• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Attractors for a Caginalp Phase-field Model with Singular Potential

    2018-04-04 07:17:44AlainMiranvilleandCharbelWehbe
    Journal of Mathematical Study 2018年4期

    Alain Miranvilleand Charbel Wehbe

    1 Laboratoire de Math′ematiques et Applications,UMR CNRS 7348,SP2MI,Boulevard Marie et Pierre Curie-T′el′eport 2,F-86962 Chasseneuil Futuroscope Cedex,France.

    2 Xiamen University,School of Mathematical Sciences,Xiamen,Fujian,P.R.China.

    Abstract.We consider a phase field model based on a generalization of the Maxwell Cattaneo heat conduction law,with a logarithmic nonlinearity,associated with Neumann boundary conditions.The originality here,compared with previous works,is that we obtain global in time and dissipative estimates,so that,in particular,we prove,in one and two space dimensions,the existence of a unique solution which is strictly separated from the singularities of the nonlinear term,as well as the existence of the finite-dimensional global attractor and of exponential attractors.In three space dimensions,we prove the existence of a solution.

    Key words: Caginalp phase-field system,Maxwell-Cattaneo law,logarithmic potential,Neumann boundary conditions,well-posedness,global attractor,exponential attractor.

    1 Introduction

    The Caginalp phase-field model

    has been proposed to model phase transition phenomena,for example melting-solidification phenomena,in certain classes of materials.Caginalp considered the Ginzburg-Landau free energy and the classical Fourier law to derive his system,see,e.g.,[1,2].Here,u denotes the order parameter and θ the(relative)temperature.Furthermore,all physical constants have been set equal to one.For more details and references we refer the reader to[2-4]. This model has been extensively studied(see,e.g.,[5]and the references therein). Now,a drawback of the Fourier law is the so-called”paradox of heat conduction”,namely,it predicts that thermal signals propagate with infinite speed,which,in particular,violates causality(see,e.g.,[5]).One possible modification,in order to correct this unrealistic feature,is the Maxwell-Cattaneo law. We refer the reader to[3,5,6]for more discussions on the subject.

    In this paper,we consider the following model

    which is a generalization of the original Caginalp system(see[2]).In this context α is the thermal displacement variable,defined by

    As mentioned above the Caginalp system can be obtained by considering the Ginzburg-Landau free energy

    the enthalpy H=u+θ and by writing

    where d >0 is a relaxation parameter,?udenotes a variational derivative and q is the thermal flux vector.Setting d=1 and taking the usual Fourier law

    we find(1.1)-(1.2).

    The Maxwell-Cattaneo law reads

    where η is a relaxation parameter;when η=0,one recovers the Fourier law.Taking for simplicity η=1,it follows from(1.8)that

    hence the following second-order(in time)equation for the relative temperature

    Integrating finally(1.11)between 0 and t,we obtain the equation

    where f depends on the initial data(for u and θ),which reduces to(1.4)when f vanishes.Furthermore,noting that,(1.1)can be rewritten in the equivalent form(1.3).

    We endow this model with Neumann boundary conditions and initial conditions.Then,we are led to the following initial and boundary value problem(P):

    in a bounded and regular domain Ω?Rn(n is to be specified later),with boundary ?Ω.

    We assume here that g=G′,where

    i.e.,

    In particular,it follows from(1.18)that

    Concerning the mathematical setting,we introduce the following Hilbert spaces

    Our aim in this paper is to prove the existence of a solution in the case of the logarithmic nonlinearity(1.18).The main difficulty is to prove that the order parameter is separated from the singularities of g.In particular,we are only able to prove such a property in one and two space dimensions.In three space dimensions,we prove the existence of a solution.

    Throughout the paper,the same letter c(and,sometimes,c′)denotes constants which may change from line to line.

    2 A priori estimates

    The singularities of the potential g lead us to define the quantity

    We set

    We rewrite(1.13)in the form

    We then rewrite(1.14)in the form

    where

    Integrating(2.3)over Ω,we obtain

    In particular,we deduce from(2.4)that

    hence

    Furthermore,if〈H(0)〉=0,i.e.,〈u0+α1〉=0,we have conservation of the enthalpy,

    Setting φ=φ-〈φ〉,we then have

    We first sum(2.9)and δ1×(2.10)to have

    where δ1>0 is small enough so that,in particular,

    and then sum(2.2)and δ2×(2.11),where δ2>0 is small enough,to obtain

    where

    We now multiply(1.13)by-Δu,and have,owing to(1.19),

    Summing(2.13)and δ3×(2.15),where δ3>0 is small enough,we finally obtain

    where

    satisfies

    We differentiate(1.13)with respect to time to find,owing to(1.14),

    Finally,we multiply(1.14)by-Δα and we integrate over Ω to have

    which implies

    We sum(2.21)and δ4×(2.22),where δ4>0 is small enough,to get

    We then have

    where

    Now we sum(2.20)and δ5×(2.24),where δ5>0 is small enough,to get

    where

    Finally,we sum(2.16)and δ6×(2.26),where δ6>0 is small enough,to get

    where

    satisfies

    Using(2.16),(2.20)and Gronwall’s lemma,we deduce

    and

    Note that

    Using(2.31)and(2.33),we deduce from(2.32)the following inequality

    We rewrite(1.13)in an elliptic form for t≥0 fixed,

    We multiply(2.35)by-Δu.Using(1.19),H¨older and Young’s inequalities,we obtain

    Using now(2.31),(2.34)and(2.37)we find

    Applying Gronwall’s lemma to(2.28)and using(2.30)we have

    By(2.34),(2.38)and(2.39)we get

    Our aim now is to prove that u a priori satisfies

    where δ>0 is to be specified later.

    In one space dimension,we have,owing to the embeddingan estimate onin L∞(R+×Ω).It is then not difficult to prove the separation property(2.41)for solutions to the parabolic equation

    with right-hand side h∈L∞(R+×Ω).

    Indeed,by(2.40),h satisfies

    We prove(see[16]and[20]):

    Thus,due to the comparison principle,we deduce the following inequalities:

    Estimates(2.43)-(2.46)imply that

    Combining(2.40)and(2.47),we obtain

    In particular

    We now turn to thetwo-dimensional case.To this end,we derive further a priori estimates.

    We then multiply(1.14)by Δ2α to get

    Summing(2.50)and ?×(2.51),where ?>0 is small enough such that 1-2?>0 and 1-?>0,we have

    where

    and

    Applying Gronwall’s lemma to(2.52),we have

    Furthermore,by(2.40)we get

    Now,we differentiate(1.13)with respect to time to have,owing to(1.14),

    where

    We apply Gronwall’s lemma to(2.58),to have

    Hence we have to estimate the termds.To do so,we first prove the following lemma.

    Lemma 2.1.?M>0:

    where c′only depends on M.

    Proof.We can assume,without loss of generality,that

    We fix M>0 and multiply(2.42)by g(u)eM|g(u)|to have:

    In order to estimate the second term in the right-hand side of(2.63),we use the following Young’s inequality

    where

    Taking a=N|h|and b=N-1|g(u)|eM|g(u)|,where N>0 is to be fixed later,in(2.64),we obtain

    Now,if|g(u)|≤1,then

    Furthermore,if|g(u)|≥1,then|g(u)|eM|g(u)|≥1 and

    where c only depends on M.We thus deduce from(2.63)and(2.66)the following inequality

    where c′only depends on M.

    To conclude,we use the following Orlicz’s embedding inequality

    where c only depends on Ω and N.It then follows from(2.43),(2.67)and(2.68)that

    Noting finally that

    where c only depends on M,(2.69)yields the desired inequality(2.60).

    It is not difficult to show,by comparing growths,that the logarithmic function g satisfies

    Therefore,

    whence,owing to(2.60),

    Thus φ in(2.57)satisfies,owing to(2.60)(for p=4)and the above a priori estimates(which imply thatΩ)),

    hence,

    Furthemore,we have

    Using(2.75)and(2.76)in(2.59)and by(2.48),we deduce

    By(2.48),(2.53),(2.55)and(2.77),we deduce from(2.54)

    Rewriting again(1.13)in the form

    we have,owing to the above estimates,

    and the separation property follows as in the one-dimensional case.

    3 Existence of solutions

    We have the

    Theorem 3.1.(i)In one space dimension,we assume that

    Then,(1.13)-(1.16)possesses a unique solution(u,α,)such that

    (ii)In two space dimension,we assume that

    Then,(1.13)-(1.16)possesses a unique solution(u,α,)such that

    (iii)In three space dimension,we consider the set K={φ ∈L2(Ω),-1 ≤φ ≤1, a.e.in Ω}and we assume that(u0,α0,α1)∈FK=(K∩H1(Ω))×H1(Ω)×L2(Ω).Then,(1.13)-(1.16)possesses a unique solution(u,α,)such that

    Moreover for all t>0,‖u(t)‖L∞(Ω)≤1 and the set{x∈Ω/|u(x,t)|=1}has measure zero.Proof.In one and two space dimensions,the proof of existence is standard,once we have the separation property(2.41),since the problem then reduces to one with a regular nonlinearity.Indeed,we consider the same problem,in which the logarithmic function g is replaced by the C1function

    where δ is the same constant as in(2.41).

    This function meets all the requirements of[25]to have the existence of a regular solutionFurthermore,It is not difficult to see that g and gδsatisfy(1.19),(1.20)and(2.71),for the same constants.We can thus derive the same estimates as above,with the very same constants.

    Since g and gδcoincide on[-δ,δ],we finally deduce that uδis solution to the original problem.

    In three space dimension,following an idea of Debussche and Dettori[7]we consider the approximation of the function g by a polynomial of odd degree gN,and the boundary value problem(PN)that one obtains by replacing g by gNin problem(P)

    The existence and uniqueness of a solutionto problem(3.5)-(3.8)have been proved in[25].We then construct the solution of problem(1.13)-(1.16)as the limit ofas N →+∞.Indeed,we first derive uniform estimates with respect to N for problem(3.5)-(3.8).Replacing(u,α)in(2.16)by(uN,αN),we write

    where

    satisfies

    Using Gronwall’s Lemma we have

    where c is independent of N.Hence there exists a subsequence ofthat we denote again bywhich satisfies as N →+∞

    Moreover,integrating(3.9)over(0,t),we obtain

    where c is independent of N.We then deduce

    Replacing H by HNin(2.5),we write

    which can be written as

    Integrating(3.20)over(0,t)we obtain

    We then deduce

    Using the equivalent norm in H1(Ω)we get

    where c is independent of N.We deduce that

    We now multiply(3.5)by gN(uN)and integrate over Ω using≥-c to have

    Integrating(3.25)over(0,t),we deduce

    where c is independent of N and Q=Ω×(0,T).

    By(3.26)and for a subsequence we obtain

    Letting N →+∞in the equation(3.5),we deduce from(3.15),(3.17),(3.18)and(3.27)thatsatisfies

    where〈.,.〉denote the duality product between D′((0,T)×Ω)and D((0,T)×Ω).

    Then letting N-→+∞,using(3.13),(3.15),(3.17)and(3.24)we deduce

    Moreover using[12],(3.13),(3.17)on the one hand and(3.15),(3.24)on the other hand implies that as N-→+∞

    so that in particular u(x,0)=u0and α(x,0)=α0in Ω.

    Furthermore we deduce from(3.15)thatOn the other hand we haveso that

    Using Strauss Theorem,we getand there exist a subsequencesuch that in particular asμ→+∞we have

    Note also that using Lions’Theorem and(3.13)-(3.15),(3.17)and(3.24),we get

    We now prove that g?=g(u)and the set{x ∈Ω,|u(x,t)|=1}has measure zero.To do so we adapt a method introduced by Debussche and Dettori[7].For an arbitrary small η ∈(0,1)and for all t∈(0,T),we set

    Integrating(3.9)over(t,t+r),we obtain

    To continue the proof of the theorem we state the following two lemmas.

    Lemma 3.1.There exists a constant c such that for all r>0

    Proof.Replacing(u,α)in(2.20)by(uN,αN),we write

    Applying the uniform Gronwall’s Lemma to(3.38),using(3.11)and(3.36)we deduce that?s>0,

    which completes the proof of(3.37).

    Lemma 3.2.There exists a constant c such that for all r>0

    Proof.Applying Gronwall’s lemma to(3.9),using(3.11)we deduce that

    By(3.37)and(3.41),we get from(3.25)the inequality(3.40).

    Using Lemma 3.2 we deduce that

    and thus

    which implies that

    Thus letting N →+∞we deduce from(3.30),(3.43)and Fatou’s Lemma that

    where|Eη(t)|and χη(t)respectively stand for the measure of the set{x ∈Ω,|u(x,t)|>1-η}and for its characteristic function.Letting then η→0,it follows that for all t∈(0,T)

    It follows respectively from(3.30)and(3.44)that for all t∈(0,T)and almost every x∈Ω

    Then using Lions([8],lemma 1.3,p.12)it follows from(3.26)and(3.45)that

    so that g?=g(u).

    We then have

    which is equivalent to

    In one space dimension,by(2.41)we have for all t≥0,

    We set δ0=min(δ1,δ2)and then deduce

    hence

    Remark 3.1.In two space dimension,we have

    where

    This yields,owing to Gronwall’s lemma,

    Integrating then(3.52)over Ω,we have,as above,

    Noting that it follows from(3.58)that

    where c depends on T and δ0,which yields,in particular,

    we finally deduce from(3.60)-(3.62)that

    where c depends on T and δ0,hence the uniqueness,as well as the continuous dependence with respect to the initial data.

    Thanks to Theorem 3.1(i),we can define the dissipative semigroupassociated with problem(1.13)-(1.16)on the phase space

    Indeed,by(3.2)we have

    Concerning the two-dimensional case,we have that

    is a bounded absorbing set for S(t)in Ψ0.Indeed,we have

    4 Global attractor

    We have the

    Theorem 4.1.(i)If n=1,we take the initial conditions inThen the semigroup(t),t≥0,defined fromto itself possesses the connected global attractorin

    (ii)If n=2,the initial conditions belong to.Then(t)defined fromto itself possesses the connected global attractor

    Proof.We use a semigroup decomposition argument(see,e.g.,[6])consisting in splitting the semigroupt≥0,into the sum of two families of operators:where operatorsgo to zero as t tends to infinity while operatorsare compact.

    This corresponds to the following solution decomposition

    where f(s)=g(s)-s(f and g satisfy the same properties)and with initial data belonging toMultiplying(4.1)by(4.2)byand summing the resulting equations,we have

    we get

    where ?3>0 is small enough,and we have in particular

    Summing(4.9)and ?4×(4.11)where ?4>0 is small enough,we have

    where

    Applying Gronwall’s lemma to(4.13),we write

    Considering equation(4.10)and repeating exactly the estimates that gave(2.13),we get

    where

    and ?5>0 and ?6>0 are small enough so that we have in particular

    Applying Gronwall’s lemma to(4.17),we have

    Combining(4.15)and(4.20),we obtain

    Now,we consider system(4.5)-(4.8).

    We multiply(4.5)by-Δuc.Integrating over Ω we have

    Summing the resulting equations,we get

    Summing(4.25),(4.26)and ?7×(4.27)where ?7>0 is small enough,we have

    where

    By(3.2),we deduce that

    By(4.30),we deduce from(4.28)the following estimate

    Applying Gronwall’s lemma to(4.31)(noting that ψ1(0)=0)and by using(4.29)we obtain

    Summing now(4.23),(4.33)and ?8×(4.24),where ?8>0 is small enough,we deduce that

    where

    Applying Gronwall’s lemma to(4.34),using(3.2)and(4.35)we have

    Combining(4.32)and(4.36),we get

    Hence,the operator S2(t)is asymptotically compact in the sense of the Kuratowski measure of noncompactness(see[18]),which concludes the existence part of Theorem 4.1(i).

    In order to prove part(ii)of Theorem 4.1,we now take the initial data inthen multiply(4.1)byand(4.2)bySumming the two resulting equations,we end up with

    We multiply(4.10)by Δ2αd.Integrating over Ω,and using?φ ∈H3(Ω),c>0,we have

    Summing(4.39)and ?9×(4.40)where ?9>0 is small enough,we deduce that

    and we have,in particular,

    Summing then(4.38)and ?10×(4.41),where ?10>0 is small enough,we obtain

    where

    Applying Gronwall’s lemma to(4.43),using(4.42)and(4.44)we get

    By(4.21)and the continuous injection F2?F1,we have

    We then deduce from(4.45)and(4.46)the following estimate

    Concerning system(4.5)-(4.8),we multiply(4.5)by Δ2uc.Integrating over Ω,we get

    Summing(4.26),(4.27)and(4.48)we obtain

    Summing(4.49),(4.50)and ?11×(4.51)where ?11>0 is small enough,we obtain

    where

    Furthermore,we have

    Inserting(4.54)and(4.55)in(4.52)and applying Gronwall’s lemma to the resulting estimate,we deduce by(4.53)that

    Combining(4.37)and(4.56)we have

    which completes the proof of the theorem.

    We define for what follows the following invariant sets:in one space dimension,=whereis the bounded absorbing set forinand in two space dimensions,whereis the bounded absorbing set forinIn what follows,we will work in these two subspacesandwhich are positively invariant for

    Now that the existence of the global attractor is proven,one natural question is to know whether this attractor has finite dimension in terms of the fractal or Hausdorff dimension.This is the aim of the final section.

    5 Exponential attractors

    The aim of this section is to prove the existence of exponential attractors for the semigroup S(t),t ≥0,associated to problem(1.13)-(1.16)in one and two space dimensions using the separation property(2.41).To do so,we need the semigroup to be Lipschitz continuous and satisfy the smoothing property,but also to verify a H¨older condition in time(see[18],[19],[28-30]).This is enough to conclude on the existence of exponential attractors,but before going further,let us recall the definition of an exponential attractor which is also called inertial set.

    Definition 5.1.A compact set M is called an exponential attractor for({S(t)}t≥0,X),if

    (i)A?M?X,where A is the global attractor,

    (ii)M is positively invariant for S(t),i.e.S(t)M?M for every t≥0,

    (iii)M has finite fractal dimension,

    (iv)M attracts exponentially the bounded subsets of X in the following sense:?B?X bounded, dist(S(t)B,M)≤Q(‖B‖X)exp(-αt), t≥0,

    where the positive constant α and the monotonic function Q are independent of B,and dist stands for the Hausdorff semi-distance between sets in X,defined by

    We start by stating an abstract result that will be useful in what follows(see[18]).

    Theorem 5.1.Let Ψ and Ψ1be two Banach spaces such that Ψ1is compactly embedded into Ψ and S(t):Y-→Y be a semigroup acting on a closed subset Y of Ψ.We assume that

    (i)

    where

    d is continuous,t≥0,d(t)→0 as t→+∞,and

    Then S(t)possesses an exponential attractor M on Y.

    In order to get the existence of exponential attractors in our case,we will use Theorem 5.1.We have the following result

    Theorem 5.2.(i)In one space dimension,the semigroupcorresponding to equations(1.13)-(1.16)defined fromto itself satisfies a decomposition as in Theorem 5.1.

    and

    respectively.We start with the proof of(i).In that case the initial conditions belong toRepeating for(5.6)-(5.9)the estimates which led to(4.13)and(4.17),we then write(noting that

    where

    where

    Here ?>0 and δ>0 are small enough so that we have in particular

    An application of Gronwall’s lemma to(5.14)and(5.16)respectively yields

    Combining(5.20)and(5.21),we get

    Noting that

    due to the continuous embedding H2(Ω)?L∞(Ω),and by(3.2),we have

    Thus,

    Choosing ?>0 small enough and using(5.24)and(5.26),we deduce from(5.23)the following inequality

    Integrating(5.27)over(0,t),by(5.13)we have

    H¨older’s inequality,(3.2)and(5.5)yield

    Analogously,we have

    Choosing ?>0 small enough and recalling(5.30)and(5.31),we obtain

    where

    Integrating(3.61)over(0,t),we get

    Integrating then(5.32)over(0,t)and using(5.34)we deduce that

    hence(5.28)yields

    H¨older’s inequality and(5.5)yield

    where

    In particular

    Applying Gronwall’s lemma to(5.40)and using(5.39)we deduce that

    Finally,multiplying(5.10)by υ+and(5.11)byand proceeding exactly as above we deduce that

    Combining(5.36),(5.41)and(5.42),we obtain

    where h(t)=c′ect,with c and c′depending onWe can see that h is continuous.

    We now turn to the two-dimensional case,and prove part(ii)of Theorem 5.2.To do so we take here the initial data inRepeating for(5.6)-(5.9)the estimates which led to(4.43),we then write

    where

    and ?>0 is small enough so that

    In particular

    An application of Gronwall’s lemma yields

    Furthermore,by(5.22)and the continuous embedding F2?F1,we get

    By(5.48)and(5.49)we have

    Concerning problem(5.10)-(5.13),we multiply(5.10)byand(5.11)bySumming the resulting equations,we then obtain

    Analogously to(5.26),we write

    By(3.4)and the continuous embedding,we have

    so that

    Choosing ? >0 small enough and recalling(5.52)and(5.54),we deduce from(5.51)the estimate

    Integrating(5.55)over(0,t)and by(5.13)we get

    By(5.35),we have

    As above we have

    Choosing ?>0 small enough and by recalling(5.59)and(5.60),we deduce from(5.58)the estimate

    Integrating(5.61)over(0,t)and by(5.57)we have

    Combining(5.57)and(5.62),we get

    Inserting(5.63)in(5.56)we obtain

    Noting that〈ξ〉=0,from(5.64)we deduce that

    Combining(5.43)and(5.65),we obtain

    which completes the proof.

    Lemma 5.1.The semigroup S(t),t≥0 generated by the problem(1.13)-(1.16)is H¨older continuous on[0,T]×i=1,2(i depending on the space dimension).

    Proof.We consider the one-dimensional case(the two-dimensional case can be treated similarly).The Lipschitz continuity in space is a consequence of(3.63).It just remains to prove the continuity in time(actually,a H¨older condition in time for the semigroup(t),t≥0).We assume that the initial data belong to.For every t1≥0 and t2≥0,owing to the above estimates,one gets:

    where c depends on T.We multiply(1.14)byto obtain

    Integrating(5.67)between t1and t2,we deduce from the above estimates that

    We deduce from Theorem 5.2 and Lemma 5.1 the following result.

    Theorem 5.3.The dynamical system(respectivelyassociated to(1.13)-(1.16)possesses,in one space dimension,an exponential attractorin(respectively,in two space dimensions,an exponential attractorin

    赤兔流量卡办理| 欧美 亚洲 国产 日韩一| 9色porny在线观看| 久久综合国产亚洲精品| 日日摸夜夜添夜夜爱| 人人妻人人添人人爽欧美一区卜| 黄色怎么调成土黄色| 亚洲国产欧美网| 夜夜骑夜夜射夜夜干| 夜夜骑夜夜射夜夜干| 久久久久国产精品人妻一区二区| 亚洲精品国产区一区二| 日日啪夜夜爽| 久热这里只有精品99| 高清视频免费观看一区二区| 精品免费久久久久久久清纯 | 亚洲精品aⅴ在线观看| 久久这里只有精品19| 久久久久久久精品精品| 在线亚洲精品国产二区图片欧美| 人人妻人人爽人人添夜夜欢视频| 视频在线观看一区二区三区| 制服人妻中文乱码| 国产黄色视频一区二区在线观看| 欧美黑人精品巨大| a级毛片在线看网站| 一级毛片 在线播放| 在线观看免费高清a一片| 国产成人欧美| 岛国毛片在线播放| 日韩伦理黄色片| 日本vs欧美在线观看视频| 亚洲av福利一区| 国产免费视频播放在线视频| 丝袜在线中文字幕| 80岁老熟妇乱子伦牲交| 超色免费av| 丰满乱子伦码专区| 亚洲欧美激情在线| 黄片小视频在线播放| 亚洲精品自拍成人| 亚洲精品国产色婷婷电影| 9热在线视频观看99| 精品国产一区二区三区四区第35| 你懂的网址亚洲精品在线观看| 日韩精品有码人妻一区| 丁香六月欧美| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 中文字幕色久视频| 日本欧美国产在线视频| 国产av一区二区精品久久| 天天躁夜夜躁狠狠久久av| 99国产精品免费福利视频| 亚洲精品日韩在线中文字幕| 久久影院123| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲 | 色吧在线观看| 免费日韩欧美在线观看| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 久久影院123| 日韩中文字幕欧美一区二区 | 婷婷色麻豆天堂久久| 国产成人啪精品午夜网站| 在线 av 中文字幕| kizo精华| 婷婷色综合大香蕉| 午夜福利视频精品| 国产成人系列免费观看| 国产成人精品久久二区二区91 | 欧美亚洲日本最大视频资源| 国产精品.久久久| 少妇被粗大猛烈的视频| 一本久久精品| 午夜福利乱码中文字幕| 免费人妻精品一区二区三区视频| 天堂8中文在线网| 婷婷成人精品国产| 女性生殖器流出的白浆| 狂野欧美激情性xxxx| 2021少妇久久久久久久久久久| 国产野战对白在线观看| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 成人亚洲欧美一区二区av| 日韩精品有码人妻一区| 王馨瑶露胸无遮挡在线观看| 美女午夜性视频免费| av网站免费在线观看视频| 欧美少妇被猛烈插入视频| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 久久99精品国语久久久| 午夜福利视频精品| 日韩电影二区| 午夜av观看不卡| 最近中文字幕高清免费大全6| 欧美 日韩 精品 国产| 岛国毛片在线播放| 国产男人的电影天堂91| av女优亚洲男人天堂| 午夜免费观看性视频| 日韩人妻精品一区2区三区| 国产视频首页在线观看| 婷婷成人精品国产| av.在线天堂| 可以免费在线观看a视频的电影网站 | 国产欧美日韩一区二区三区在线| 国产精品一区二区在线观看99| 人成视频在线观看免费观看| 免费av中文字幕在线| 久热爱精品视频在线9| 午夜福利,免费看| 亚洲天堂av无毛| 美女福利国产在线| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 满18在线观看网站| 久久久久人妻精品一区果冻| 嫩草影视91久久| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 国产精品秋霞免费鲁丝片| 欧美久久黑人一区二区| 国产日韩欧美亚洲二区| 青草久久国产| 国产亚洲最大av| 青春草国产在线视频| 老汉色av国产亚洲站长工具| 国产精品亚洲av一区麻豆 | 亚洲色图 男人天堂 中文字幕| 久久99热这里只频精品6学生| 18禁观看日本| 永久免费av网站大全| 丰满迷人的少妇在线观看| 婷婷成人精品国产| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| a 毛片基地| 亚洲在久久综合| 如日韩欧美国产精品一区二区三区| 啦啦啦视频在线资源免费观看| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 天堂8中文在线网| 亚洲av在线观看美女高潮| 满18在线观看网站| 精品少妇久久久久久888优播| 黄色 视频免费看| 国产高清不卡午夜福利| 久久ye,这里只有精品| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 久久久久精品国产欧美久久久 | 国产一区二区 视频在线| 欧美成人精品欧美一级黄| 亚洲av日韩精品久久久久久密 | 亚洲av电影在线观看一区二区三区| 久久久久久免费高清国产稀缺| 久久久国产精品麻豆| 又粗又硬又长又爽又黄的视频| 最近的中文字幕免费完整| 熟女av电影| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| av在线老鸭窝| 日韩一本色道免费dvd| 久久精品久久精品一区二区三区| 美女午夜性视频免费| 国产极品天堂在线| 少妇猛男粗大的猛烈进出视频| av在线老鸭窝| 欧美人与性动交α欧美精品济南到| 亚洲成人手机| 亚洲成人国产一区在线观看 | 99九九在线精品视频| 青春草视频在线免费观看| 欧美日韩视频精品一区| 下体分泌物呈黄色| 精品国产露脸久久av麻豆| 欧美少妇被猛烈插入视频| 亚洲专区中文字幕在线 | 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| 精品少妇久久久久久888优播| 91成人精品电影| 亚洲一区二区三区欧美精品| 2021少妇久久久久久久久久久| 国产成人午夜福利电影在线观看| 免费不卡黄色视频| 另类精品久久| 久久久久久久久久久久大奶| 午夜91福利影院| 考比视频在线观看| av又黄又爽大尺度在线免费看| 青春草国产在线视频| 国产熟女欧美一区二区| 国产99久久九九免费精品| 国产色婷婷99| 男人操女人黄网站| 丝袜脚勾引网站| 岛国毛片在线播放| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 99香蕉大伊视频| 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 18禁观看日本| 两性夫妻黄色片| 最近手机中文字幕大全| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 亚洲色图 男人天堂 中文字幕| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 久久影院123| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 一二三四在线观看免费中文在| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级| 欧美在线黄色| 香蕉国产在线看| 看免费av毛片| 99热全是精品| 尾随美女入室| 精品一区二区三区四区五区乱码 | 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线| 人妻一区二区av| 亚洲精品视频女| 激情五月婷婷亚洲| 97精品久久久久久久久久精品| 欧美黑人精品巨大| 一区二区三区精品91| 国产99久久九九免费精品| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 可以免费在线观看a视频的电影网站 | 欧美97在线视频| a级毛片在线看网站| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| 色94色欧美一区二区| 国产成人欧美在线观看 | 99九九在线精品视频| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 麻豆av在线久日| 热re99久久国产66热| 国产精品久久久人人做人人爽| 精品一区二区三区四区五区乱码 | 国产亚洲av片在线观看秒播厂| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 在线观看三级黄色| 国产精品久久久久久精品电影小说| 久久久久国产精品人妻一区二区| 久久久久久久久免费视频了| 亚洲精品第二区| av在线app专区| 成人免费观看视频高清| 日日撸夜夜添| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 国产女主播在线喷水免费视频网站| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 久久女婷五月综合色啪小说| 亚洲免费av在线视频| 女性被躁到高潮视频| 亚洲视频免费观看视频| 一区在线观看完整版| 午夜91福利影院| avwww免费| 国产 一区精品| 久久韩国三级中文字幕| 欧美97在线视频| 久久人人爽av亚洲精品天堂| 亚洲欧美激情在线| 永久免费av网站大全| 咕卡用的链子| 亚洲成人av在线免费| 一区二区三区四区激情视频| 捣出白浆h1v1| 国产99久久九九免费精品| 亚洲视频免费观看视频| 国产精品三级大全| 久久精品熟女亚洲av麻豆精品| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 波野结衣二区三区在线| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 综合色丁香网| 宅男免费午夜| 久久ye,这里只有精品| 男人添女人高潮全过程视频| 色吧在线观看| 亚洲成人免费av在线播放| 国产精品一国产av| 少妇 在线观看| 亚洲国产精品一区二区三区在线| 欧美 亚洲 国产 日韩一| av有码第一页| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 人人澡人人妻人| 另类亚洲欧美激情| 免费av中文字幕在线| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频| 美女中出高潮动态图| 十分钟在线观看高清视频www| 丝瓜视频免费看黄片| 如日韩欧美国产精品一区二区三区| 韩国av在线不卡| 高清黄色对白视频在线免费看| 久久精品国产综合久久久| 亚洲中文av在线| 天堂8中文在线网| 黄片小视频在线播放| 久久久久精品国产欧美久久久 | 91精品国产国语对白视频| 欧美黑人欧美精品刺激| 精品第一国产精品| 深夜精品福利| 精品一区二区三区av网在线观看 | 欧美中文综合在线视频| 精品一品国产午夜福利视频| 午夜久久久在线观看| 国产淫语在线视频| www.精华液| 成年动漫av网址| 欧美日韩亚洲国产一区二区在线观看 | 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 午夜激情av网站| 母亲3免费完整高清在线观看| 曰老女人黄片| a级毛片在线看网站| 国产精品99久久99久久久不卡 | 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美成人综合另类久久久| 悠悠久久av| 欧美日韩视频精品一区| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 亚洲第一av免费看| 夫妻午夜视频| 欧美黄色片欧美黄色片| 久久97久久精品| 国产一区二区激情短视频 | 两个人看的免费小视频| 在线精品无人区一区二区三| 久久精品久久精品一区二区三区| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 国产成人精品久久二区二区91 | 在线天堂中文资源库| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三| 中国国产av一级| 国产伦理片在线播放av一区| 看免费av毛片| 亚洲人成77777在线视频| 99九九在线精品视频| 人体艺术视频欧美日本| www日本在线高清视频| 欧美在线一区亚洲| av女优亚洲男人天堂| 国产精品久久久久久人妻精品电影 | 久久久久精品人妻al黑| 久久 成人 亚洲| 久久女婷五月综合色啪小说| 亚洲自偷自拍图片 自拍| 精品国产露脸久久av麻豆| 中文字幕精品免费在线观看视频| 国产精品久久久久久人妻精品电影 | 国产精品av久久久久免费| 亚洲欧美一区二区三区久久| 99国产综合亚洲精品| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人| 高清欧美精品videossex| 亚洲第一区二区三区不卡| a级毛片黄视频| 精品国产一区二区三区久久久樱花| 两个人看的免费小视频| 十八禁网站网址无遮挡| 丝袜美足系列| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 亚洲欧美成人精品一区二区| 亚洲,一卡二卡三卡| av有码第一页| 我要看黄色一级片免费的| 精品免费久久久久久久清纯 | 欧美激情 高清一区二区三区| 国产男人的电影天堂91| 嫩草影视91久久| 免费人妻精品一区二区三区视频| 少妇 在线观看| 国产免费福利视频在线观看| 中文字幕高清在线视频| 亚洲视频免费观看视频| 国产男人的电影天堂91| 91成人精品电影| 大香蕉久久成人网| 亚洲欧美激情在线| 男女边摸边吃奶| 久久久久精品性色| 久久精品国产亚洲av高清一级| 欧美乱码精品一区二区三区| www.av在线官网国产| 91老司机精品| 亚洲精品一二三| 久久久久国产一级毛片高清牌| 免费看av在线观看网站| 亚洲av欧美aⅴ国产| 欧美 亚洲 国产 日韩一| 欧美激情高清一区二区三区 | 黑丝袜美女国产一区| 最近中文字幕高清免费大全6| 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看av| 亚洲国产成人一精品久久久| 大香蕉久久成人网| www日本在线高清视频| 观看美女的网站| 久久国产精品男人的天堂亚洲| 菩萨蛮人人尽说江南好唐韦庄| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 91精品三级在线观看| 成人影院久久| 欧美在线黄色| xxx大片免费视频| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 老司机在亚洲福利影院| 国产一区二区三区av在线| 嫩草影视91久久| 777米奇影视久久| 国产一卡二卡三卡精品 | 国产av一区二区精品久久| 观看美女的网站| 黑丝袜美女国产一区| av女优亚洲男人天堂| 成人手机av| 免费黄网站久久成人精品| 亚洲国产欧美在线一区| 久久久欧美国产精品| 啦啦啦中文免费视频观看日本| 国产av精品麻豆| 丝袜脚勾引网站| 国产 一区精品| 国产野战对白在线观看| 国产视频首页在线观看| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 亚洲精品,欧美精品| 老熟女久久久| 亚洲欧洲日产国产| 日本黄色日本黄色录像| 亚洲四区av| 免费高清在线观看视频在线观看| 男人舔女人的私密视频| 一级片'在线观看视频| 国产成人一区二区在线| 精品国产国语对白av| 亚洲精品aⅴ在线观看| 亚洲成人一二三区av| 国产成人91sexporn| 日韩一区二区视频免费看| 最近中文字幕高清免费大全6| 免费观看人在逋| a级毛片黄视频| 波多野结衣一区麻豆| 丝袜喷水一区| 精品第一国产精品| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 人人妻人人爽人人添夜夜欢视频| 黄片播放在线免费| 99re6热这里在线精品视频| 免费观看性生交大片5| 日本黄色日本黄色录像| 在线观看免费高清a一片| 精品国产乱码久久久久久男人| 国产精品熟女久久久久浪| 亚洲国产欧美一区二区综合| 一边摸一边做爽爽视频免费| 国产精品偷伦视频观看了| 婷婷成人精品国产| 中文字幕人妻熟女乱码| 如何舔出高潮| 最黄视频免费看| 亚洲av成人不卡在线观看播放网 | 成人国语在线视频| a级片在线免费高清观看视频| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 老司机靠b影院| 777米奇影视久久| 亚洲在久久综合| av不卡在线播放| 大香蕉久久成人网| 天天躁狠狠躁夜夜躁狠狠躁| 观看美女的网站| 国产成人精品久久久久久| 免费看av在线观看网站| 国产一区亚洲一区在线观看| 老汉色av国产亚洲站长工具| 中文乱码字字幕精品一区二区三区| 哪个播放器可以免费观看大片| 久久国产精品男人的天堂亚洲| 日本av手机在线免费观看| 男女之事视频高清在线观看 | 波多野结衣av一区二区av| 久久热在线av| 黄频高清免费视频| 国产无遮挡羞羞视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产伦理片在线播放av一区| 欧美人与性动交α欧美软件| 国产 一区精品| 国产色婷婷99| 国产免费视频播放在线视频| 色精品久久人妻99蜜桃| 十八禁高潮呻吟视频| 亚洲欧洲精品一区二区精品久久久 | 一区二区av电影网| 日韩欧美一区视频在线观看| 男男h啪啪无遮挡| 久久久亚洲精品成人影院| 黑人巨大精品欧美一区二区蜜桃| 国产人伦9x9x在线观看| 中文字幕人妻丝袜制服| 老司机靠b影院| 免费久久久久久久精品成人欧美视频| 性高湖久久久久久久久免费观看| 最近2019中文字幕mv第一页| 日韩制服骚丝袜av| 久久亚洲国产成人精品v| 婷婷色综合www| 亚洲天堂av无毛| 在线观看免费视频网站a站| 一二三四中文在线观看免费高清| 亚洲精品自拍成人| 在线观看人妻少妇| 久久99热这里只频精品6学生| 中文天堂在线官网| 久久人人97超碰香蕉20202| 亚洲精品国产色婷婷电影| 国产有黄有色有爽视频| 老司机靠b影院| 国产亚洲午夜精品一区二区久久| 国产男女超爽视频在线观看| 一边摸一边做爽爽视频免费| 亚洲精品乱久久久久久| 在线天堂中文资源库| 国产黄色视频一区二区在线观看| 99热网站在线观看| 亚洲精品美女久久久久99蜜臀 | 午夜福利乱码中文字幕| 9191精品国产免费久久| 两性夫妻黄色片| 成年动漫av网址| 欧美日韩国产mv在线观看视频| 91aial.com中文字幕在线观看| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 国产黄频视频在线观看| 青春草视频在线免费观看| 午夜日韩欧美国产| 黄片无遮挡物在线观看| 国产免费又黄又爽又色| 国产1区2区3区精品| 亚洲激情五月婷婷啪啪| 国产精品麻豆人妻色哟哟久久| 久久 成人 亚洲| 超色免费av| 青春草视频在线免费观看| 99久久99久久久精品蜜桃| 大香蕉久久成人网| 久久精品熟女亚洲av麻豆精品| 久久精品国产综合久久久| 波多野结衣一区麻豆| 另类亚洲欧美激情| 超碰成人久久| 一区二区av电影网| 国产精品二区激情视频| 亚洲欧美中文字幕日韩二区| 性少妇av在线| 亚洲在久久综合| 久久久久国产精品人妻一区二区| 可以免费在线观看a视频的电影网站 |