• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Adaptive Real-Time Third Order Sliding Mode Control for Nonlinear Systems

    2022-11-11 10:48:30AhmedElmogyAmanySarhanandWaelElawady
    Computers Materials&Continua 2022年9期

    Ahmed M.Elmogy,Amany Sarhan and Wael M.Elawady

    1Computer Engineering Department,Prince Sattam Bin Abdelaziz University,Alkharj,24567,KSA

    2Department of Computers and Control Engineering,Tanta University,Tanta,13457,Egypt

    Abstract: As most real world systems are significantly nonlinear in nature,developing robust controllers have attracted many researchers for decades.Robust controllers are the controllers that are able to cope with the inherent uncertainties of the nonlinear systems.Many control methods have been developed for this purpose.Sliding mode control (SMC)is one of the most commonly used methods in developing robust controllers.This paper presents a higher order SMC(HOSMC)approach to mitigate the chattering problem of the traditional SMC techniques.The developed approach combines a third order SMC with an adaptive PID (proportional, integral, derivative)sliding surface to overcome the drawbacks of using PID controller alone.Moreover,the presented approach is capable of adaptively tuning the controller parameters online to best fit the real time applications.The Lyapunov theory is used to validate the stability of the presented approach and its feasibility is tested through a comparison with other conventional SMC approaches.

    Keywords:SMC;uncertain nonlinear systems;PID;lyapunov theory

    1 Introduction

    Nonlinear control covers a wide range of systems that exist in many real world applications.These applications include robot control[1],satellite control[2],and spacecraft control[3].These nonlinear systems are often modeled by nonlinear differential equations.Several rigorous techniques have been developed to handle these systems.Examples of these techniques are feedback linearization control(FLC)[4],back-stepping control(BSC)[5],intelligent control(e.g.,neural networks,and fuzzy logic)[6,7], adaptive control [6,7], and SMC [1,8].Each technique can be applied to certain systems and characteristics.Thus,there is no general solution for all types of nonlinear control systems.

    Generally, feedback linearization is the one of the most attractive techniques used to tackle nonlinear systems as it is based on transforming nonlinear systems into simpler forms.However,this technique does not provide efficient solutions for significant nonlinear systems which have high nonlinearities and uncertainties.Backstepping control (BSC)is also one of the most popular techniques used to control higher order systems.Nevertheless, the main disadvantage of BSC is the requirement of exact system model which cannot be guaranteed for nonlinear systems with inherent uncertainties.Thus,adaptive control is combined with BSC to mitigate the requirement of exact model.On the other hand,SMC shows great capabilities of dealing with nonlinearity and uncertainties[9-11].The more the degree of nonlinearity and uncertainty,the more need to design robust controllers for control systems.

    Tackling uncertain nonlinear systems is very challenging especially for real time control systems[12].Uncertainties occur mainly due to un-modeled high frequency dynamics,and neglected nonlinearities[13].These uncertainties usually affect the system performance,and stability[14].Accordingly,many researchers have been working towards developing robust controllers that are able to mitigate these uncertainties[15-17].Among many developed solutions,SMC is one of the most popular and effective solutions that can cope with significant uncertainties, and parameters’variations [9-11].Moreover,SMC technique shows a strong capability to compensate for external perturbations.

    As SMC techniques are very efficient in dealing with significant uncertainties,and nonlinearities,they have been widely used for decades especially for nonlinear control applications [18,19].The first order SMC is the simplest structure used in the literature to cope with uncertainties and external disturbances[20].Although,the conventional(first order)SMC presents a good solution for uncertainties compensation in the control system design process, it is suitable only for systems with output of degree of one.Furthermore,it suffers from the chattering problem which sometimes degrades the system performance,and affects the system stability.Thus,many attempts have been seen to replace the conventional SMC with higher order SMC(HOSMC)techniques that are suitable for higher order systems and able to attenuate the chattering occurred with conventional SMC.Super-twisting SMC(STSMC)is one popular extension of the conventional SMC [21].The STSMC is a second order structure of SMC that is able to reduce the oscillations that occurs around the sliding surface during the switching control phase of the SMC.The main power of STSMC is that it does not require the implementation of the derivative of the sliding variable which is the main challenge of other HOSMC techniques[22-24].Nevertheless,STSMC design process requires the accurate setting of many control gains as it affects the performance and stability of the control system.This is a very challenging process.Accordingly,many STSMC techniques have been developed to tackle this challenge such as adaptive STSMC[25],adaptive dual layer STSMC[26],and integral STSMC[27].

    Ensuing in the same path,this paper presents a new HOSMC approach that is able to overcome the chattering problem occurred in the conventional SMC.The developed approach uses a third order SMC combined with an adaptive PID sliding surface.This combined approach overcomes the drawbacks of using PID controller alone.Furthermore, the presented approach is capable of adaptively tuning the controller parameters online which is perfectly fit with real time applications.By the combination of adaptive control with the SMC,the developed approach allows of the relaxation of the boundness condition of uncertainty level.The proposed approach shows a better performance than other SMC approaches in terms of chattering attenuation, and tracking error.The stability of the developed control approach is validated through Lyapunov theory.The main contributions of this work can be summarized as follows:

    [1] Presenting a real time third order SMC approach for nonlinear systems able to mitigate the chattering problem associated with other conventional SMC approaches.The proposed approach is capable of achieving excellent performance even with the existence of all types of uncertainties and disturbances.The proposed approach is capable of estimating uncertainties and thus no worries about the upper bound problem associated with working with uncertainties.

    [2] An adaptive PID tuning algorithm is presented to reach the optimal estimation of PID controller parameters which are adaptively changing during the online control process.

    [3] A quadratic Lyapunov function is suggested and used to validate the proposed approach stability considering the estimated uncertainties.The developed control law guarantees that the system will reach the sliding surface in a finite time.

    The rest of this paper is organized as follows.Section 2 presents the proposed adaptive third order SMC approach.Some simulations are introduced in Section 3.Conclusions and some future directions are drawn in Section 4.

    2 The Proposed Approach

    The proposed Adaptive Real Time PID-based Third Order SMC(APID-TOSMC)is vindicated in this section.

    A controlled system can be modeled as[19,28]:

    wherer(t)is the control input of the system,is the system state variables,andx(t) is the measured response of the system.F(z(t),t) andG(z(t),t) are uncertain nonlinear functions.The unknown uncertainties are represented byγ(t) with an upper bound given byB≤|γ(t)|.The dynamical model of the controlled system(Eq.(1))is modified to include uncertainties as follows:

    whereFn(z(t),t) andGn(z(t),t) are the nominal values ofF(z(t),t) andG(z(t),t), respectively.The parameter variations(uncertainties)are represented byΔF(z(t),t)andΔG(z(t),t).

    The lumped uncertainty is defined as:

    The switching surface for the APID-TOSMC can be demarcated as:

    The addressed problem in this paper is to design an adaptive online Tuned PID-based APIDTOSMC for nonlinear systems such that the system responsex(t)strongly follows a reference desired signalxd(t).

    The control effort of APID-TOSMC is designed as:

    wherereq(t)andrs(t)are the equivalent and reaching control efforts respectively.

    The third derivative ofs(t)can be deduced from Eq.(4):

    The equivalent control effortis calculated by setting(t)=0,and(μ(t)=0):

    To prove the system stability,a Lyapunov function is chosen as:

    wherek1,k2are constants(design parameters).

    The derivative of Lyapunov function(t)is:

    Using Eqs.(8)and(12)becomes:

    The switching control effortrs(t)can be chosen as:

    where the switching control gaink3is a design parameter andεis a very small positive number.

    Substituting from Eq.(16)into Eq.(15)and eliminating similar terms yields:

    The switching gaink3must be set asfor global stability.The schematic diagram of the adopted APID-TOSMC controller is shown in Fig.1.

    3 Simulations and Discussions

    With the aim to assess the performance of (APID-TOSMC)approach, some simulations are done using Matlab software considering the stabilization of the inverted pendulum system.Different types of uncertainties are considered.Two problems are assessed;setpoint control and path following control.

    3.1 Setpoint Control

    The developed APID-TOSMC approach in this paper is analyzed in comparison with the second order SMC approach in [28] and the adaptive third order SMC (ATOSMC)approach in [29].The simulation parameters and conditions are set exactly as in[28]and the algorithm in[29]is implemented with same parameters and conditions.The desired angular position is set as:θd= 0 with initial conditionsIn order to examine the robustness of the controller,two cases of uncertainties are considered: the external perturbationsand the abrupt perturbations (a 1000Nforce is abruptly applied at the pole att= 2.5 sec).The proposed APID-TOSMC parameters are set as:β2= 0.005,k3= 50,k1= 1,β1= 0.008,γp= 1.1,γi= 0.06,γd= 0.036 andk2= 1.The angular position(θ) of the proposed APID-TOSMC approach compared with the approaches in[28,29]is shown in Fig.2.Furthermore,Fig.3 shows the angular position error of the three approaches.

    Figure 1:Schematic diagram of the adopted APID-TOSMC controller

    Figure 2:Angular position(θ)response

    Figs.2 and 3 illustrate that the APID-TOSMC controller can achieve favorable and satisfied trajectory tracking control performance.Additionally,the proposed APID-TOSMC control methodology is able to perfectly control the inverted pendulum.The results show the developed controller is very robust even in the existence of external perturbations and uncertainties compared to other approaches.

    Figure 3:Angular position error response

    Figs.4-6 show the adaptive PID sliding surface values for the set point tracking control of APIDTOSMC controller.

    Figure 4:The adaptive value of the proportional parameter of APID-TOSMC for set point control

    To more evaluate the developed approach, three parameters are used; integral absolute error(IAE),integral time absolute error(ITAE),and integral of squared error.Tab.1 shows the obtained results of our approach is excellent compared with the approach proposed in [28] and has a better performance than the approach in[29].

    Also, Fig.7 shows a comparison between the control signal of the presented APID-TOSMC approach and the approach proposed in [28,29].As shown, the control signal for our proposed approach has less chattering than the other approaches.

    Figure 5:The adaptive value of the integrator parameter of APID-TOSMC for set point control

    Figure 6:The adaptive value of the differentiator parameter of APID-TOSMC for set point control

    Table 1: Performance comparison for set point control problem

    3.2 Path Following Control

    The second case of control to consider in this section is the trajectory tracking control of the inverted pendulum.Again,the simulation parameters and conditions are set exactly as in[28]and the algorithm in[29]is implemented with same parameters and conditions.The external perturbation is set to:ρ(t) =(0.2 sin(0.25t)) with initial conditionsY0= [,0] [27].The proposed APID-TOSMC parameters are set as:β2= 0.005,β2= 0.005,k3= 50,k1= 1,β1= 0.008,γp= 1.1,γi= 0.06,γd= 0.036 andk2= 1.To test the robustness of the presented APID-TOSMC approach, a 1000 N force is abruptly applied at the pole att= 5 sec.The control and error responses are illustrated in Figs.8 and 9 respectively.

    Figure 7:The total control signal for set point control

    Figure 8:Angular position(θ)

    Figure 9:Angular position error

    Figs.10-12 show how the PID sliding surface values are adaptively changing over time.

    Figure 10: The adaptive value of the proportional parameter of APID-TOSMC for path following control

    Figure 11:The adaptive value of the integrator parameter of APID-TOSMC for path following control

    Figure 12: The adaptive value of the differentiator parameter of APID-TOSMC for path following control

    Fig.13 demonstrates the control signals of the APID-SOSMC and APID-TOSMC approaches.

    Figure 13:The control signal for path following control

    It has been shown in this section that the developed controller(APID-TOSMC)attained better path following response than the controllers in[28,29].It is also obvious that the proposed controller reduces the chattering and thus yields favorable path following response.

    Performance comparison for path following control problem is shown in Tab.2.As shown, the proposed controller achieves better performance compared with the controllers proposed in[28,29]in the case of path following control.

    Table 2: Performance comparison for path following control problem

    4 Conclusions

    An adaptive PID-based higher order SMC approach for nonlinear systems is presented in this paper.The proposed approach integrates a third order SMC with PID controller with a view of combining their advantages and overcoming their drawbacks.The proposed approach is adaptively tuning the PID parameters in the real time to be used properly for any real time applications.By combining the adaptive control with the SMC,the developed approach allows for the relaxation of the boundness condition of uncertainty level in conventional SMC.The robustness and efficiency of the developed approach is validated mathematically and through simulations.The developed approach achieves lower chattering and error that other conventional SMC approaches.Future work may consider working toward finding a generalized SMC approach to able to vary the order of the SMC to any value as needed.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/17796).

    Funding Statement:This work is funded by the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number(IF-PSAU-2021/01/17796).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    色尼玛亚洲综合影院| 琪琪午夜伦伦电影理论片6080| 中文字幕人妻丝袜一区二区| 3wmmmm亚洲av在线观看| 人人妻人人澡欧美一区二区| 亚洲欧美日韩无卡精品| 12—13女人毛片做爰片一| 国产乱人视频| 欧美三级亚洲精品| 夜夜看夜夜爽夜夜摸| 国产激情偷乱视频一区二区| 在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 国产三级黄色录像| 搡老妇女老女人老熟妇| 国产亚洲av嫩草精品影院| 欧美色欧美亚洲另类二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品影院6| 国产精品精品国产色婷婷| 十八禁人妻一区二区| 美女 人体艺术 gogo| 国产单亲对白刺激| 高潮久久久久久久久久久不卡| 国产午夜精品论理片| 精品福利观看| 亚洲 欧美 日韩 在线 免费| 五月伊人婷婷丁香| 美女高潮喷水抽搐中文字幕| 麻豆国产97在线/欧美| 国内毛片毛片毛片毛片毛片| 国产一区二区在线av高清观看| 国产精品自产拍在线观看55亚洲| 极品教师在线免费播放| 黄片大片在线免费观看| 色综合欧美亚洲国产小说| 一区二区三区国产精品乱码| a级一级毛片免费在线观看| 国产真人三级小视频在线观看| 中文字幕久久专区| 91在线观看av| 少妇熟女aⅴ在线视频| h日本视频在线播放| 日本成人三级电影网站| 亚洲精品一区av在线观看| 啦啦啦免费观看视频1| 亚洲av成人av| 成人特级av手机在线观看| 夜夜爽天天搞| 亚洲人与动物交配视频| 内地一区二区视频在线| av黄色大香蕉| 99热这里只有是精品50| 丰满人妻熟妇乱又伦精品不卡| 亚洲在线观看片| 成人精品一区二区免费| 国产精品乱码一区二三区的特点| 亚洲 欧美 日韩 在线 免费| 日韩欧美精品v在线| 2021天堂中文幕一二区在线观| 在线视频色国产色| 亚洲国产欧洲综合997久久,| 国产精品久久久人人做人人爽| 国产精品久久久人人做人人爽| 久久精品影院6| а√天堂www在线а√下载| a级毛片a级免费在线| 一区二区三区免费毛片| 热99re8久久精品国产| www.熟女人妻精品国产| 国产高清videossex| 日韩欧美在线乱码| 又紧又爽又黄一区二区| 国产三级在线视频| www.色视频.com| 中文字幕人妻丝袜一区二区| 精品人妻偷拍中文字幕| 日本免费一区二区三区高清不卡| 国产亚洲精品av在线| 白带黄色成豆腐渣| 女人高潮潮喷娇喘18禁视频| 久久精品影院6| 亚洲性夜色夜夜综合| 桃红色精品国产亚洲av| xxxwww97欧美| av片东京热男人的天堂| 久久久精品大字幕| 伊人久久精品亚洲午夜| 香蕉久久夜色| 亚洲色图av天堂| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 91久久精品国产一区二区成人 | 国产v大片淫在线免费观看| 久久久久精品国产欧美久久久| 国产亚洲精品综合一区在线观看| 搡老熟女国产l中国老女人| 亚洲专区国产一区二区| 精华霜和精华液先用哪个| 国产精品自产拍在线观看55亚洲| 亚洲aⅴ乱码一区二区在线播放| 久久久久九九精品影院| 亚洲aⅴ乱码一区二区在线播放| 嫩草影院精品99| 久久久精品欧美日韩精品| 日韩欧美精品免费久久 | 国产v大片淫在线免费观看| 一级毛片高清免费大全| 亚洲成人免费电影在线观看| 精品久久久久久,| 亚洲无线在线观看| 久久精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 久9热在线精品视频| 国产精品美女特级片免费视频播放器| 国产淫片久久久久久久久 | 免费电影在线观看免费观看| 有码 亚洲区| 久久精品91无色码中文字幕| 日韩有码中文字幕| 日韩欧美在线二视频| 中文字幕久久专区| 女同久久另类99精品国产91| 免费在线观看日本一区| 99久国产av精品| 两个人看的免费小视频| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 美女免费视频网站| 中文字幕熟女人妻在线| 久久午夜亚洲精品久久| 精品久久久久久成人av| 亚洲一区二区三区不卡视频| 日韩欧美 国产精品| 一进一出好大好爽视频| 69人妻影院| 亚洲人成伊人成综合网2020| 99热这里只有是精品50| 一个人看的www免费观看视频| 免费观看人在逋| 给我免费播放毛片高清在线观看| 亚洲avbb在线观看| 午夜免费男女啪啪视频观看 | 亚洲乱码一区二区免费版| 在线免费观看的www视频| 69av精品久久久久久| 在线看三级毛片| 国产成人a区在线观看| 国产乱人伦免费视频| 亚洲自拍偷在线| 丰满乱子伦码专区| 国产亚洲av嫩草精品影院| 国产精品久久电影中文字幕| 好看av亚洲va欧美ⅴa在| 一进一出抽搐gif免费好疼| 九九久久精品国产亚洲av麻豆| 乱人视频在线观看| 别揉我奶头~嗯~啊~动态视频| 日本在线视频免费播放| 亚洲最大成人中文| 久久欧美精品欧美久久欧美| 欧美黑人欧美精品刺激| 日本 欧美在线| 欧美一级毛片孕妇| 久久精品国产综合久久久| av在线蜜桃| 一进一出好大好爽视频| 亚洲黑人精品在线| 最新在线观看一区二区三区| 丁香六月欧美| 亚洲中文字幕一区二区三区有码在线看| 人人妻,人人澡人人爽秒播| АⅤ资源中文在线天堂| 青草久久国产| 一本精品99久久精品77| 国产黄片美女视频| 搡老岳熟女国产| 香蕉丝袜av| xxxwww97欧美| 欧美日本视频| 日韩欧美国产一区二区入口| 久久香蕉国产精品| 1024手机看黄色片| xxx96com| 久久香蕉精品热| 久久久成人免费电影| 亚洲国产欧美人成| 最后的刺客免费高清国语| 黄色片一级片一级黄色片| 日韩欧美国产在线观看| 久久精品国产综合久久久| 国产一区二区三区视频了| 搡女人真爽免费视频火全软件 | 观看美女的网站| 亚洲人成电影免费在线| 国产精品 欧美亚洲| 国内精品一区二区在线观看| 日韩成人在线观看一区二区三区| 88av欧美| 在线观看午夜福利视频| svipshipincom国产片| 一个人看视频在线观看www免费 | 成年免费大片在线观看| 午夜日韩欧美国产| 国产乱人视频| 久久久久久大精品| tocl精华| 色尼玛亚洲综合影院| 日本熟妇午夜| 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 一夜夜www| 操出白浆在线播放| 一本精品99久久精品77| 手机成人av网站| 国产真实伦视频高清在线观看 | 免费av观看视频| 波野结衣二区三区在线 | 精品久久久久久久毛片微露脸| 日本一二三区视频观看| 亚洲欧美精品综合久久99| 蜜桃久久精品国产亚洲av| 国产免费男女视频| 每晚都被弄得嗷嗷叫到高潮| 美女黄网站色视频| 亚洲七黄色美女视频| 精品熟女少妇八av免费久了| 黄色丝袜av网址大全| 亚洲一区二区三区不卡视频| 亚洲av成人不卡在线观看播放网| 色吧在线观看| 日本 欧美在线| 亚洲成a人片在线一区二区| 丁香六月欧美| 精品国产亚洲在线| 亚洲国产精品999在线| 最近最新中文字幕大全免费视频| av片东京热男人的天堂| 好看av亚洲va欧美ⅴa在| 亚洲专区中文字幕在线| 国产欧美日韩一区二区三| 51午夜福利影视在线观看| 国产麻豆成人av免费视频| 淫妇啪啪啪对白视频| 欧美日韩综合久久久久久 | 久久精品91无色码中文字幕| 欧美一级毛片孕妇| 欧美日韩国产亚洲二区| 午夜福利在线观看免费完整高清在 | 亚洲中文日韩欧美视频| 人妻夜夜爽99麻豆av| 久久久成人免费电影| 最后的刺客免费高清国语| 制服人妻中文乱码| 熟女电影av网| 国产精品免费一区二区三区在线| 国产成人影院久久av| 亚洲人成网站高清观看| av在线蜜桃| 亚洲av成人av| 久9热在线精品视频| 看片在线看免费视频| 国产精品影院久久| 中文字幕熟女人妻在线| 欧美丝袜亚洲另类 | 久久久久国内视频| 99久久成人亚洲精品观看| 国产精品久久久久久久电影 | 亚洲欧美日韩高清在线视频| 欧美一区二区精品小视频在线| 床上黄色一级片| 很黄的视频免费| 在线十欧美十亚洲十日本专区| 九九久久精品国产亚洲av麻豆| 男插女下体视频免费在线播放| 国产精品电影一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| 精品99又大又爽又粗少妇毛片 | 噜噜噜噜噜久久久久久91| 1024手机看黄色片| 亚洲成av人片在线播放无| h日本视频在线播放| 18禁国产床啪视频网站| 一区二区三区免费毛片| 一级毛片女人18水好多| 欧美又色又爽又黄视频| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合久久99| 婷婷亚洲欧美| 丰满人妻一区二区三区视频av | 小蜜桃在线观看免费完整版高清| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 亚洲人成网站在线播| 熟女电影av网| 亚洲av电影在线进入| 国产精品久久久久久久久免 | 91九色精品人成在线观看| 欧美bdsm另类| 禁无遮挡网站| 欧美日本视频| 一区福利在线观看| 久久性视频一级片| 一级毛片高清免费大全| 精华霜和精华液先用哪个| 午夜老司机福利剧场| 高潮久久久久久久久久久不卡| 1000部很黄的大片| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 噜噜噜噜噜久久久久久91| 欧美另类亚洲清纯唯美| 国产乱人伦免费视频| 亚洲av成人av| 女人被狂操c到高潮| 国产老妇女一区| 国产精品av视频在线免费观看| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 国产午夜精品久久久久久一区二区三区 | 国产私拍福利视频在线观看| 国产成人aa在线观看| 757午夜福利合集在线观看| 99热只有精品国产| 欧美黄色淫秽网站| 三级男女做爰猛烈吃奶摸视频| 99在线人妻在线中文字幕| 女人被狂操c到高潮| 亚洲人成网站在线播放欧美日韩| 国产三级黄色录像| 午夜福利成人在线免费观看| 麻豆久久精品国产亚洲av| 偷拍熟女少妇极品色| 国产精品 欧美亚洲| 国内少妇人妻偷人精品xxx网站| 香蕉丝袜av| 九色国产91popny在线| 神马国产精品三级电影在线观看| 天天躁日日操中文字幕| 免费观看精品视频网站| 亚洲成人中文字幕在线播放| 亚洲成av人片免费观看| 亚洲一区二区三区不卡视频| 宅男免费午夜| 国产亚洲欧美98| 亚洲中文字幕日韩| 国产精品女同一区二区软件 | 日本a在线网址| 两个人看的免费小视频| 亚洲精品一区av在线观看| 午夜老司机福利剧场| 国产亚洲精品综合一区在线观看| 国产精品香港三级国产av潘金莲| 男人和女人高潮做爰伦理| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 成人特级黄色片久久久久久久| 国产精品精品国产色婷婷| av黄色大香蕉| 男女午夜视频在线观看| 日本一二三区视频观看| 欧美+日韩+精品| 欧美黄色片欧美黄色片| 又爽又黄无遮挡网站| 国产一区二区三区视频了| 日韩欧美免费精品| xxx96com| 美女大奶头视频| 久久久国产成人免费| 婷婷亚洲欧美| 露出奶头的视频| 国产 一区 欧美 日韩| 国产av在哪里看| 欧美乱妇无乱码| 少妇高潮的动态图| 亚洲狠狠婷婷综合久久图片| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看| 99在线人妻在线中文字幕| 午夜免费男女啪啪视频观看 | 免费搜索国产男女视频| 亚洲av中文字字幕乱码综合| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频| 久久久久久久久中文| 国产真人三级小视频在线观看| 操出白浆在线播放| av天堂中文字幕网| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频| 在线观看一区二区三区| 一进一出抽搐动态| 午夜两性在线视频| 51午夜福利影视在线观看| av专区在线播放| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 三级国产精品欧美在线观看| 免费搜索国产男女视频| 国产亚洲精品av在线| 天堂动漫精品| 高清在线国产一区| 国产真实伦视频高清在线观看 | 99久久精品热视频| 一级黄片播放器| 午夜福利在线观看免费完整高清在 | 99视频精品全部免费 在线| 俄罗斯特黄特色一大片| 一级毛片女人18水好多| 九九久久精品国产亚洲av麻豆| av片东京热男人的天堂| av在线蜜桃| 久久精品91无色码中文字幕| 国产精品99久久久久久久久| 国产一区二区激情短视频| 中文在线观看免费www的网站| 91av网一区二区| 麻豆成人午夜福利视频| a级一级毛片免费在线观看| 村上凉子中文字幕在线| 亚洲黑人精品在线| 国产探花在线观看一区二区| 日韩免费av在线播放| 午夜老司机福利剧场| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 亚洲av免费高清在线观看| 亚洲av二区三区四区| 国内毛片毛片毛片毛片毛片| 国产精品野战在线观看| 精品国产美女av久久久久小说| 国产精品亚洲av一区麻豆| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 成年版毛片免费区| a级毛片a级免费在线| 岛国视频午夜一区免费看| 欧美丝袜亚洲另类 | 无人区码免费观看不卡| 国内精品美女久久久久久| 99riav亚洲国产免费| 免费无遮挡裸体视频| 精品免费久久久久久久清纯| 亚洲国产欧美网| 国产成人福利小说| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 亚洲第一欧美日韩一区二区三区| 好男人电影高清在线观看| 国产精品嫩草影院av在线观看 | 最近最新免费中文字幕在线| 欧美绝顶高潮抽搐喷水| 最近视频中文字幕2019在线8| av专区在线播放| 波多野结衣高清作品| 欧美大码av| 婷婷六月久久综合丁香| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| av女优亚洲男人天堂| 精品国产超薄肉色丝袜足j| 国产精品久久视频播放| 婷婷亚洲欧美| 岛国在线免费视频观看| 熟妇人妻久久中文字幕3abv| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 国产高清三级在线| 久久精品国产清高在天天线| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 99久国产av精品| 成人三级黄色视频| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 亚洲人与动物交配视频| 老熟妇仑乱视频hdxx| 精品一区二区三区视频在线 | 精品国内亚洲2022精品成人| 国产精品,欧美在线| 日本三级黄在线观看| 日本 av在线| 亚洲国产中文字幕在线视频| eeuss影院久久| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 国产三级黄色录像| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 国内精品美女久久久久久| 日本一二三区视频观看| 国语自产精品视频在线第100页| 性色av乱码一区二区三区2| 一本综合久久免费| 欧美性猛交╳xxx乱大交人| 国产免费av片在线观看野外av| 欧美绝顶高潮抽搐喷水| 国产av不卡久久| 可以在线观看毛片的网站| 少妇的逼好多水| 波多野结衣巨乳人妻| 国产av不卡久久| 日本在线视频免费播放| 久久久久亚洲av毛片大全| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 波多野结衣高清作品| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| 久久伊人香网站| 一进一出好大好爽视频| 国内精品久久久久精免费| 天堂√8在线中文| 国产精品野战在线观看| 亚洲精品粉嫩美女一区| 黑人欧美特级aaaaaa片| 美女免费视频网站| av片东京热男人的天堂| 日本与韩国留学比较| 国产视频内射| 免费在线观看影片大全网站| 国产淫片久久久久久久久 | 法律面前人人平等表现在哪些方面| 国产一区在线观看成人免费| 免费看日本二区| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx| 精品久久久久久,| 免费看日本二区| 男人舔女人下体高潮全视频| xxx96com| 午夜亚洲福利在线播放| 国内精品美女久久久久久| 成年女人毛片免费观看观看9| 美女高潮喷水抽搐中文字幕| 日韩国内少妇激情av| 国产精华一区二区三区| 丁香欧美五月| 国产激情欧美一区二区| 99久久无色码亚洲精品果冻| 国产视频一区二区在线看| 午夜精品在线福利| 免费在线观看成人毛片| 伊人久久大香线蕉亚洲五| 一级黄片播放器| 久久久久久人人人人人| 男人和女人高潮做爰伦理| 99久久久亚洲精品蜜臀av| 在线观看免费午夜福利视频| 国产毛片a区久久久久| 久久这里只有精品中国| 在线播放国产精品三级| 男女做爰动态图高潮gif福利片| 欧美大码av| 免费高清视频大片| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 嫩草影院精品99| 色综合婷婷激情| 有码 亚洲区| 免费av观看视频| 19禁男女啪啪无遮挡网站| a级一级毛片免费在线观看| 综合色av麻豆| 久久精品亚洲精品国产色婷小说| 我要搜黄色片| 国产亚洲精品av在线| 51午夜福利影视在线观看| 成年版毛片免费区| 国产精品久久视频播放| 一区二区三区激情视频| 久久久国产成人免费| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 又粗又爽又猛毛片免费看| 很黄的视频免费| 日韩欧美精品v在线| 国产精品久久电影中文字幕| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 久久精品国产清高在天天线| av专区在线播放| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 校园春色视频在线观看| 久久久精品欧美日韩精品| 欧美日韩黄片免| 法律面前人人平等表现在哪些方面| 舔av片在线| 精品一区二区三区视频在线观看免费| av片东京热男人的天堂| 久久婷婷人人爽人人干人人爱| 国产探花在线观看一区二区| av在线天堂中文字幕| 国产精品1区2区在线观看.| 亚洲成av人片免费观看| 国产精品永久免费网站| 久久精品夜夜夜夜夜久久蜜豆| 精品人妻一区二区三区麻豆 | 美女免费视频网站| 中文字幕人妻熟人妻熟丝袜美 | 一本综合久久免费| 色精品久久人妻99蜜桃| 嫩草影院精品99| 午夜精品一区二区三区免费看| 嫩草影院精品99| 黄色日韩在线| 无人区码免费观看不卡| 少妇丰满av|