中文字幕电影| 五月天丁香电影| av在线亚洲专区| 久久这里只有精品中国| 少妇熟女欧美另类| 一个人看的www免费观看视频| 国产男人的电影天堂91| 极品教师在线视频| 国产乱人视频| 午夜福利在线观看吧| 国产淫语在线视频| 日本与韩国留学比较| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 久久这里只有精品中国| 三级国产精品片| 免费无遮挡裸体视频| 五月玫瑰六月丁香| 免费看av在线观看网站| 国产女主播在线喷水免费视频网站 | 一级爰片在线观看| 亚洲成人中文字幕在线播放| 久99久视频精品免费| 日本熟妇午夜| 久久久久久久久久黄片| 男人爽女人下面视频在线观看| 一级爰片在线观看| 国产免费福利视频在线观看| 亚洲国产精品专区欧美| 成人特级av手机在线观看| 最后的刺客免费高清国语| 晚上一个人看的免费电影| 人妻一区二区av| 国产黄色免费在线视频| 亚洲成人中文字幕在线播放| 亚洲综合色惰| 亚洲欧洲日产国产| 一级毛片我不卡| 九九爱精品视频在线观看| 日本熟妇午夜| 亚洲成人精品中文字幕电影| 国产综合精华液| 极品教师在线视频| 91精品一卡2卡3卡4卡| 欧美三级亚洲精品| 精品久久久久久电影网| 久久精品久久精品一区二区三区| 三级国产精品片| 久久久久久久久中文| 亚洲电影在线观看av| 久久久久久久久大av| 六月丁香七月| 国产v大片淫在线免费观看| 国产成人午夜福利电影在线观看| av.在线天堂| 一级a做视频免费观看| 久99久视频精品免费| 亚洲人成网站在线观看播放| 午夜福利在线在线| 美女国产视频在线观看| 免费观看a级毛片全部| 少妇的逼好多水| 色综合站精品国产| 国产在视频线精品| 中文字幕亚洲精品专区| 人妻制服诱惑在线中文字幕| 亚洲精品自拍成人| 亚洲内射少妇av| 免费无遮挡裸体视频| 日韩中字成人| 国产淫片久久久久久久久| 久久久久国产网址| or卡值多少钱| 国产综合懂色| 免费观看a级毛片全部| 国产淫片久久久久久久久| 国产成人精品福利久久| 亚洲av电影在线观看一区二区三区 | 免费黄频网站在线观看国产| 亚洲成人中文字幕在线播放| a级毛色黄片| 欧美三级亚洲精品| 国产精品久久视频播放| 国产一区二区三区综合在线观看 | 国产精品一及| 熟妇人妻不卡中文字幕| 国产精品国产三级专区第一集| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 精品久久久久久久久久久久久| 亚洲乱码一区二区免费版| 高清欧美精品videossex| 亚洲最大成人中文| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 亚洲av成人av| videos熟女内射| 日韩欧美精品v在线| 国产精品熟女久久久久浪| 色综合色国产| 国产高清有码在线观看视频| 国产伦一二天堂av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久色成人| 亚洲av成人精品一区久久| 床上黄色一级片| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 国产精品一区二区三区四区久久| 秋霞在线观看毛片| 十八禁网站网址无遮挡 | 国产av不卡久久| 亚洲成人久久爱视频| 免费av观看视频| 男女啪啪激烈高潮av片| 精品一区在线观看国产| 国产一级毛片在线| 久久久久久久久久人人人人人人| 欧美bdsm另类| 丝袜美腿在线中文| 久久久久精品性色| 国产综合懂色| 大香蕉久久网| 亚洲精品乱码久久久久久按摩| 欧美一区二区亚洲| 亚洲久久久久久中文字幕| 成人亚洲精品一区在线观看 | 久久久久久久国产电影| 老司机影院毛片| 日韩大片免费观看网站| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 美女国产视频在线观看| 亚洲国产精品国产精品| 国产精品av视频在线免费观看| 久久99热6这里只有精品| 亚洲精品aⅴ在线观看| 日韩欧美精品免费久久| 国产黄片美女视频| 性插视频无遮挡在线免费观看| 99re6热这里在线精品视频| 一级毛片电影观看| 天堂av国产一区二区熟女人妻| 免费电影在线观看免费观看| 亚洲图色成人| 成人国产麻豆网| 婷婷色av中文字幕| 国产一区二区三区av在线| 在线免费观看不下载黄p国产| 天堂中文最新版在线下载 | a级毛片免费高清观看在线播放| 国产精品伦人一区二区| 白带黄色成豆腐渣| 中文精品一卡2卡3卡4更新| 韩国高清视频一区二区三区| 黄色配什么色好看| 国产精品一及| 99热这里只有是精品在线观看| 国产精品一区二区在线观看99 | 久久精品夜色国产| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| 一二三四中文在线观看免费高清| 精品久久久噜噜| 汤姆久久久久久久影院中文字幕 | 最近最新中文字幕大全电影3| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频 | 国产亚洲av片在线观看秒播厂 | 免费看美女性在线毛片视频| 内地一区二区视频在线| 我的老师免费观看完整版| 国产综合精华液| 国产色爽女视频免费观看| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 亚洲三级黄色毛片| 欧美日韩在线观看h| 18禁在线无遮挡免费观看视频| 天堂av国产一区二区熟女人妻| 欧美bdsm另类| 亚洲国产精品成人久久小说| 成人高潮视频无遮挡免费网站| 亚洲av免费在线观看| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 国产黄片视频在线免费观看| 18+在线观看网站| a级毛片免费高清观看在线播放| 可以在线观看毛片的网站| 午夜激情久久久久久久| 美女被艹到高潮喷水动态| av又黄又爽大尺度在线免费看| 久久久a久久爽久久v久久| 热99在线观看视频| 精品人妻一区二区三区麻豆| 免费电影在线观看免费观看| 十八禁国产超污无遮挡网站| 99热网站在线观看| 熟妇人妻不卡中文字幕| 精品久久久久久久久亚洲| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| www.色视频.com| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| a级毛片免费高清观看在线播放| 直男gayav资源| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 免费电影在线观看免费观看| 国产单亲对白刺激| 欧美三级亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 亚洲欧美中文字幕日韩二区| 国产精品.久久久| 国产视频首页在线观看| 国产在视频线在精品| 国产黄频视频在线观看| 日韩亚洲欧美综合| 亚洲最大成人中文| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| 色综合色国产| 97在线视频观看| 色尼玛亚洲综合影院| 91久久精品电影网| 91在线精品国自产拍蜜月| 国产欧美日韩精品一区二区| 高清日韩中文字幕在线| 国产乱来视频区| 国产成人精品久久久久久| 日韩av在线大香蕉| 人人妻人人看人人澡| 一边亲一边摸免费视频| 亚洲图色成人| 男的添女的下面高潮视频| 国精品久久久久久国模美| 免费观看精品视频网站| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 日日撸夜夜添| 欧美丝袜亚洲另类| 国产免费一级a男人的天堂| 久久久久精品性色| 人人妻人人澡欧美一区二区| 亚洲精品国产av蜜桃| 草草在线视频免费看| 国产大屁股一区二区在线视频| 亚洲自偷自拍三级| 波多野结衣巨乳人妻| 亚洲精品国产成人久久av| 国产又色又爽无遮挡免| 免费观看性生交大片5| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 精品一区二区三区人妻视频| 免费在线观看成人毛片| 国产 一区精品| 免费黄网站久久成人精品| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂 | 久久草成人影院| 久久久久精品久久久久真实原创| 最近最新中文字幕大全电影3| 亚洲熟妇中文字幕五十中出| 午夜免费男女啪啪视频观看| 啦啦啦中文免费视频观看日本| 波野结衣二区三区在线| 中文乱码字字幕精品一区二区三区 | 欧美成人a在线观看| av天堂中文字幕网| 久久久久精品性色| 欧美日韩在线观看h| 免费黄网站久久成人精品| 美女黄网站色视频| 人人妻人人看人人澡| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 插阴视频在线观看视频| 久久久亚洲精品成人影院| 三级国产精品片| 久久精品国产自在天天线| 日韩欧美国产在线观看| 国产精品三级大全| 天天一区二区日本电影三级| 午夜免费激情av| 午夜福利高清视频| 亚洲一区高清亚洲精品| 国产成人91sexporn| 大又大粗又爽又黄少妇毛片口| 狂野欧美激情性xxxx在线观看| 天天一区二区日本电影三级| 亚洲精品国产av成人精品| 国产高潮美女av| 人妻系列 视频| 日本午夜av视频| 亚洲天堂国产精品一区在线| 久久久精品94久久精品| 大香蕉久久网| av又黄又爽大尺度在线免费看| 菩萨蛮人人尽说江南好唐韦庄| 国产单亲对白刺激| 国产精品国产三级专区第一集| 午夜爱爱视频在线播放| 1000部很黄的大片| av国产久精品久网站免费入址| 久久精品国产亚洲av涩爱| 欧美性感艳星| 久久久久久久久中文| 成人特级av手机在线观看| 可以在线观看毛片的网站| 亚洲av成人av| 联通29元200g的流量卡| 亚洲国产欧美在线一区| 午夜久久久久精精品| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡 | 亚洲成色77777| 国产老妇伦熟女老妇高清| 亚洲精品,欧美精品| 日本三级黄在线观看| 天堂√8在线中文| 亚洲,欧美,日韩| 午夜老司机福利剧场| 一区二区三区高清视频在线| 99久国产av精品| 最近最新中文字幕免费大全7| 欧美变态另类bdsm刘玥| 久久韩国三级中文字幕| 中文天堂在线官网| 久久久久久久大尺度免费视频| 日韩欧美三级三区| 欧美日本视频| 亚洲高清免费不卡视频| 久久精品人妻少妇| 欧美成人午夜免费资源| 亚洲欧洲日产国产| 99久久九九国产精品国产免费| 男插女下体视频免费在线播放| 婷婷色麻豆天堂久久| 欧美高清性xxxxhd video| xxx大片免费视频| 麻豆成人av视频| 国产在视频线精品| 2021天堂中文幕一二区在线观| 亚洲不卡免费看| 亚洲欧洲日产国产| 成年版毛片免费区| 国产精品美女特级片免费视频播放器| 亚洲精品日韩av片在线观看| 免费少妇av软件| 少妇裸体淫交视频免费看高清| 美女脱内裤让男人舔精品视频| 非洲黑人性xxxx精品又粗又长| 热99在线观看视频| 小蜜桃在线观看免费完整版高清| 性插视频无遮挡在线免费观看| 男的添女的下面高潮视频| 久久久久久久大尺度免费视频| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 亚洲精品国产av成人精品| 久久99精品国语久久久| 日韩欧美国产在线观看| 欧美性感艳星| 成年女人看的毛片在线观看| 免费看日本二区| 亚洲国产欧美在线一区| 少妇熟女aⅴ在线视频| 日韩亚洲欧美综合| 日韩中字成人| 可以在线观看毛片的网站| 免费观看无遮挡的男女| 国内少妇人妻偷人精品xxx网站| 国产91av在线免费观看| 国产精品三级大全| 成年版毛片免费区| 午夜激情欧美在线| 亚洲综合色惰| av在线亚洲专区| 99久久精品国产国产毛片| 亚洲欧美日韩无卡精品| 精品一区二区三卡| 国产免费视频播放在线视频 | 久久久久久久国产电影| 亚洲国产欧美人成| 夫妻性生交免费视频一级片| 99热全是精品| 日韩欧美三级三区| 天天一区二区日本电影三级| 成人av在线播放网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av中文字字幕乱码综合| 午夜福利在线观看吧| 蜜臀久久99精品久久宅男| 国产乱人偷精品视频| 一级二级三级毛片免费看| 国产av码专区亚洲av| 国产精品一二三区在线看| 97超视频在线观看视频| 亚洲最大成人中文| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 天堂俺去俺来也www色官网 | 亚洲精品一区蜜桃| 美女xxoo啪啪120秒动态图| 亚洲欧美精品自产自拍| 国产精品蜜桃在线观看| 久久久久久久午夜电影| 人体艺术视频欧美日本| 亚洲成人一二三区av| 一边亲一边摸免费视频| 免费av不卡在线播放| 国产亚洲一区二区精品| 亚洲av成人av| 国产精品1区2区在线观看.| 99热这里只有是精品在线观看| 国产精品人妻久久久影院| kizo精华| 色播亚洲综合网| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产| 国产真实伦视频高清在线观看| 成人亚洲精品av一区二区| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 精品久久国产蜜桃| 伦精品一区二区三区| 91久久精品国产一区二区成人| 国产熟女欧美一区二区| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 男女那种视频在线观看| 777米奇影视久久| 午夜免费男女啪啪视频观看| 女人十人毛片免费观看3o分钟| 成人亚洲精品一区在线观看 | 久久久欧美国产精品| 免费大片18禁| 高清午夜精品一区二区三区| 少妇人妻精品综合一区二区| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情欧美在线| av免费观看日本| 成人美女网站在线观看视频| 噜噜噜噜噜久久久久久91| 亚洲,欧美,日韩| 日日摸夜夜添夜夜爱| 熟女电影av网| 最近2019中文字幕mv第一页| 美女主播在线视频|